Asparagus Aethiopicus L

Total Page:16

File Type:pdf, Size:1020Kb

Asparagus Aethiopicus L Asparagus aethiopicus L. Identifiants : 3465/aspaet Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 02/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Monocotylédones ; Ordre : Asparagales ; Famille : Asparagaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Liliopsida ; Ordre : Liliales ; Famille : Liliaceae ; Sous-famille : Asparagoideae ; Genre : Asparagus ; Synonymes : Asparagopsis aethiopica (L.) Kunth, Asparagopsis lancea (Thunb.) Kunth, Asparagus aculeatus Voss, Asparagus laetus Salisb, Asparagus maximus Voss, Asparagus sprengeri Regel, Protoasparagus aethiopicus (L.) Oberm ; Nom(s) anglais, local(aux) et/ou international(aux) : Wild asparagus, ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Parties comestibles : pousses{{{0(+x) (traduction automatique) | Original : Shoots{{{0(+x) néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Distribution : C'est une plante chaude tempérée et tropicale. Il pousse bien dans les zones ombragées{{{0(+x) (traduction automatique). Original : It is a warm temperate and tropical plant. It grows well in shaded areas{{{0(+x). Page 1/2 Localisation : Afrique, Australie, République dominicaine, Afrique de l'Est, Eswatini, Nauru, Pacifique, Afrique du Sud, Afrique australe, Swaziland, Tasmanie, Antilles, Zimbabwe{{{0(+x) (traduction automatique). Original : Africa, Australia, Dominican Republic, East Africa, Eswatini, Nauru, Pacific, South Africa, Southern Africa, Swaziland, Tasmania, West Indies, Zimbabwe{{{0(+x). Notes : C'est devenu une mauvaise herbe dans certaines régions d'Australie{{{0(+x) (traduction automatique). Original : It has become a serious weed in some parts of Australia{{{0(+x). Liens, sources et/ou références : dont classification : dont livres et bases de données : 0"Food Plants International" (en anglais) ; dont biographie/références de 0"FOOD PLANTS INTERNATIONAL" : Long, C., 2005, Swaziland's Flora - siSwati names and Uses http://www.sntc.org.sz/flora/ ; van der Burg, W.J., 2004. Asparagus flagellaris (Kunth) Baker. [Internet] Record from Protabase. Grubben, G.J.H. & Denton, O.A. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de lâ'Afrique tropicale), Wageningen, Netherlands. < http://database.prota.org/search.htm>. Accessed 13 October 2009. ; van Wyk, Be., & Gericke, N., 2007, People's plants. A Guide to Useful Plants of Southern Africa. Briza. p 68 Page 2/2 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Asparagus Densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop
    TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Taxon: Asparagus densiflorus (Kunth) Jessop Family: Asparagaceae Common Name(s): asparagus fern Synonym(s): Asparagopsis densiflora Kunth foxtail fern Asparagus myriocladus Baker plume asparagus Protasparagus densiflorus (Kunth) Oberm. regal fern Sprenger's asparagus fern Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Feb 2021 WRA Score: 15.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tuberous Geophyte, Naturalized, Environmental Weed, Dense Cover, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Botanischer Garten Der Universität Tübingen
    Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22
    [Show full text]
  • Pdf (536.04 K)
    J. Plant Production, Mansoura Univ., Vol. 4 (3): 417 - 423, 2013 CHEMOTAXONOMIC STUDY OF FIVE MONOCOT SPECIES FROM NORTH- EASTERN SUDAN Wasfi, M. A., I. Madani and Fatima El - Mubarak Botany Department Faculty of Science, Univ. of K. Sudan ABSTRACT Alkaloids, flavonoids, triterpenes, sterols and saponins were qualitatively screened in different organs of five monocotyledonous species belonging to different genera: Allium cepa L., Asparagus densiflorus (Kunth) Jessop, Pancratium tortuosum Herbert., Kniphofia nubigena Mildr., and Urginea maritima (L.) Baker. Phenolic compounds were separated using thin layer chromatography to ascertain their relative phylogenetic position. Data collected from the qualitative phytochemical analysis, paired affinity, group affinity and isolation value reflected taxonomically significant information supported the inclusion of these species in different families by many taxonomists in the most recent classification systems. Keywords: Monocot classification, chemotaxonomy, TLC, phenolics. INTRODUCTION Monocot classification had undergone considerable revision in the past four decades particularly in recent years. Cronquist (1968, 1981) and Hutchinson (1973) in their systems of classification assigned the five species selected for the present study: Asparagus, Urginea, Pancratium and Allium to the family Liliaceae and Kniphofia to the family Aloaceae and both families to the order liliales . Dahlgren et al. (1985) placed Kniphofia in Asphodelaceae, Pancratium in Amaryllidaceae Urigina in Hyacinthaceae, Asparagus
    [Show full text]
  • Medicinal Properties of Selected Asparagus Species: a Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele
    Chapter Medicinal Properties of Selected Asparagus Species: A Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele Abstract Asparagus species are naturally distributed along Asia, Africa, and Europe and are known to have numerous biological properties. This review article was aimed to provide an organized summary of current studies on the traditional uses, phy- tochemistry, and pharmacological and toxicological studies of Asparagus laricinus Burch., Asparagus africanus Lam., Asparagus officinalis L., Asparagus racemosus Willd., and Asparagus densiflorus (Kunth) Jessop to attain and establish new insights for further researches. Information used in this review was obtained from electronic database including PubMed central, Google scholars, Science direct, Scopus, and Sabinet. Based on the present findings, the existing literature still presents some breaches about the mechanism of action of various constituents of these plants, and their relation to other plant compounds in poly-herbal formulations, as well as their long-term use and safety. More in-depth studies are still needed for active compounds and biological activities of Asparagus laricinus, Asparagus africanus, and Asparagus densiflorus. Therefore, innumerable opportunities and possibilities for investigation are still available in novel areas of these plants for future research stud¬ies. It can be concluded that all selected Asparagus species have tremendous potential to improve human health and the pharmacological activities of these plants can be attributed to bioactive phytochemicals they possess. Keywords: Asparagaceae, Asparagus africanus lam., Asparagus densiflorus (kunth) Jessop, Asparagus laricinus Burch., Asparagus officinalis L., Asparagus racemosus Willd., pharmacological actions, phytochemistry 1. Introduction Historically, plants were used for numerous purposes for mankind in general, inter alia, feeding and catering, culinary spices, medicine, various forms of cosmetics, symbols in worship and for a variety of ornamental goods.
    [Show full text]
  • Vascular Plants Diversity and Ethnobotany With
    VASCULAR PLANTS DIVERSITY AND ETHNOBOTANY WITH EMPHASIS TO TRADITIONAL MEDICINAL AND WILD EDIBLE PLANTS IN DUGDA DAWA DISTRICT OF BORANA ZONE, OROMIA REGIONAL STATE, ETHIOPIA Mersha Ashagre Eshete Addis Ababa University Addis Ababa, Ethiopia April 2017 VASCULAR PLANTS DIVERSITY AND ETHNOBOTANY WITH EMPHASIS TO TRADITIONAL MEDICINAL AND WILD EDIBLE PLANTS IN DUGDA DAWA DISTRICT OF BORANA ZONE, OROMIA REGIONAL STATE, ETHIOPIA Mersha Ashagre Eshete A Thesis Submitted to The Department of Plant Biology and Biodiversity Management Presented in Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Plant Biology and Biodiversity Management) Addis Ababa University Addis Ababa, Ethiopia April 2017 i ADDIS ABABA UNIVERSITY GRADUATE PROGRAMMES This is to certify that the thesis prepared by Mersha Ashagre Eshete, entitled: “Vascular Plants Diversity and Ethnobotany with Emphasis to Traditional Medicinal and Wild Edible Plants in Dugda Dawa District of Borana Zone, Oromia Regional State, Ethiopia”, and submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy (Plant Biology and Biodiversity Management) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by Research Supervisors: Name Signature Date 1. _____________________ _________________ _____________ 2.______________________ _________________ _____________ 3._____________________ _________________ ______________ 4.____________________ __________________ _______________ _____________________
    [Show full text]
  • Review on Therapeutic and Pharmaceutically Important
    iochemis t B try n & la P P h f Iqbal et al., J Plant Biochem Physiol 2017, 5:1 y o s l i Journal of o a l n DOI: 10.4172/2329-9029.1000180 o r g u y o J ISSN: 2329-9029 Plant Biochemistry & Physiology ReviewResearch Article Article Open Access Review on Therapeutic and Pharmaceutically Important Medicinal Plant Asparagus officinalis L Muhammad Iqbal*, Yamin Bibi, Naveed Iqbal Raja, Muhammad Ejaz, Mubashir Hussain, Farhat Yasmeen, Hafiza Saira and Muhammad Imran Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan Abstract The use of medicinal plants is as old as human civilization. About 600-700 plants species in Pakistan are used for preparation of ayurvedic, unani and homeopathic drugs. Asparagus officinalis a sub-erect prickly shrub with white tuberous root usually is of prime importance in this regard. It naturally occurs in areas of southern Africa, Europe, Australia and Asia. Nutritive tonics are prepared from its roots and it is also a source of a nutritious starch, low in calories and is very low in sodium and good source of vitamins. This plant offers multiple health benefits because of presence of ingredients like proteins, alkaloids, saponins and tannins that help in improving fertility and vitality in women and men. Pharmacological activities of Asparagus include anticancer, antioxidant, antifungal, antibacterial, anti-dysenteric, anti-inflammatory, and anti-abortifacient, anti-oxytoxic, antiulcer, hypertensive and anticoagulant effects. Moreover, it is reported to reduce the risk of constipation, diarrhea, osteoporosis, obesity, cardiovascular disease, rheumatism and diabetes. Now days, the demand of such medicinally important plants has increased all over the world.
    [Show full text]
  • Molecular Data and Phylogeny of Family Smilacaceae
    Pak. J. Bot., Special Issue (S.I. Ali Festschrift) 42: 111-116, 2010. MOLECULAR DATA AND PHYLOGENY OF FAMILY SMILACACEAE ZABTA K. SHINWARI1 AND SHEHLA SHINWARI2 1Dept. of Biotechnology, Quaid-i-Azam University-Islamabad 2Dept. of Botany, PMAS Arid Agriculture University, Rawalpindi Abstract Family Smilacaceae’s higher order taxonomy remained disputed for many years. It was treated as an order “Smilacales” and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family’s higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. Introduction The Family Smilacaceae was first recognized by Vent. However, its taxonomic status remained controversial. Smilacaceae is a small family with only 3 genera and about 320 species. (Mabberley 2008, Conran,1998) In Pakistan it is represented by one genus and 4 species including a cultivated species (Ghazanfar, 1977). This family is mainly distributed in tropics but extending to temperate regions of both the hemispheres. Bantham and Hooker, (1883); Krause (1930) considered the genera of Smilacaceae under tribe Polygonatae of the family Liliaceae But majority of the present day taxonomists treat them under an independent family Smilacaceae because of its petiolar sheath tendrils, 1-chambered anther cells, sessile stigmas and mostly climbing habit (Fig.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Aloes and Lilies of Ethiopia and Eritrea
    Aloes and Lilies of Ethiopia and Eritrea Sebsebe Demissew Inger Nordal Aloes and Lilies of Ethiopia and Eritrea Sebsebe Demissew Inger Nordal <PUBLISHER> <COLOPHON PAGE> Front cover: Aloe steudneri Back cover: Kniphofia foliosa Contents Preface 4 Acknowledgements 5 Introduction 7 Key to the families 40 Aloaceae 42 Asphodelaceae 110 Anthericaceae 127 Amaryllidaceae 162 Hyacinthaceae 183 Alliaceae 206 Colchicaceae 210 Iridaceae 223 Hypoxidaceae 260 Eriospermaceae 271 Dracaenaceae 274 Asparagaceae 289 Dioscoreaceae 305 Taccaceae 319 Smilacaceae 321 Velloziaceae 325 List of botanical terms 330 Literature 334 4 ALOES AND LILIES OF ETHIOPIA Preface The publication of a modern Flora of Ethiopia and Eritrea is now completed. One of the major achievements of the Flora is having a complete account of all the Mono­ cotyledons. These are found in Volumes 6 (1997 – all monocots except the grasses) and 7 (1995 – the grasses) of the Flora. One of the main aims of publishing the Flora of Ethiopia and Eritrea was to stimulate further research in the region. This challenge was taken by the authors (with important input also from Odd E. Stabbetorp) in 2003 when the first edition of ‘Flowers of Ethiopia and Eritrea: Aloes and other Lilies’ was published (a book now out of print). The project was supported through the NUFU (Norwegian Council for Higher Education’s Programme for Development Research and Education) funded Project of the University of Oslo, Department of Biology, and Addis Ababa University, National Herbarium in the Biology Department. What you have at hand is a second updated version of ‘Flowers of Ethiopia and Eritrea: Aloes and other Lilies’.
    [Show full text]
  • Conservation Issues for the Vascular Flora of Lord Howe Island
    490 Cunninghamia 8(4): 2004 Auld & Hutton, Plant conservation on Lord Howe Island Conservation issues for the vascular flora of Lord Howe Island Tony D. Auld1 and Ian Hutton2 1Biodiversity and Conservation Science Section, Department of Environment and Conservation (NSW) PO Box 1967 Hurstville NSW 2220, AUSTRALIA Email: [email protected] 2PO Box 157 Lord Howe Island, NSW 2898 AUSTRALIA Abstract: The flora of the Lord Howe Island Group (31°30’S, 159°05’E) comprises a unique mix of elements of Australian, New Zealand and New Caledonian floras. It is significant for its high degree of endemism and for its structural and biological (leaves, flowers, fruit) role in supporting a diverse array of fauna. Conservation of this flora is dependant upon: reducing current habitat degradation (mostly the result of exotic weeds); minimising any future impacts, in particular the effects of climate change on the unique cloud forests of the southern mountains and the continued introduction and spread of weeds and the pathogen Phytophthora cinnamomi. We provide a description of the nature of the major threats to the flora and suggest an area-based scheme, focussed on the relative conservation significance of remaining vegetation, as a mechanism for developing priorities for threat mitigation activities. While a number of threat control works are in place, eg. weed control, some re-emphasis is needed. In addition, some new initiatives are required including: reducing the rate of introductions of new exotics; a system to remove potential environmental weeds from the settlement area; phytosanitary guidelines; pathogen quarantine measures; search and removal of environmental weeds from remote areas; and ex situ initiatives for plant species restricted to the cloud forests of the southern mountains.
    [Show full text]
  • Technical Report Series No. 287 Advisory List of Environmental Weeds in Victoria
    Advisory list of environmental weeds in Victoria M. White, D. Cheal, G.W. Carr, R. Adair, K. Blood and D. Meagher April 2018 Arthur Rylah Institute for Environmental Research Technical Report Series No. 287 Arthur Rylah Institute for Environmental Research Department of Environment, Land, Water and Planning PO Box 137 Heidelberg, Victoria 3084 Phone (03) 9450 8600 Website: www.ari.vic.gov.au Citation: White, M., Cheal, D., Carr, G. W., Adair, R., Blood, K. and Meagher, D. (2018). Advisory list of environmental weeds in Victoria. Arthur Rylah Institute for Environmental Research Technical Report Series No. 287. Department of Environment, Land, Water and Planning, Heidelberg, Victoria. Front cover photo: Ixia species such as I. maculata (Yellow Ixia) have escaped from gardens and are spreading in natural areas. (Photo: Kate Blood) © The State of Victoria Department of Environment, Land, Water and Planning 2018 This work is licensed under a Creative Commons Attribution 3.0 Australia licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo, the Department of Environment, Land, Water and Planning logo and the Arthur Rylah Institute logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Printed by Melbourne Polytechnic, Preston Victoria ISSN 1835-3827 (print) ISSN 1835-3835 (pdf)) ISBN 978-1-76077-000-6 (print) ISBN 978-1-76077-001-3 (pdf/online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]