Planetary Dunes Workshop, a Record of Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Dunes Workshop, a Record of Climate Change PROGRAM AND ABSTRACTS LPI Contribution No. 1403 PLANETARY DUNES WORKSHOP: A RECORD OF CLIMATE CHANGE April 29 – May 2, 2008 • Alamogordo, New Mexico Sponsors Lunar and Planetary Institute National Aeronautics and Space Administration NASA Mars Exploration Program Scientific Organizing Committee Timothy Titus U. S. Geological Survey Rose Hayward U. S. Geological Survey Mary Bourke Planetary Science Institute Nick Lancaster Desert Research Institute Lori Fenton Carl Sagan Center Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1403 Compiled in 2008 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2008) Title of abstract. In Planetary Dunes Workshop: A Record of Climate Change, p. XX. LPI Contribution No. 1403, Lunar and Planetary Institute, Houston. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail orders requestors will be invoiced for the cost of shipping and handling. ISSN No. 0161-5297 Preface This volume contains abstracts that have been accepted for presentation at the Planetary Dunes Workshop: A Record of Climate Change, April 29–May 2, 2008, Alamogordo, New Mexico. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute. Planetary Dunes Workshop: A Record of Climate Change v Contents Program .........................................................................................................................................................................1 Transverse Aeolian Ridges on Mars M. R. Balme, D. C. Berman, M. C. Bourke, S. Rafkin, and J. R. Zimbelman .................................................9 Imaging and Spectroscopy of Titan’s Dunes in the Near-Infrared J. W. Barnes .................................................................................................................................................11 Comparative Point Pattern Analysis of Hyperboreae Undae, Mars, and the Rub’ al Khali Sand Sea, Earth M. A. Bishop .................................................................................................................................................13 Barchan Dune Asymmetry: Observations from Mars M. C. Bourke ................................................................................................................................................15 Megabarchans on Mars M. C. Bourke and M. Balme .........................................................................................................................17 Migration Rates of Niveo-Aeolian Dunes in Antarctica: Implications for Martian Dunes M. C. Bourke, R. Ewing, D. Finnegan, and H. A. McGowan........................................................................19 GPR Surveys of the Jurassic Navajo Sandstone: A Potential Analogue to the Burns Formation, Meridiani Planum, Mars C. Bristow and H. Jol ...................................................................................................................................21 GPR Surveys of Sand Dunes in Antarctica as Analogs for Dunes on Mars C. Bristow, H. Jol, P. Augustinus, and I. Wallis ...........................................................................................22 Dunes on Mars, ‘Venus’, Earth, and Subaqueous Ripples: A Scaling Law for Their Elementary Size P. Claudin and B. Andreotti .........................................................................................................................23 Thermophysical Properties of Proctor Dune Field, Mars G. E. Cushing, T. N. Titus, and R. K. Hayward ............................................................................................25 Defrosting Processes on Dark Dunes: New Insights from HiRISE Images at Noachis and Aonia Terrae, Mars G. Di Achille, S. Silvestro, and G. G. Ori .....................................................................................................27 Modeling 2-D Dune Interactions S. Diniega and K. Glasner ............................................................................................................................29 Three-Dimensional Characterization and Morphological Dynamics of Gypsum Sand Dunes at White Sands National Monument Using Airborne LiDAR R. C. Ewing, G. Kocurek, A. P. B. Peyret, and D. Mohrig ...........................................................................31 Estimate and Expression of Water Ice in Polar Sand Dunes W. C. Feldman and M. C. Bourke ................................................................................................................33 Southern Hemisphere Dunes of Mars: Morphology Trends and Climate Change L. K. Fenton and R. K. Hayward ..................................................................................................................35 vi LPI Contribution No. 1403 Dune Fields on Mars: Markers of Climatic Changes? E. Gardin, C. Quantin, and P. Allemand ......................................................................................................37 Modeling Aeolian Sediment Transport Thresholds on Mars: A Shear Stress Partitioning Approach J. A. Gillies, W. G. Nickling, J. King, and N. Lancaster ..............................................................................39 Varieties of Barchan Form in the Namib Desert and on Mars A. S. Goudie and M. C. Bourke ....................................................................................................................40 Mars Global Digital Dune Database (MGD3): User’s Guide R. K. Hayward, K. F. Mullins, L. K. Fenton, T. N. Titus, K. L. Tanaka, M. C. Bourke, A. Colaprete, T. M. Hare, and P. R. Christensen .........................................................................................42 Hydrated Minerals in the North Polar Chasmata and Circum-Polar Erg B. H. N. Horgan, J. F. Bell III, P. C. Thomas, and E. Z. Noe Dobrea .........................................................44 Aeolian Sand Transport Systems — A Terrestrial Perspective N. Lancaster .................................................................................................................................................46 In-Situ Geochronology for Martian Dunes: A Review of Optical Dating Concepts and Experiments with Analog Materials K. Lepper ......................................................................................................................................................48 The Sand Seas of Titan: Discovery and Implications for Methane Climatology and Wind Patterns R. D. Lorenz, J. Radebaugh, and Cassini RADAR Team ............................................................................50 Unlocking the Environmental Conditions Recorded by Aeolian Bedforms with the Aid of High-Resolution Atmospheric Modeling T. I. Michaels.................................................................................................................................................52 Thermophysical Analysis of the North Polar Erg on Mars N. E. Putzig, M. T. Mellon, K. E. Herkenhoff, and R. J. Phillips .................................................................54 Terrestrial Analogues of Longitudinal Dunes on Titan J. Radebaugh, R. Lorenz, C. Spencer, and the Cassini RADAR Team .........................................................56 Longitudinal Dunes on Titan: A Laboratory Approach E. Reffet, S. Courrech du Pont, P. Hersen, S. Douady, and M. Fulchignoni ...............................................58 Global Survey of Martian Transverse Aeolian Ridges M. R. Salvatore .............................................................................................................................................60 Thermal Remote Sensing of Sand Transport Systems S. Scheidt, M. S. Ramsey, and N. Lancaster .................................................................................................62 Interconnected Ergs in East Thaumasia Region: Sediment Transport Pathways and Possible Source Areas S. Silvestro and G. G. Ori .............................................................................................................................63 The Role of Reptation in Dune Slipface Dynamics S. L. F. Sutton, C. McKenna Neuman, and W. Nickling ...............................................................................65 White Sands Gypsum Dunes — A Terrestrial Analog to North Polar Dunes on Mars? A. Szynkiewicz, L. M. Pratt, M. Glamoclija, C. H. Moore, E. Singer, and D. Bustos ..................................67 Planetary Dunes Workshop: A Record of Climate Change vii Mars’ North Circum-Polar Dunes: Distribution, Sources, and Migration History K. L. Tanaka
Recommended publications
  • Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
    Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S.
    [Show full text]
  • Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E
    https://doi.org/10.1130/G45793.1 Manuscript received 8 November 2018 Revised manuscript received 18 January 2019 Manuscript accepted 20 February 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 March 2019 Boundary condition controls on the high-sand-flux regions of Mars Matthew Chojnacki1, Maria E. Banks2, Lori K. Fenton3, and Anna C. Urso1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 3Carl Sagan Center at the SETI (Search for Extra-Terrestrial Intelligence) Institute, Mountain View, California 94043, USA ABSTRACT DATA SETS AND METHODS Wind has been an enduring geologic agent throughout the history of Mars, but it is often To assess bed-form morphology and dynamics, unclear where and why sediment is mobile in the current epoch. We investigated whether we analyzed images acquired by the High Resolu- eolian bed-form (dune and ripple) transport rates are depressed or enhanced in some areas tion Imaging Science Experiment (HiRISE) cam- by local or regional boundary conditions (e.g., topography, sand supply/availability). Bed- era on the Mars Reconnaissance Orbiter (0.25–0.5 form heights, migration rates, and sand fluxes all span two to three orders of magnitude m/pixel; McEwen et al., 2007; see Table DR1 in across Mars, but we found that areas with the highest sand fluxes are concentrated in three the GSA Data Repository1). Digi tal terrain mod- regions: Syrtis Major, Hellespontus Montes, and the north polar erg.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Mapping and Planetary Spatial Infrastructure Team
    Mapping and Planetary Spatial Infrastructure Team INTRODUCTION SSB study on NASA PSD R&A Reorganization National Academy of Sciences, 13 May 2016 Jani Radebaugh, [email protected] Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise – Influence all phases of the mission lifecycle for science investigations and operations – Strategic needs must be anticipated and prioritized by the community – PSS recommended a “Cartography Research and Analysis Group” [CRAG] in Fall 2014.
    [Show full text]
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
    Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains.
    [Show full text]
  • Mapping and Planetary Spatial Infrastructure Team
    Mapping and Planetary Spatial Infrastructure Team Report to the Planetary Science Subcommittee March 2016 Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products, and associated geospatial infrastructure are integral to the success of the planetary science enterprise – Influences all phases of the mission lifecycle for science investigations and operations – Strategic needs must be anticipated and prioritized by the community – PSS recommended a “Cartography Research and Analysis Group” [CRAG] in Fall 2014. • A team fulfilling this role now exists in the form of MAPSIT – MAPSIT succeeds former PCGMWG and assumes strategic planning role But wait, I thought we did this already? • No, we didn’t (really!) • From 1974 to 2012: – 1974: Lunar Photography and Cartography Committee (LPACC) – 1977: Lunar and Planetary Photography and Cartography Committee (LPPACC) – 1979: Planetary Cartography Working Group (PCWG) – Produced two 10-year plans and a supplement (at right) – 1994-2012: Planetary Cartography & Geologic Mapping Working Group (PCGMWG) • PCGMWG ceased “advisory” role in ~2011 • PCGMWG disbanded 2015 with end of PGG • Looming gap for NASA long-term strategic planning and prioritization activities until addressed by MAPSIT formation 3/9/2016 3 Enabling Planetary Science • Planetary Spatial Infrastructure is the technology, policies, standards, human resources, software tools, and related activities necessary to Geographic Information Science and Technology acquire,
    [Show full text]
  • Polar Ice in the Solar System
    Recommended Reading List for Polar Ice in the Inner Solar System Compiled by: Shane Byrne Lunar and Planetary Laboratory, University of Arizona. April 23rd, 2007 Polar Ice on Airless Bodies................................................................................................. 2 Initial theories and modeling results for these ice deposits: ........................................... 2 Observational evidence (or lack of) for polar ice on airless bodies:............................... 3 Martian Polar Ice................................................................................................................. 4 Good (although dated) introductory material ................................................................. 4 Polar Layered Deposits:...................................................................................................... 5 Ice-flow (or lack thereof) and internal structure in the polar layered deposits............... 5 North polar basal-unit ..................................................................................................... 6 Geologic Mapping and impact cratering......................................................................... 6 Connection of polar layered deposits (PLD) to climate.................................................. 7 Formation of troughs, scarps and chasmata.................................................................... 7 Surface Properties of the PLD ........................................................................................ 8 Eolian Processes
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Catalogo Librario
    Catalogo librario centotre “L’albero di Irene” !"#$%$"&'("&)"'già Naturalistica via San Simone, 5 - 40126 BOLOGNA Telefono (051) 22.03.44 e 22.25.62 - Fax (051) 23.35.67 (h: 0-24) Orario : 10/19 (su appuntamento) - P.IVA 04117040370 email: [email protected] - Web: http://www.libnat.it PRINCIPALI ABBREVIAZIONI USATE A. Autore es. esemplare perg. pergamena AA.VV. Autori vari estr. (vedi sotto) estratto post. posteriore acc. acciaio f. fuori pp. pagine anast. anastatica ÀJ ÀJXUDH p.pag. piena pagina ant. anteriore fot. IRWRJUDÀH pref. prefazione antip. antiporta front. frontespizio ril. rilegato/ura autog. autografo/a f.t. fuori testo risg. risguardo/i gr. grande b. bianca/che ritr. ritratto bal. balacron ibid. ibidem. br. brossura id. idem riv. riveduto brunit. bruniture ill. illustrazione/i s.cop. senza copertina c.a circa impress. impressione/i s.d. senza data (di stampa) cat. catalogo inc. incisione/i s.l. senza luogo (di stampa) cart. cartonato/a inf. inferiore sovr. sovracoperta cc. carte leg. legatura str. stretto cicl. ciclostilato lit. OLWRJUDÀDFD sx. sinistra cof. cofanetto m. mezza t. tutto/a/i/e col. colore/i/ato/ate mod. moderno/a tass. tassello/i cop. copertina/e nn. non numerate tav. tavola/e cromolit FURPROLWRJUDÀDFR n.t. nel testo test. testatina/e num. numerose/i dis. disegno/i tip. WLSRJUDÀFDR dor. dorato/e/i num.me numerosissime dx. destra orig. originale tit. titolo edit. editoriale p. piena t.tela tutta tela ediz. edizione p. a r. prezzo a richiesta vol. volume ep. epoca perc. percallino, percalle xil. [LORJUDÀDHFRFKHFL Folio oltre 38 cm.
    [Show full text]
  • THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
    THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3].
    [Show full text]