Polar Ice in the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Polar Ice in the Solar System Recommended Reading List for Polar Ice in the Inner Solar System Compiled by: Shane Byrne Lunar and Planetary Laboratory, University of Arizona. April 23rd, 2007 Polar Ice on Airless Bodies................................................................................................. 2 Initial theories and modeling results for these ice deposits: ........................................... 2 Observational evidence (or lack of) for polar ice on airless bodies:............................... 3 Martian Polar Ice................................................................................................................. 4 Good (although dated) introductory material ................................................................. 4 Polar Layered Deposits:...................................................................................................... 5 Ice-flow (or lack thereof) and internal structure in the polar layered deposits............... 5 North polar basal-unit ..................................................................................................... 6 Geologic Mapping and impact cratering......................................................................... 6 Connection of polar layered deposits (PLD) to climate.................................................. 7 Formation of troughs, scarps and chasmata.................................................................... 7 Surface Properties of the PLD ........................................................................................ 8 Eolian Processes and circumpolar dunes ........................................................................ 8 Residual Ice Caps:............................................................................................................. 10 Geomorphology, composition and changes within the Southern Residual Ice Cap..... 10 Geomorphology and composition of the Northern Residual Ice Cap........................... 11 Seasonal Ice Caps: ............................................................................................................ 12 Omissions A reading list for terrestrial polar ice deposits and processes is totally beyond the scope of a document like this, so I have only included papers discussing terrestrial ice when there is a useful analogy to some extra-terrestrial example. Outer solar system satellites are often primarily composed of various ices and display their own menagerie of surface processes and morphologies. A complete treatment of these bodies requires a separate reading list. 1 Polar Ice on Airless Bodies Icy deposits have been hypothesized to exist in permanently shadowed craters in the polar regions of the Moon and Mercury for some time e.g. Watson et al. [1961]. A planet’s atmosphere can usually transport heat into areas where the sun never reaches; however, on an airless body this process is absent. In permanently shadowed areas, such as within polar impact craters, ice may collect and remain stable over the age of the solar system. Strong evidence for Mercury’s polar ice deposits has been acquired; however, evidence for substantial amounts of polar ice on the Moon remains weak. Despite this, there is currently considerable interest in any possible lunar ice due to its potential to be explored by a manned mission. Initial theories and modeling results for these ice deposits: Arnold, J. R. (1979), Ice in the lunar polar regions, J. Geophys. Res., 84(B10), 5659– 5667. Butler, B. J. (1997), The migration of volatiles on the surfaces of Mercuryand the Moon, J. Geophys. Res., 102(E8), 19,283– 19,291. Cocks, F., P. Klenk, S. Watkins, W. Simmons, J. Cocks, E. Cocks, and J. Sussingham (2002), Lunar ice: Adsorbed water on subsurface polar dust, Icarus, 160, 386–397. Moses, J. I., K. Rawlins, K. Zahnle, and L. Dones (1999), External sources of water for Mercury’s putative ice deposits, Icarus, 137, 197–221, doi:10.1006/icar.1998.6036. Lanzerotti, L., W. L. Brown, and R. E. Johnson (1981), Ice in the polar regions of the moon, J. Geophys. Res., 86, 3949–3950. Lawrence, D. J., W. C. Feldman, R. C. Elphic, J. J. Hagerty, S. Maurice, G. W. McKinney, and T. H. Prettyman (2006), Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles, J. Geophys. Res., 111, E08001, doi:10.1029/2005JE002637. Salvail, J. R. and F. P. Fanale (1994), Near-surface ice on Mercury and the Moon: A topographic thermal model, Icarus, 111, 441-455. Schorghofer, N. and G. J. Taylor (2007), Subsurface migration of H2O at lunar cold traps, J. Geophys. Res., 112, 2010 Vasavada, A. R., D. A. Paige, and S. E. Wood (1999), Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits, Icarus, 141, 179-193. Watson, K., B. Murray, and H. Brown (1961), On the Possible Presence of Ice on the Moon, J. Geophys. Res., 66, 1598 Watson, K., B. C. Murray, and H. Brown (1961), The behavior of volatiles on the lunar surface, J. Geophys. Res., 66, 3033-3045. Watson, K., B. C. Murray, and H. Brown (1962), The stability of volatiles in the solar system, Icarus, 1, 317-327. Zuber, M. T. and D. E. Smith (1997), Topography of the lunar south polar region: Implications for the size and location of permanently shaded areas, Geophys. Res. Lett., 24, 2183 2 Observational evidence (or lack of) for polar ice on airless bodies: Bussey, D. B. J., P. G. Lucey, D. Steutel, M. S. Robinson, P. D. Spudis, and K. D. Edwards (2003), Permanent shadow in simple craters near the lunar poles, Geophys. Res. Lett., 30, 11-1. Butler, B. J., D. O. Muhleman, and M. A. Slade (1993), Mercury: Full-disk radar images and the detection and stability of ice at the North Pole, J. Geophys. Res., 98(E8), 15,003– 15,024. Campbell, B. A., D. B. Campbell, A. A. H. J. F. Chandler, M. C. Nolan, and P. J. Perillat (2003), Radar imaging of the lunar poles, Nature, 426,137–138. Campbell, D. B., B. A. Campbell, L. M. Carter, J.-L. Margot, and N. J. S. Stacy (2006), No evidence for thick deposits of ice at the lunar south pole, Nature, 443, 835-837. Feldman, W., S. Maurice, B. B. A. B. Binder, R. Elphic, and D. Lawrence (1998), Fluxes of fast and epithermal neutrons from lunar prospector: Evidence for water ice at the lunar poles, Science, 281(5382), 1496–1500. Harmon, J. K., M. A. Slade, R. A. Velez, A. Crespo, M. J. Dryer, and J. M.Johnson (1994), Radar mapping of Mercury’s polar anomalies, Nature, 369, 213–215, doi:10.1038/369213a0. Harmon, J. K., P. J. Perillat, and M. A. Slade (2001), High-resolution radarimaging of Mercury’s north pole, Icarus, 149, 1 – 15, doi:10.1006/icar.2000.6544. Margot, J. L., D. B. Campbell, R. F. Jurgens, and M. A. Slade (1999), Topography of the lunar poles from radar interferometry: A survey of cold trap locations, Science, 284, 1658-1660. Nozette, S., C. L. Lichtenberg, P. D. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, and E. M. Shoemaker (1996), The Clementine Bistatic Radar Experiment, Science, 274, 1495–1498. Slade, M. A., B. J. Butler, and D. O. Muhleman (1992), Mercury radar imaging— Evidence for polar ice, Science, 258, 635–640. 3 Martian Polar Ice The icy polar deposits on Mars can be naturally divided into the polar layered deposits (PLD) and the residual ice caps (RIC) that partially cover them. In addition to these more permanent deposits, a seasonal ice cap of CO2 ice condenses from the atmosphere each winter season and sublimates away the following summer. Good (although dated) introductory material Clifford, S. M., et al. (2000), The state and future of Mars polar science and exploration, Icarus, 144, 210–242. James, P. B., H. H. Kieffer, and D. A. Paige (1992), The seasonal cycle of carbon dioxide on Mars, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, pp. 934-968, Univ. of Arizona Press. Tanaka, K. L., and D. Scott (1987), Geologic Map of the Polar Regions of Mars, U.S. Geol. Surv. Misc. Invest. Ser., Map I-1802-C. Thomas, P. C., S. W. Squyres, K. E. Herkenhoff, A. Howard, and B. C. Murray (1992), Polar deposits of Mars, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, pp. 767–795, Univ. of Arizona Press. Vasavada, A. R., J. Williams, D. A. Paige, K. E. Herkenhoff, N. T. Bridges, R. Greeley, B. C. Murray, D. S. Bass, and K. S. McBride (2000), Surface properties of Mars’ polar layered deposits and polar landing sites, J. Geophys. Res., 105 (E3), 6961–6970. Mars polar science has recently benefited immensely by three international conferences on Mars polar science and exploration. Special issues of Icarus were published for each of these conferences in volumes 144(2), 154(1) and 174(2). These volumes contain much of the recent work in this area. 4 Polar Layered Deposits: The PLD at both poles are about 3km thick, 1000km across and almost pure H2O ice (with dust contaminants on the order of 1%). Their layered nature is thought to be driven by climatic change during their deposition, in a similar way to how past climate on Earth is recorded in terrestrial ice cores. Climatic variation on Mars is primarily driven by variations in the planet’s orbital elements and obliquity, analogous to Milankovitch cycles on the Earth. Recently identified mid-latitude ice-rich deposits are though to have originated from the PLD. Ice-flow (or lack thereof) and internal structure in the polar layered deposits. Budd, W. F., D. Jenssen, J. H. I. Leach, I. N. Smith, and U. Radok (1986), The north polar cap of Mars as a steady-state system, Polarforschung, 56, 43–63. Byrne, S., and A. B.
Recommended publications
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
    THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3].
    [Show full text]
  • Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
    Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter.
    [Show full text]
  • Topography of the North and South Polar Ice Caps on Mars
    TOPOGRAPHY OF THE NORTH AND SOUTH POLAR ICE CAPS ON MARS. Anton B. Ivanov, Duane O. Muhleman, California Institute of Technology, Pasadena, CA, 91125, USA, [email protected]. Recent observations by Mars Orbiter Laser Altimeter have of the underlying topography under the ice cap or some other provided high resolution view of the Northern Ice cap [7], large scale process. We know from Viking observations that compiled on the basis of data returned during Science Phasing there is substantially less amounts of water vapor observed Orbit. Starting in March 1999, Mars Global Surveyor was over the south pole than over the north pole. On the other hand transferred into its mapping configuration and began system- the albedo of the southern ice cap is lower, so we can expect atic observations of Mars. Data returned during the mapping higher temperatures on the surface and hence more extensive orbit allowed compilation of high resolution topography grid evaporation. Possibly, an insulating layer of dust prevents for the southern ice cap ( [5]). This paper will concentrate on water ice from escape. Relative age estimates, obtained from description of observations of the southern ice cap topography craters by [4] suggest older ages for the southern polar layered and comparison with the northern ice cap. We will com- deposits, than for the northern polar layered deposits. We do pare topography across the ice caps and apply a sublimation not know well composition of the south polar layered deposits model ( [2]), which was developed to explain the shape of the and it is hard to hypothesize on evaporation rates at this point.
    [Show full text]
  • Dynamic/Thermodynamic Simulations of the North Polar Ice Cap of Mars
    First International Conference on Mars Polar Science 3001.pdf DYNAMIC/THERMODYNAMIC SIMULATIONS OF THE NORTH POLAR ICE CAP OF MARS. R. Greve, Institut fur¨ Mechanik III, Technische Universitat¨ Darmstadt, D-64289 Darmstadt, Germany, [email protected]. Ice-sheet model SICOPOLIS times mean-density ratio Mars/Earth). The bedrock response to changing ice loads is modelled by a delayed local isostatic = 3000 The present permanent north polar water ice cap of Mars is in- balance with the time lag V yr. vestigated with the dynamic/thermodynamic ice-sheet model According to the data listed by Budd et al. (1986), the mean SICOPOLIS (SImulation COde for POLythermal Ice Sheets), T annual air temperature above the ice, ma , is described by a ~ h which was originally developped for and applied to terrestrial parameterization depending on elevation, , and co-latitude, ~ =90 ice sheets like Greenland, Antarctica and the glacial northern ( N ,where is the latitude), hemisphere (Greve, 1997b, c; Calov et al., 1998; Greve et al., 0 ~ T = T + h + c ; 3 ma ma ma 1998). The model is based on the continuum-mechanical the- ma ory of polythermal ice masses (Hutter, 1982, 1993; Greve, 0 T = 90 = 2:5 ma 1997a), which describes the material ice as a density-preser- with ma C, the mean lapse rate C/km, c = 1:5 ving, heat-conducting power-law fluid with thermo-mechani- and ma C/ lat. The accumulation of water ice on cal coupling due to the strong temperature dependence of the the surface of the ice cap is assumed to be spatially con- stant.
    [Show full text]
  • Dark Dunes on Mars
    CHAPTER II: PLANET MARS – THE BACKGROUND Like Earth, its neighbour planet, Mars, is a terrestrial planet with a solid surface, an atmosphere, two ice-covered pole caps, and not one but two moons (Phobos and Deimos). Some differences, such as a greater distance to the sun, a smaller diameter, a thinner atmosphere, and the longer duration of a year distinguish Mars from the Earth, not to forget the absence of life…so far. Nevertheless, there are many correlations between terrestrial and Martian geological and geomorphological processes, permitting researchers to apply knowledge from terrestrial studies more or less directly to Mars. However, a closer look reveals that the dissimilarities, though few, can make fundamental differences in process background and development. The following chapter provides a brief but necessary insight into the geological and physical background of this planet, imparting to the reader some fundamental knowledge about Mars, which is useful for understanding this work. Fig. 1 presents an impression of Mars viewed from space. Figure 1: The planet Mars: a global view (Viking 1 Orbiter mosaic [NASA]). Chapter II Planet Mars – The Background 5 Table 1 provides a summary of some major astronomical and physical parameters of Mars, giving the reader an impression of the extent to which they differ from terrestrial values. Table 1: Parameters of Mars [Kieffer et al., 1992a]. Property Dimension Orbit 227 940 000 km (1.52 AU) mean distance to the Sun Diameter 6794 km Mass 6.4185 * 1023 kg 3 Mean density ~3.933 g/cm Obliquity
    [Show full text]
  • Growth and Form of the Mound in Gale Crater, Mars: Slope
    1 Growth and form of the mound in Gale Crater, Mars: Slope- 2 wind enhanced erosion and transport 3 Edwin S. Kite1, Kevin W. Lewis,2 Michael P. Lamb1 4 1Geological & Planetary Science, California Institute of Technology, MC 150-21, Pasadena CA 5 91125, USA. 2Department of Geosciences, Princeton University, Guyot Hall, Princeton NJ 6 08544, USA. 7 8 Abstract: Ancient sediments provide archives of climate and habitability on Mars (1,2). Gale 9 Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5 km high sedimentary 10 mound (3-5). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and 11 aeolian processes (1-8), but the origin and original extent of Gale’s mound is unknown. Here we 12 show new measurements of sedimentary strata within the mound that indicate ~3° outward dips 13 oriented radially away from the mound center, inconsistent with the first three hypotheses. 14 Moreover, although mounds are widely considered to be erosional remnants of a once crater- 15 filling unit (2,8-9), we find that the Gale mound’s current form is close to its maximal extent. 16 Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained 17 by growth in place near the center of the crater mediated by wind-topography feedbacks. Our 18 model shows how sediment can initially accrete near the crater center far from crater-wall 19 katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope- 20 winds strong enough to erode the mound. Our results indicate mound formation by airfall- 21 dominated deposition with a limited role for lacustrine and fluvial activity, and potentially 22 limited organic carbon preservation.
    [Show full text]
  • Solar-System-Wide Significance of Mars Polar Science
    Solar-System-Wide Significance of Mars Polar Science A White Paper submitted to the Planetary Sciences Decadal Survey 2023-2032 Point of Contact: Isaac B. Smith ([email protected]) Phone: 647-233-3374 York University and Planetary Science Institute 4700 Keele St, Toronto, Ontario, Canada Acknowledgements: A portion of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). © 2020. All rights reserved. 1 This list includes many of the hundreds of current students and scientists who have made significant contributions to Mars Polar Science in the past decade. Every name listed represents a person who asked to join the white paper or agreed to be listed and provided some comments. Author List: I. B. Smith York University, PSI W. M. Calvin University of Nevada Reno D. E. Smith Massachusetts Institute of Technology C. Hansen Planetary Science Institute S. Diniega Jet Propulsion Laboratory, Caltech A. McEwen Lunar and Planetary Laboratory N. Thomas Universität Bern D. Banfield Cornell University T. N. Titus U.S. Geological Survey P. Becerra Universität Bern M. Kahre NASA Ames Research Center F. Forget Sorbonne Université M. Hecht MIT Haystack Observatory S. Byrne University of Arizona C. S. Hvidberg University of Copenhagen P. O. Hayne University of Colorado LASP J. W. Head III Brown University M. Mellon Cornell University B. Horgan Purdue University J. Mustard Brown University J. W. Holt Lunar and Planetary Laboratory A. Howard Planetary Science Institute D. McCleese Caltech C. Stoker NASA Ames Research Center P. James Space Science Institute N.
    [Show full text]
  • Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors
    Research Paper J. Astron. Space Sci. 33(4), 305-311 (2016) http://dx.doi.org/10.5140/JASS.2016.33.4.305 Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors Seongsuk Lee, Yu Yi† Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 34134, Korea The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).
    [Show full text]
  • Polar Ice Caps Grade Levels Vocabulary Materials Mission
    POLAR ICE CAPS GRADE LEVELS MISSION This activity is appropriate for grades K-8. Explore the effect of melting polar ice caps on sea levels. VOCABULARY MATERIALS POLAR ICE CAPS: high latitude region of a planet, dwarf » Play dough or modeling clay planet, or natural satellite that is covered in ice. » Measuring cup SEA LEVEL: the level of the sea’s surface, used in reckoning » Butter knife the height of geographical features such as hills and as a » Two clear plastic or glass containers, approximately barometric standard. 2 ¼ cups in size. Smaller or larger containers can CLIMATE CHANGE: a change in the average conditions be used if they are both the same size, but you will such as temperature and rainfall in a region over a long need to scale up or down the amount of dough you period of time. add to the containers. Since you will be marking these containers with a permanent marker, make sure they are containers you can write on. » Colored tape or permanent marker (if you do not mind marking your containers with marker) » Tap water » Ice cubes ABOUT THIS ACTIVITY Have you ever noticed that if you leave an ice cube on the kitchen counter and come back to check on it after a while, you find a puddle? The same thing happens to ice in nature. If the temperature gets warm enough, the ice melts. In this science activity, you will explore what happens to sea levels if the ice at the North Pole melts, or if the ice at the South Pole melts.
    [Show full text]
  • The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Primary Mission
    p. 1 The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission Michael C. Malin and Kenneth S. Edgett Malin Space Science Systems P.O. Box 910148 San Diego CA 92130-0148 (note to JGR: please do not publish e-mail addresses) ABSTRACT More than three years of high resolution (1.5 to 20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large- scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near- contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history. INTRODUCTION Successive improvements in image quality or resolution are often accompanied by new and important insights into planetary geology that would not otherwise be attained. From the variety of landforms and processes observed from previous missions to the planet Mars, it has long been anticipated that understanding of Mars would greatly benefit from increases in image spatial resolution. p. 2 The Mars Observer Camera (MOC) was initially selected for flight aboard the Mars Observer (MO) spacecraft [Malin et al., 1991, 1992].
    [Show full text]