Recent Advances in the Stratigraphy of the Polar Regions of Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SHARAD), Pedestal Craters, and the Lost Martian Layers: Initial Assessments Daniel Cahn Nunes,1 Suzanne E
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, E04006, doi:10.1029/2010JE003690, 2011 Shallow Radar (SHARAD), pedestal craters, and the lost Martian layers: Initial assessments Daniel Cahn Nunes,1 Suzanne E. Smrekar,1 Brian Fisher,2 Jeffrey J. Plaut,1 John W. Holt,3 James W. Head,4 Seth J. Kadish,4 and Roger J. Phillips5 Received 6 July 2010; revised 16 December 2010; accepted 24 January 2011; published 19 April 2011. [1] Since their discovery, Martian pedestal craters have been interpreted as remnants of layers that were once regionally extensive but have since been mostly removed. Pedestals span from subkilometer to hundreds of kilometers, but their thickness is less than ∼500 m. Except for a small equatorial concentration in the Medusae Fossae Formation, the nearly exclusive occurrence of pedestal craters in the middle and high latitudes of Mars has led to the suspicion that the lost units bore a significant fraction of volatiles, such as water ice. Recent morphological characterizations of pedestal deposits have further supported this view. Here we employ radar soundings obtained by the Shallow Radar (SHARAD) to investigate the volumes of a subset of the pedestal population, in concert with high‐ resolution imagery to assist our interpretations. From the analysis of 97 pedestal craters we find that large pedestals (diameter >30 km) are relatively transparent to radar in their majority, with SHARAD being able to detect the base of the pedestal deposits, and possess an average dielectric permittivity of 4 ± 0.5. In one of the cases of large pedestals in Malea Planum, layering is detected both in SHARAD data and in high‐resolution imagery of the pedestal margins. -
Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis. -
Replace This Sentence with the Title of Your Abstract
MARS GLOBAL GEOLOGIC MAPPING: ABOUT HALF WAY DONE. K.L. Tanaka1, J.M. Dohm2, R. Ir- win3, E.J. Kolb4, J.A. Skinner, Jr.1, and T.M. Hare1. 1U.S. Geological Survey, Flagstaff, AZ, [email protected], 2U. Arizona, Tucson, AZ, 3Smithsonian Inst., Washington, DC, 4Google, Inc., CA. Introduction: We are in the third year of a five-year face appearance and apparent burial of underlying ma- effort to map the geology of Mars using mainly Mars terials in MOLA altimetry and THEMIS infrared and Global Surveyor, Mars Express, and Mars Odyssey imag- visible image data sets. It appears to be tens of meters ing and altimetry datasets. Previously, we have reported thick, similar in thickness of the pedestals underlying on details of project management, mapping datasets (local pedestal craters in the same region [4-5]. Thus, the unit and regional), initial and anticipated mapping approaches, appears to have retreated from a former extent. Prelimi- and tactics of map unit delineation and description [1-2]. nary analysis of crater counts and stratigraphic relations For example, we have seen how the multiple types and suggests that the unit is long-lived, likely emplaced huge quantity of image data as well as more accurate and over multiple episodes. These and other observations detailed altimetry data now available allow for broader and interpretations are the topic of a paper in prepara- and deeper geologic perspectives, based largely on im- tion by Skinner and Tanaka, to be submitted in summer proved landform perception, characterization, and analy- of 2009. sis. Here, we describe mapping and unit delineation re- Remaining work: Mapping tasks that remain in- sults thus far, a new unit identified in the northern plains, clude: (1) delineating and describing Noachian and and remaining steps to complete the map. -
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet?
geosciences Review Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? Aleksandra Checinska Sielaff and Stephanie A. Smith * Youth and Families Program Unit, Washington State University, Pullman, WA 99163, USA * Correspondence: [email protected] Received: 31 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research. Keywords: Mars; habitability; surface; subsurface; water; organics; methane; life; microorganisms; lichens; bryophytes 1. Introduction “The Earth remains the only inhabited world known so far, but scientists are finding that the universe -
North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. -
Polar Ice in the Solar System
Recommended Reading List for Polar Ice in the Inner Solar System Compiled by: Shane Byrne Lunar and Planetary Laboratory, University of Arizona. April 23rd, 2007 Polar Ice on Airless Bodies................................................................................................. 2 Initial theories and modeling results for these ice deposits: ........................................... 2 Observational evidence (or lack of) for polar ice on airless bodies:............................... 3 Martian Polar Ice................................................................................................................. 4 Good (although dated) introductory material ................................................................. 4 Polar Layered Deposits:...................................................................................................... 5 Ice-flow (or lack thereof) and internal structure in the polar layered deposits............... 5 North polar basal-unit ..................................................................................................... 6 Geologic Mapping and impact cratering......................................................................... 6 Connection of polar layered deposits (PLD) to climate.................................................. 7 Formation of troughs, scarps and chasmata.................................................................... 7 Surface Properties of the PLD ........................................................................................ 8 Eolian Processes -
SHARAD Observations of Recent Geologic Features on Mars
EPSC Abstracts Vol. 6, EPSC-DPS2011-1591-1, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 SHARAD observations of recent geologic features on Mars N. E. Putzig (1), R. J. Phillips (1), J. W. Holt (2), I. B. Smith (2), L. M. Carter (3), and R. Seu (4) for the SHARAD Team. (1) Southwest Research Institute, Colorado, USA ([email protected]), (2) University of Texas at Austin, Texas, USA, NASA Goddard Space Flight Center, Maryland, USA, (4) Sapienza University of Rome, Italy. Abstract NPLD stratigraphy consists of packets of brightly reflective layers alternating with relatively non- The Shallow Radar (SHARAD) instrument on the reflective zones, and these sequences can be Mars Reconnaissance Orbiter (MRO) observes a correlated to orbit cycles, suggesting an age of ~4.2 variety of recent features on Mars, including deposits Ma [2]. In detail, the radar shows unconformities, of water ice at both poles and in the mid-latitudes, either within the reflective sequences or at their boundaries (Fig. 1). A history of alternating periods solid CO2 in the south polar region, and volcanics in the tropics and mid-latitudes. SHARAD’s view of of non-uniform deposition and erosion is recorded by subsurface layers sheds light on the history of these structures. In the upper ~500 m, discontinuities deposition and erosion in these terrains, with that trace to troughs observable at the surface map implications for the cycle of volatile exchange and out paths of trough migration over time. The for recent volcanism. poleward migration and SHARAD-observed thickness variations adjacent to the migration path are consistent with a mechanism of katabatic winds 1. -
Analysis of Radar Attenuation in the South Pole Layered Deposits of Mars with 3D Radar Imaging
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2536.pdf ANALYSIS OF RADAR ATTENUATION IN THE SOUTH POLE LAYERED DEPOSITS OF MARS WITH 3D RADAR IMAGING. A. T. Russell1, N. E. Putzig1, N. Abu Hashmeh2, and J. L. Whitten2, 1Planetary Science Institute, Lakewood, CO, 80401, USA. 2Tulane University, New Orleans, LA, 70118, USA. Contact: arus- [email protected] Introduction: The variability of the Martian Late tain few internal reflectors. We mapped the base of all Amazonian climate is recorded in the north and south LRZ appearing in the PA3D data (Fig. 2). polar layered deposits (PLD) [1-3]. The PLD contain mixtures of ice and dust, and radar sounding results have shown them to be predominately composed of water ice [4]. Relative to the NPLD, the SPLD is much more attenuating of the Mars Reconnaissance Orbiter Shallow Radar (SHARAD) signal, including in some of its thinnest and thickest regions [5]. We investigate this radar behavior to better understand the structure and composition of the PLD and to characterize the radar properties of the SPLD. Methods: We used the Planum Australe 3D (PA3D) volume data, produced using 2093 SHARAD tracks in the south polar region [6], to map the basal reflector of the SPLD everywhere that the signal pene- tration allows (Fig. 1). Our procedure involves tracing subsurface reflectors that either originate at the edge of the SPLD or can be correlated to ones that do. Fig. 2. Thickness map of the LRZs The sample values of the PA3D are of de-biased re- flection strength. We found the minimum sample value within the 3D volume and subtracted that value from all the frames in the volume. -
Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation. -
THE GEOMETRY of CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: a TEST of the CATASTROPHIC OUTFLOW HYPOTHESIS of FORMATION Kathryn E
THE GEOMETRY OF CHASMA BOREALE, MARS USING MARS ORBITER LASER ALTIMETER (MOLA) DATA: A TEST OF THE CATASTROPHIC OUTFLOW HYPOTHESIS OF FORMATION Kathryn E. Fishbaugh1 and James W. Head III1, 1Brown University Box 1846, Providence, RI 02912, [email protected], [email protected] Introduction slumped from the scarp. The profile then drops off, becoming a scarp Chasma Boreale is a large reentrant in the northern polar layered de- with a slope of about 9°. Below the scarp, the surface is smoother, and posits of Mars. The Chasma transects the spiraling troughs which char- beyond this lie dunes which are not visible in Fig. 3a. acterize the polar layered terrain. The origin of Chasma Boreale remains Discussion a subject of controversy. Clifford [1] proposed that the Chasma was Chasma Boreale exhibits some features similar to those associated carved as a result of a jökulhlaup triggered by either breach of a crater with terrestrial jökulhlaup events. Single flood events on Earth show a containing basal meltwater or by basal melting due to a hot spot beneath variety of flood conditions, and outburst floods also exhibit several flood the cap. Benito et al. [2] suggest an origin in which catastrophic outflow peaks [5] which could explain the irregular nature of the Chasma floor, is triggered by sapping caused by a tectono-thermal event. A similar the discontinuity of terracing, and the non-uniform profile shape. The origin is proposed for Chasma Australe in the Martian southern polar asymmetry of the floor at the base of the walls in (Fig. 2 b) could be due cap [3]. -
Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter. -
Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far.