Solar-System-Wide Significance of Mars Polar Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eskers Associated with Extant Glaciers in Mid-Latitude Graben on Mars: Evidence for Geothermal Controls Upon Recent Basal Melting
Lunar and Planetary Science XLVIII (2017) 1234.pdf ESKERS ASSOCIATED WITH EXTANT GLACIERS IN MID-LATITUDE GRABEN ON MARS: EVIDENCE FOR GEOTHERMAL CONTROLS UPON RECENT BASAL MELTING. F.E.G. Butcher1, C. Gallagher2,3, N.S. Arnold4, M.R. Balme1, S.J. Conway5, S.R. Lewis1, A. Hagermann1. 1School of Physical Sciences, The Open University, UK ([email protected]), 2UCD School of Geography, University College Dublin, Ireland, 3UCD Earth Institute, University College Dublin, Ireland 4Scott Polar Research Institute, University of Cambridge, UK, 5CNRS, LPG Nantes, France. Introduction: Diagnostic evidence for past melting of putative debris-covered glaciers (DCGs) in Mars’ mid-latitudes [e.g. 1-2] is extremely rare. As such, it is widely believed that these DCGs have been perennially frozen to their beds in cold-based thermal regimes [e.g. 3] since their formation ~40 Ma to 1 Ga [4-8]. Here, we present a landsystem model that challenges this paradigm. We identify a sinuous ridge emerging from a DCG in the broad rift zone NE of the Tharsis volcanic province. We interpret this ridge as an esker formed by deposition of sediment within a subglacial meltwater conduit. This is only the second esker-like ridge to be identified in association with a mid-latitude DCG. Re- cent work [9] identified a complex of esker-like ridges on the foreland of an extant DCG in Phlegra Montes, for which high-resolution analysis is ongoing [10]. Significantly, both candidate eskers are located within graben. Graben are topographic troughs formed by crustal extension and are commonly associated with elevated geothermal heat (GH) flux [e.g. -
Eskers in a Complete, Wet-Based Glacial System in the Phlegra
Earth and Planetary Science Letters 431 (2015) 96–109 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars ∗ Colman Gallagher a,b, , Matthew Balme c,d a UCD School of Geography, University College Dublin, Belfield, Dublin 4, Ireland b UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland c Dept. of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK d Planetary Science Institute Tucson, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719, United States a r t i c l e i n f o a b s t r a c t Article history: Although glacial landsystems produced under warm/wet based conditions are very common on Earth, Received 30 April 2015 even here, observations of subglacial landforms such as eskers emerging from extant glaciers are rare. Received in revised form 9 September 2015 This paper describes a system of sinuous ridges emerging from the in situ but now degraded piedmont Accepted 14 September 2015 terminus of a Late Amazonian-aged (∼150 Ma) glacier-like form in the southern Phlegra Montes region Available online 29 September 2015 of Mars. We believe this to be the first identification of martian eskers that can be directly linked to their Editor: C. Sotin parent glacier. Together with their contextual landform assemblage, the eskers are indicative of significant Keywords: glacial meltwater production and subglacial routing. However, although the eskers are evidence of a Mars wet-based regime, the confinement of the glacial system to a well-defined, regionally significant graben, glacier and the absence of eskers elsewhere in the region, is interpreted as evidence of sub-glacial melting eskers as a response to locally enhanced geothermal heat flux rather than climate-induced warming. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Polar Ice in the Solar System
Recommended Reading List for Polar Ice in the Inner Solar System Compiled by: Shane Byrne Lunar and Planetary Laboratory, University of Arizona. April 23rd, 2007 Polar Ice on Airless Bodies................................................................................................. 2 Initial theories and modeling results for these ice deposits: ........................................... 2 Observational evidence (or lack of) for polar ice on airless bodies:............................... 3 Martian Polar Ice................................................................................................................. 4 Good (although dated) introductory material ................................................................. 4 Polar Layered Deposits:...................................................................................................... 5 Ice-flow (or lack thereof) and internal structure in the polar layered deposits............... 5 North polar basal-unit ..................................................................................................... 6 Geologic Mapping and impact cratering......................................................................... 6 Connection of polar layered deposits (PLD) to climate.................................................. 7 Formation of troughs, scarps and chasmata.................................................................... 7 Surface Properties of the PLD ........................................................................................ 8 Eolian Processes -
Mars Exploration - a Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani
Chapter Introductory Chapter: Mars Exploration - A Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani 1. Introduction Mars has been a goal of exploration programs of the most important space agencies all over the world for decades. It is, in fact, the most investigated celestial body of the Solar System. Mars robotic exploration began in the 1960s of the twentieth century by means of several space probes sent by the United States (US) and the Soviet Union (USSR). In the recent past, also European, Japanese, and Indian spacecrafts reached Mars; while other countries, such as China and the United Arab Emirates, aim to send spacecraft toward the red planet in the next future. 1.1 Exploration aims The high number of mission explorations to Mars clearly points out the impor- tance of Mars within the Solar System. Thus, the question is: “Why this great interest in Mars exploration?” The interest in Mars is due to several practical, scientific, and strategic reasons. In the practical sense, Mars is the most accessible planet in the Solar System [1]. It is the second closest planet to Earth, besides Venus, averaging about 360 million kilometers apart between the furthest and closest points in its orbit. Earth and Mars feature great similarities. For instance, both planets rotate on an axis with quite the same rotation velocity and tilt angle. The length of a day on Earth is 24 h, while slightly longer on Mars at 24 h and 37 min. The tilt of Earth axis is 23.5 deg, and Mars tilts slightly more at 25.2 deg [2]. -
16. Ice in the Martian Regolith
16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground. -
Hubbard B, Souness C, Brough S. Glacier-Like Forms on Mars
Hubbard B, Souness C, Brough S. Glacier-like forms on Mars. The Cryosphere 2014, 8, 2047-2061. Copyright: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License. DOI link to article: https://doi.org/10.5194/tc-8-2047-2014 Date deposited: 24/11/2017 This work is licensed under a Creative Commons Attribution 3.0 Unported License Newcastle University ePrints - eprint.ncl.ac.uk The Cryosphere, 8, 2047–2061, 2014 www.the-cryosphere.net/8/2047/2014/ doi:10.5194/tc-8-2047-2014 © Author(s) 2014. CC Attribution 3.0 License. Glacier-like forms on Mars B. Hubbard, C. Souness, and S. Brough Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK Correspondence to: B. Hubbard ([email protected]) Received: 7 May 2014 – Published in The Cryosphere Discuss.: 5 June 2014 Revised: 15 September 2014 – Accepted: 26 September 2014 – Published: 5 November 2014 Abstract. More than 1300 glacier-like forms (GLFs) are lo- concerned and of broader planetary issues such as (i) how cated in Mars’ mid-latitudes. These GLFs are predominantly Mars’ present-day landscape was formed, (ii) the presence composed of ice–dust mixtures and are visually similar to and phase state of H2O on Mars’ surface, and (iii) how Mars’ terrestrial valley glaciers, showing signs of downhill viscous climate has changed in geologically recent times. The aim of deformation and an expanded former extent. However, sev- this paper is to summarize and develop our understanding of eral fundamental aspects of their behavior are virtually un- the fundamental physical glaciology of Mars’ GLFs. -
Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°. -
The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery, -
Topography of the North and South Polar Ice Caps on Mars
TOPOGRAPHY OF THE NORTH AND SOUTH POLAR ICE CAPS ON MARS. Anton B. Ivanov, Duane O. Muhleman, California Institute of Technology, Pasadena, CA, 91125, USA, [email protected]. Recent observations by Mars Orbiter Laser Altimeter have of the underlying topography under the ice cap or some other provided high resolution view of the Northern Ice cap [7], large scale process. We know from Viking observations that compiled on the basis of data returned during Science Phasing there is substantially less amounts of water vapor observed Orbit. Starting in March 1999, Mars Global Surveyor was over the south pole than over the north pole. On the other hand transferred into its mapping configuration and began system- the albedo of the southern ice cap is lower, so we can expect atic observations of Mars. Data returned during the mapping higher temperatures on the surface and hence more extensive orbit allowed compilation of high resolution topography grid evaporation. Possibly, an insulating layer of dust prevents for the southern ice cap ( [5]). This paper will concentrate on water ice from escape. Relative age estimates, obtained from description of observations of the southern ice cap topography craters by [4] suggest older ages for the southern polar layered and comparison with the northern ice cap. We will com- deposits, than for the northern polar layered deposits. We do pare topography across the ice caps and apply a sublimation not know well composition of the south polar layered deposits model ( [2]), which was developed to explain the shape of the and it is hard to hypothesize on evaporation rates at this point. -
Dynamic/Thermodynamic Simulations of the North Polar Ice Cap of Mars
First International Conference on Mars Polar Science 3001.pdf DYNAMIC/THERMODYNAMIC SIMULATIONS OF THE NORTH POLAR ICE CAP OF MARS. R. Greve, Institut fur¨ Mechanik III, Technische Universitat¨ Darmstadt, D-64289 Darmstadt, Germany, [email protected]. Ice-sheet model SICOPOLIS times mean-density ratio Mars/Earth). The bedrock response to changing ice loads is modelled by a delayed local isostatic = 3000 The present permanent north polar water ice cap of Mars is in- balance with the time lag V yr. vestigated with the dynamic/thermodynamic ice-sheet model According to the data listed by Budd et al. (1986), the mean SICOPOLIS (SImulation COde for POLythermal Ice Sheets), T annual air temperature above the ice, ma , is described by a ~ h which was originally developped for and applied to terrestrial parameterization depending on elevation, , and co-latitude, ~ =90 ice sheets like Greenland, Antarctica and the glacial northern ( N ,where is the latitude), hemisphere (Greve, 1997b, c; Calov et al., 1998; Greve et al., 0 ~ T = T + h + c ; 3 ma ma ma 1998). The model is based on the continuum-mechanical the- ma ory of polythermal ice masses (Hutter, 1982, 1993; Greve, 0 T = 90 = 2:5 ma 1997a), which describes the material ice as a density-preser- with ma C, the mean lapse rate C/km, c = 1:5 ving, heat-conducting power-law fluid with thermo-mechani- and ma C/ lat. The accumulation of water ice on cal coupling due to the strong temperature dependence of the the surface of the ice cap is assumed to be spatially con- stant. -
Phoenix Descending NASA’S Mars Strategy Goes from “Follow the Water” to “Arrive at the Ice”
NEWS NATURE|Vol 453|8 May 2008 Phoenix descending NASA’s Mars strategy goes from “follow the water” to “arrive at the ice”. Since 2001, the slogan for from hardware and software. NASA’s Mars programme has “We may not succeed, but we NASA been “follow the water”. deserve to succeed,” he says. With Phoenix, a US$420- Engineers at the Jet Propul- million mission to the edge of sion Laboratory in Pasadena, the planet’s north ice cap, the California, which runs most of agency hopes to finally touch NASA’s planetary missions, will its quarry, in the form of dirty have their last chance to tweak water ice scraped from the the trajectory on 24 May. The subsurface and melted in the next day, Phoenix is expected probe’s on-board ovens. to use the planet’s atmosphere, If all goes as planned, Phoenix and its own heat shielding, will reach the end of its 680- parachutes and retrorockets, to million-kilometre, 10-month- slow itself down from an orbital long journey on 25 May. Its speed of 20,000 kilometres per landing site is in a region where hour to a soft, safe landing at NASA’s orbiting Mars Odyssey just 2.4 metres per second. spacecraft has detected gamma-ray and neu- Phoenix, a 350-kilogram lander, inherited Smith and his team hope that the ice and soil tron signatures suggesting a significant amount hardware from the Mars Surveyor Lander, a samples they will study with the spacecraft’s of hydrogen — thought to be a constituent of mission cancelled in 2000 after the failure of mass-spectrometer and chemical analysis sys- frozen water — near the surface.