Non-Relativistic Propagators Via Schwinger's Method

Total Page:16

File Type:pdf, Size:1020Kb

Non-Relativistic Propagators Via Schwinger's Method 1260 Brazilian Journal of Physics, vol. 37, no. 4, December, 2007 Non-Relativistic Propagators via Schwinger’s Method A. Aragao,˜ H. Boschi-Filho, C. Farina, Instituto de F´ısica, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528, 21941-972 Rio de Janeiro, RJ, Brazil. and F. A. Barone Universidade Federal de Itajuba,´ Av. BPS 1303 Caixa Postal 50 - 37500-903, Itajuba,´ MG, Brazil. Received on 10 September, 2007 In order to popularize the so called Schwinger’s method we reconsider the Feynman propagator of two non- relativistic systems: a charged particle in a uniform magnetic field and a charged harmonic oscillator in a uniform magnetic field. Instead of solving the Heisenberg equations for the position and the canonical momentum operators, R and P, we apply this method by solving the Heisenberg equations for the gauge invariant operators R and p = P ¡ eA, the latter being the mechanical momentum operator. In our procedure we avoid fixing the gauge from the beginning and the result thus obtained shows explicitly the gauge dependence of the Feynman propagator. Keywords: Schwinger’s method, Feynman Propagator, Magnetic Field, Harmonic Oscillator. I. INTRODUCTION knowledge, since then only a few papers have been written with this method, namely: in 1986, Urrutia and Manterola [18] used it in the problem of an anharmonic charged oscil- In a recent paper [1], three methods were used to com- lator under a magnetic field; in the same year, Horing, Cui, pute the Feynman propagators of a one-dimensional harmonic and Fiorenza [19] applied Schwinger’s method to obtain the oscillator, with the purpose of allowing a student to com- Green function for crossed time-dependent electric and mag- pare the advantadges and disadvantadges of each method. netic fields; the method was later applied in a rederivation The above mentioned methods were the following: the so of the Feynman propagator for a harmonic oscillator with a called Schwinger’s method (SM), the algebraic method and time-dependent frequency [20]; a connection with the mid- the path integral one. Though extremely powerful and ele- point-rule for path integrals involving electromagnetic inter- gant, Schwinger’s method is by far the less popular among actions was discussed in [21]. Finally, pedagogical presen- them. The main purpose of the present paper is to popularize tations of this method can be found in the recent publication Schwinger’s method providing the reader with two examples [1] as well as in Schwinger’s original lecture notes recently slightly more difficult than the harmonic oscillator case and published [22], which includes a discussion of the quantum whose solutions may serve as a preparation for attacking rela- action principle and a derivation of the method to calculate tivistic problems. In some sense, this paper is complementary propagators with some examples. to reference [1]. The method we shall be concerned with was introduced by It is worth mentioning that this same method was inde- Schwinger in 1951 [2] in a paper about QED entitled “Gauge pendently developed by M. Goldberger and M. GellMann in invariance and vacuum polarization”. After introducing the the autumn of 1951 in connection with an unpublished paper proper time representation for computing effetive actions in about density matrix in statistical mechanics [23]. QED, Schwinger was faced with a kind of non-relativistic Our purpose in this paper is to provide the reader with two propagator in one extra dimension. The way he solved this other examples of non-relativistic quantum propagators that problem is what we mean by Schwinger’s method for com- can be computed in a straightforward way by Schwinger’s puting quantum propagators. For relativistic Green functions method, namely: the propagator for a charged particle in a of charged particles under external electromagnetic fields, the uniform magnetic field and this same problem with an addi- main steps of this method are summarized in Itzykson and Zu- tional harmonic oscillator potential. Though these problems ber’s textbook [3] (apart, of course, from Schwinger’s work have already been treated in the context of the quantum action [2]). Since then, this method has been used mainly in rela- principle [18], we decided to reconsider them for the follow- tivistic quantum theory [4–16]. ing reasons: instead of solving the Heisenberg equations for However, as mentioned before, Schwinger’s method is also the position and the canonical momentum operators, R and well suited for computing non-relativistic propagators, though P, as is done in [18], we apply Schwinger’s method by solv- it has rarely been used in this context. As far as we know, this ing the Heisenberg equations for the gauge invariant opera- method was used for the first time in non-relativistic quantum tors R and p = P ¡ eA, the latter being the mechanical mo- mechanics by Urrutia and Hernandez [17]. These authors used mentum operator. This is precisely the procedure followed by Schwinger’s action principle to obtain the Feynman propaga- Schwinger in his seminal paper of gauge invariance and vac- tor for a damped harmonic oscillator with a time-dependent uum polarization [2]. This procedures has some nice proper- frequency under a time-dependent external force. Up to our ties. For instance, we are not obligued to choose a particular A. Aragao˜ et al. 1261 gauge at the beginning of calculations. As a consequence, (i) we solve the Heisenberg equations for X(t) and P(t), and we end up with an expression for the propagator written in write the solution for P(0) only in terms of the operators an arbitrary gauge. As a bonus, the transformation law for X(t) and X(0); the propagator under gauge transformations can be readly ob- tained. (ii) then, we substitute the results obtained in (i) into the ex- In order to prepare the students to attack more complex pression for H (X(0);P(0)) in (3) and using the com- problems, we solve the Heisenberg equations in matrix form, mutator [X(0);X(t)] we rewrite each term of H in a which is well suited for generalizations involving Green func- time ordered form with all operators X(t) to the left tions of relativistic charged particles under the influence of and all operators X(0) to the right; electromagnetic fields (constant Fµn, a plane wave field or (iii) with such an ordered hamiltonian, equation (3) can be even combinations of both). For pedagogical reasons, at the readly cast into the form end of each calculation, we show how to extract the corre- sponding energy spectrum from the Feynman propagator. Al- ¶ i~ K(x;x0;t) = F(x;x0;t)K(x;x0;t); (5) though the way Schwniger’s method must be applied to non- ¶t relativistic problems has already been explained in the litera- with F(x;x0;t) being an ordinary function defined as ture [1, 18, 22], it is not of common knowledge so that we start this paper by summarizing its main steps. The paper is orga- hx;tjH (X(t);X(0))jx0;0i F(x;x0;t) = ord : (6) nized as follows: in the next section we review Schwinger’s hx;tjx0;0i method, in section III we present our examples and section IV is left for the final remarks. Integrating in t, the Feynman propagator takes the form ½ Z ¾ i t K(x;x0;t) = C(x;x0)exp ¡ F(x;x0;t0)dt0 ; (7) II. MAIN STEPS OF SCHWINGER’S METHOD ~ 0 whereRC(x;x ) is an integration constant independent of For simplicity, consider a one-dimensional time- t and t means an indefinite integral; independent Hamiltonian H and the corresponding non- 0 relativistic Feynman propagator defined as (iv) last step is concerned with the evaluation of C(x;x ). This is done after imposing the following conditions h¡iH ti K(x;x0;t) = q(t)hxjexp jx0i; (1) ¶ ~ ¡i~ hx;tjx0;0i = hx;tjP(t)jx0;0i; (8) ¶x 0 ¶ where q(t) is the Heaviside step function and jxi, jx i are the i~ hx;tjx0;0i = hx;tjP(0)jx0;0i; (9) eingenkets of the position operator X (in the Schrodinger¨ pic- ¶x0 0 ture) with eingenvalues x and x , respectively. The extension as well as the initial condition for 3D systems is straightforward and will be done in the next section. For t > 0 we have, from equation (1), that lim K(x;x0;t) = d(x ¡ x0) : (10) t!0+ ¶ h¡iH ti i~ K(x;x0;t) = hxjH exp jx0i: (2) Imposing conditions (8) and (9) means to substitute in their ¶t ~ left hand sides the expression for hx;tjx0;0i given by (7), while Inserting the unity 1l = exp[¡(i=~)H t]exp[(i=~)H t] in the in their right hand sides the operators P(t) and P(0), respec- r.h.s. of the above expression and using the well known re- tively, written in terms of the operators X(t) and X(0) with lation between operators in the Heisenberg and Schrodinger¨ the appropriate time ordering. pictures, we get the equation for the Feynman propagator in the Heisenberg picture, III. EXAMPLES ¶ i~ K(x;x0;t) = hx;tjH (X(0);P(0))jx0;0i; (3) ¶t A. Charged particle in an uniform magnetic field where jx;ti and jx0;0i are the eingenvectors of operators X(t) As our first example, we consider the propagator of a non- and X(0), respectively, with the corresponding eingenvalues relativistic particle with electric charge e and mass m, submit- x and x0: X(t)jx;ti = xjx;ti and X(0)jx0;0i = x0jx0;0i, with ted to a constant and uniform magnetic field B.
Recommended publications
  • Arxiv:1910.05796V2 [Math-Ph] 26 Oct 2020 5
    Towards a conformal field theory for Schramm-Loewner evolutions Eveliina Peltola [email protected] Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany We discuss the partition function point of view for chordal Schramm-Loewner evolutions and their relation- ship with correlation functions in conformal field theory. Both are closely related to crossing probabilities and interfaces in critical models in two-dimensional statistical mechanics. We gather and supplement previous results with different perspectives, point out remaining difficulties, and suggest directions for future studies. 1. Introduction 2 2. Schramm-Loewner evolution in statistical mechanics and conformal field theory4 A. Schramm-Loewner evolution (SLE) 5 B. SLE in critical models – the Ising model6 C. Conformal field theory (CFT) 7 D. Martingale observables for interfaces 9 3. Multiple SLE partition functions and applications 12 A. Multiple SLEs and their partition functions 12 B. Definition of the multiple SLE partition functions 13 C. Properties of the multiple SLE partition functions 16 D. Relation to Schramm-Loewner evolutions and critical models 18 4. Fusion and operator product expansion 20 A. Fusion and operator product expansion in conformal field theory 21 B. Fusion: analytic approach 22 C. Fusion: systematic algebraic approach 23 D. Operator product expansion for multiple SLE partition functions 26 arXiv:1910.05796v2 [math-ph] 26 Oct 2020 5. From OPE structure to products of random distributions? 27 A. Conformal bootstrap 27 B. Random tempered distributions 28 C. Bootstrap construction? 29 Appendix A. Representation theory of the Virasoro algebra 31 Appendix B. Probabilistic construction of the pure partition functions 32 Appendix C.
    [Show full text]
  • Satya Narayan Majumdar Work Address
    CV Name: Satya Narayan Majumdar Work Address: Laboratoire de Physique Th´eorique et Mod`elesStatistiques (LPTMS), Universit´eParis-Saclay, UMR 8626 (CNRS), Bat^ Pascal no: 530, Rue Andre Reviere, 91405 Orsay cedex, France Tel: 01-69-15-64-65 Fax: 01-69-15-65-25 Email: [email protected] Date of Birth: 01-01-1966 Education: 8/87 { 9/92 Tata Institute of Fundamental Research Bombay, India Ph.D. in Physics, September 1992. Thesis: Self-organized Criticality in Sandpiles and Driven Diffusive Lattice Gases. Advisor: Prof. Deepak Dhar, Tata Institute, Bombay, India. 9/85 { 7/87 University of Calcutta Calcutta, India M.Sc in Physics, 1987 (ranked 1st among approx. 200) 9/81 { 8/85 Presidency College Calcutta, India B.Sc in Physics, University of Calcutta, 1985 (ranked 1st among approx. 2500) Employment: 10/11 { present: Directeur de Recherche (DR1) at Laboratoire de Physique Th´eorique et Mod`elesStatistiques, Universit´eParis-Sud, Orsay, France. 09/03 {09/11: Directeur de Recherche (DR2) at Laboratoire de Physique Th´eorique et Mod`elesStatistiques, Universit´eParis-Sud, Orsay, France. 01/00 { 09/03: Charg´ede Recherche (CR1) at UMR 5626 du CNRS, IRSAMC, Uni- versit´ePaul Sabatier, Toulouse, France. 11/96 { 12/99 Reader at Tata Institute of Fundamental Research, Bombay, India. 10/94 { 10/96 Post Doctoral Associate at Yale University, USA. 10/92 { 09/94 Post Doctoral fellow at AT&T Bell Labs, USA. 08/87 { 09/92 Thesis student and Research Assistant at Tata Institute of Fundamen- tal Research, Bombay, India. Honors and Awards: 1: Gay-Lussac Humboldt prize (awarded by the Alexander von Humboldt foundation, 2019).
    [Show full text]
  • DI FRANCESCO First: Philippe Citizenship: French Address: Dept
    CURRICULUM VITAE Philippe R. DI FRANCESCO 1-General information Name: DI FRANCESCO First: Philippe Citizenship: French Address: Dept. of Mathematics, Univ. of Illinois at Urbana-Champaign 1409 W Green St, Urbana, IL, 61801, USA e-mail: [email protected] 2-Education 1980: Bac s´erie C mention TB (high school diploma, math major, highest honors). 1982: Admission to the national exam to the Ecole Polytechnique (section M’); rank: first. 1983: Licence `es Math´ematiques, mention TB (highest honors), Universit´eParis XI-Orsay, passed during the military service. 1985: Diplˆome d’ing´enieur de l’Ecole polytechnique; rank: first. 1985: Admission to the Corps National des Mines. Present grade: Ing´enieur G´en´eral, qua- tri`eme ´echelon. 1987: DEA (last diploma before PhD) in Solid state physics, director J. Friedel, Universit´e Paris XI-Orsay; mention TB (highest honors). 1988: Diplˆome d’ing´enieur du Corps National des Mines. 1989: PhD of the Universit´eParis VI-Jussieu, adviser: J.-B. Zuber (SPhT, Saclay); mention tr`es honorable (highest honors); subject: Conformally invariant two-dimensional field theories. 2004: Habilitation `adiriger des recherches (HDR), Universit´e Paris VII, sp´ecialit´eMath´ematiques. 3-Distinctions/Honors 1985: Prize L.E. Rivot of the French Acad´emie des Sciences. 1985: Laplace Medal of the French Acad´emie des Sciences. 1985: Prize H. Poincar´eof the Alumni Association of the Ecole Polytechnique. 2010: Invited talk at the International Congress of Mathematics, section Mathematical Physics (cancelled). 2012: Plenary address at the International Congress of Mathematical Physics. 2018: Invited speaker, International Congress of Mathematics, Rio de Janeiro, Brazil.
    [Show full text]
  • People and Things
    People and things Jean-Pierre Gourber will be Leader of the Miguel Virasoro becomes Director of the CERN's new LHC Division for three years from International Centre for Theoretical Physics 1 January 1996. (ICTP), Trieste. CERN elections and appointments A t its meeting on 23 June, XI CERN's governing body, the Council, decided to create an LHC Division as from 1 January 1996. The LHC Division will focus on the core activities related to the construction of the machine, namely supercon­ ducting magnets, cryogenics and vacuum together with supporting activities. Jean-Pierre Gourber was appointed Leader of the new LHC Division for three years from 1 January 1996. Council also appointed Bo Angerth as Leader of Personnel Division for three years from 1 January 1996, succeeding Willem Middelkoop. Jiri Niederle (Czech Republic) was elected Vice-President of Council for one year from 1 July 1995. tion, demonstrated that the gluons of EPS Prizes the strong interactions were a physi­ cal reality. The prestigious High Energy and The existence of such three-jet Particle Physics Prize of the Euro­ events in electron-positron collisions pean Physical Society for 1995 goes had been predicted in a pioneer to Paul Soding, Bjorn Wiik and ICTP Trieste Director CERN Theory Division paper by John Gunter Wolf of DESY and Sau Lan Ellis, Mary K. Gaillard and Graham Distinguished theorist Miguel Wu of Wisconsin for their milestone Ross. work in providing 'first evidence for Virasoro becomes Director of the There has always been keen rivalry three-jet events in electron-positron International Centre for Theoretical between the four 1979 PETRA colla­ collisions at PETRA' (DESY's elec­ Physics (ICTP), Trieste, succeeding borations - JADE, MARK-J, PLUTO tron-positron collider).
    [Show full text]
  • CV & Research Statements
    CV & Research Statements Satya N. MAJUMDAR Directeur de Recherche (DR1) au CNRS Laboratoire de Physique Th´eoriqueet Mod`elesStatistiques, Universit´eParis-Sud, CNRS UMR 8626, 91405 Orsay Cedex, France Contents 1 Curriculum-Vitae (brief CV) 4 2 Evolution of research 11 3 Principal Scientific Contributions, Achievements and Impact 25 4 Scientific Animation 30 4.1 Research Initiatives: ....................................... 30 4.2 Collective Responsibilities: ................................... 30 4.3 Scientific Grants: ......................................... 31 4.4 Supervision of Students: ..................................... 32 4.5 Supervision of Postdocs: .................................... 36 5 Scientific Commitments 37 5.1 Organization of Conferences and Seminars: ........................ 37 5.2 Courses and Lectures: ...................................... 38 5.3 Editor of Journals: ........................................ 40 5.4 Referee of Journals: ........................................ 40 5.5 Other Scientific Activities: Thesis Examinations ..................... 41 6 Scientific Collaborations 43 7 Research Report 45 7.1 Extreme Value Statistics of Strongly Correlated Variables . 46 7.2 Random Growth Models, Biological Sequence Matching Problems and Random Matrices ............................................... 61 7.3 Bose-Einstein Condensation in Real Space ......................... 63 7.4 Passive Sliders on Fluctuating Surfaces: the phenomenon of Strong Clustering . 64 7.5 Discrete-time Random Walks and Flux to a Trap ...................
    [Show full text]
  • Édouard Brézin October 19, 2020, 9:30-10:45Am (EDT)
    History of RSB Interview: Édouard Brézin October 19, 2020, 9:30-10:45am (EDT). Final revision: December 22, 2020 Interviewers: Patrick Charbonneau, Duke University, [email protected] Francesco Zamponi, ENS-Paris Location: Over Zoom, from Prof. Brézin’s office at École normale supérieure (ENS), Paris, France. How to cite: P. Charbonneau, History of RSB Interview: Édouard Brézin, transcript of an oral history conducted 2020 by Patrick Charbonneau and Francesco Zamponi, History of RSB Project, CAPHÉS, École normale supérieure, Paris, 2021, 20 p. https://doi.org/10.34847/nkl.9573z1yg PC: Bonjour Édouard. Merci beaucoup d’avoir accepté de vous asseoir avec nous. Comme on en a discuté préalablement, cet entretien va surtout trai- ter la période 1975 à 1995, durant laquelle l’on détermine le commence- ment de la brisure des répliques dans le contexte des verres de spin. ÉB : [0:00:27] Merci de m'écouter. Bien que je sois à peu près universellement ignorant sur le thème central de ces entretiens, j'aurai plaisir à en parler avec vous. PC : Dans ce contexte-là, je voulais quand même prendre quelques années de recul par rapport à cette fenêtre, pour mieux comprendre vos interactions à ce sujet. J'ai lu quelques-unes de vos description de recherche et de vos biographies dans lesquelles vous mentionnez que votre temps à Princeton, en 1971-1972, a été très formateur et charnière dans votre carrière scientifique. Pouvez-vous un peu nous décrire le retour à Paris avec ces idées-là? Comment est-ce que ça s'est joué? ÉB: [0:01:09] J’ai donc eu la chance d'être à Princeton l’année où Ken Wilson, en visite à l'Institut de Princeton1, est invité par l'université à parler de ses travaux récents.
    [Show full text]
  • Introduction
    INTRODUCTION Le rapp ort dactivite du Service de Physique Theorique est etabli tous les deux ans Celui ci resume lactivite scientique du SPhT durantlaperio de juin mai et servira de do cumentdebasepourlevaluation du lab oratoire qui aura lieu a lautomne Pour la premiere fois la partie scientique de ce rapp ort est ecrite en anglais Il y a plusieurs raisons a cela Dune part un nombre imp ortantdecollegues etrangers pas tous francophones particip enta notre conseil scientique exterieur CSE Dautre part ce rapp ort est aussi une vitrine de nos activites le fait quil soit redige en anglais la langue de la ma jeure partie de nos echanges scientiques nous p ermet une plus grande diusion Levaluation du lab oratoire a jusquapresent eu lieu durant un collo que de deux a trois jours au cours duquel les physiciens du SPhT presentaient leurs travaux a leurs collegues et aux membres du CSE Ce collo que remplissait donc deux fonctions lune de communication interne lautre devaluation Pour satisfaire lob jectif de communication interne le collo que fut le plus souvent organise loin du lab oratoire de facon aliberer chacun de ses sollicitations quotidiennes Mais leloignementdeParis allonge le temps de deplacemen t des membres du CSE dont certains viennent de loin Nous avons donc choisi de decoupler a partir de cette annee collo que interne et evaluation et de faire levaluation dans le lab oratoire Les membres du CSE p ourront ainsi rencontrer les physiciens sur leur lieu de travail et mieux p ercevoir les multiples asp ects de la vie du lab oratoire
    [Show full text]
  • Hommage À Claude Itzykson (1938-1995) Annales De L’I
    ANNALES DE L’I. H. P., SECTION A JEAN BELLISSARD Hommage à Claude Itzykson (1938-1995) Annales de l’I. H. P., section A, tome 63, no 1 (1995), p. 119-120 <http://www.numdam.org/item?id=AIHPA_1995__63_1_119_0> © Gauthier-Villars, 1995, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Vol. 63, n° 1,1995, p. 119 Physique’ théorique’ Hommage à Claude Itzykson (1938-1995) Claude Itzykson est décédé du can- cer le 22 mai 1995 à Paris. Membre du Comité de Rédaction des Annales de l’Institut Henri Poincaré, il est regretté par tous ses collègues co- rédacteurs et physiciens théoriciens, qui voyaient en lui un des plus brillants représentants de leur com- munauté. Né à Paris en 1938, il fut pupille de la nation dans un orphelinat de la région parisienne après le décès de son père en camp de concentration durant la deuxième guerre mondiale. Il fit ensuite de très brillantes études au lycée Condorcet pour entrer à l’âge de 19 ans à l’École Polytechnique. Il fut ensuite admis au Corps des Mines. Il décide alors de rejoindre le CEA et de consacrer sa carrière à la recherche scientifique.
    [Show full text]
  • Contribution to the Study of Conformal Theories and Integrable Models
    UNIVERSITE DE PARIS-SUD CEN?TRE D'ORSAY THESE présentée pour obtenir Le GRADE de DOCTEUR EN SCIENCES DE L'UNIVERSITE PARIS XI ORSAY par NIR SOCHEN sujet: CONTRIBUTION A L'ETUDE DES THEORIES CONFORMES ET DES MODELES INTEGRABLES Soutenue le 19 Mai 1992 devant la Commision d'examen MM. E. BREZIN président P. BINETRUY K. GAWEDZKI C. ITZYKSON V. PASQUIER J.-B. ZUBER UNIVERSITE DE PARIS-SUD CENTRE D'ORSAY THESE présentée pour obtenir Le GRADE de DOCTEUR EN SCIENCES DE L'UNIVERSITE PARIS XI ORSAY par NIR SOCHEN sujet: CONTRIBUTION A L'ETUDE DES THEORIES CONFORMES ET DES MODELES INTEGRABLES Soutenue le 19 Mai 1992 devant la Commision d'examen MM. E. BREZIN président P. BINETRUY K. GAWEDZKI C. ITZYKSON V. PASQUIER J.-B. ZUBER i.r 1 A nies parents et à Lori et Carmel T REMERCIEMENT Deux personnes ont joué un rôle déterminant dans ma formation et m'ont montré la voie de la recherche. Je tiens à remercier Shimon Yankielowicz qui m'a enseigné la théorie des champs et a guidé mes premiers pas dans la physique. J'ai eu la chance de travailler avec Jean-Bernard Zuber, mon directeur de thèse, qui est aussi devenu un ami et m'a enseigné le métier de chercheur avec enthousiasme et bonne humeur. Je le remercie tout particulièrement de l'infinie patience dont il a fait preuve et de la gentillesse qu'il a bien voulu me témoigner. Je voudrais remercier Edouard Brézin qui m'a accueilli en France. Il m'a aidé à trouver le début de la piste qui m'a amené jusqu'ici et il a accepté d'être président du jurj'.
    [Show full text]
  • CENTRE D'etudes NUCLEAIRES DE SACLAY CEA-CONF — 8513 Service De Documentation F91I91 GIF SUR YVETTE CEDEX L1
    fiWCezMo*! COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF — 8513 Service de Documentation F91I91 GIF SUR YVETTE CEDEX L1 CONFORMAL INVARIANCE AND FINITE SIZE EFFECTS IN CRITICAL TWO DIMENSIONAL STATISTICAL MODELS Claude Itzykson Service de Physique Théorique, CEN-Saclay, 9H91 Gif-sur-Yvette Cedex, France Communication présentée à : 9. Sitges conference Sitges (Spain) 26-30 May 1986 1 CONFORMAI, INVARIANCE AND FINITE SIZE EFFECTS IN CRITICAL TWO DIMENSIONAL STATISTICAL MODELS Claude Itzykson Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex. France I. PRELIMINARIES 1. A systematic review of the recent achievements in conformai invariant two-di­ mensional field theories would already require a volume size. Here we shall discuss some finite size effects, because they reveal important features as noted by Cardy. The computation of the partition function in a finite geometry -a torus- enables one to understand the spectrum of the theory. The later is a compendium of the critical dimensions of the various operators. Two simple examples, namely bosonic or fermionic free fields (respectively the Gaussian and the Ising model) will serve as a pedagogic introduction, although the corresponding computations are not without some subtleties. We then proceed to considerations related to modular invariance. The forthcoming analysis is of course based on the fundamental work by Belavin, Polyakov and Zamolodchikov (quoted as BPZ) and its subsequent development by a number of authors including Dotsenko, Fateev, Friedan Qui and Shenker, Cardy and many others. It also relies on the mathematics of infinite Lie algebras (also known as current algebras) elaborated by Kac, Feigin and Fuchs, Rocha-Caridi..
    [Show full text]
  • CLAUDE ITZYKSON the Early Years
    CLAUDE ITZYKSON The early years Graduated from Ecole Polytech- nique + Corps des Mines joined Service de Physique Thorique on a CEA position in 1962-3 The senior members of SPhT at the time Head Claude Bloch with a nuclear physics group (Gillet Raynal Ripka,···) Quantum many body problem: De Dominicis, Balian High energy physics: Froissart, Stora, Jacob Maurice Jacob era 1. DECAY OF THE OMEGA-AND ETA-MESONS By: ITZYKSON, C; JACOB, M; PHAM, F; et al. PHYSICS LETTERS Volume: 1 Issue: 3 Pages: 96-97 Published: 1962 Full Text from Publisher Times Cited: 7 (from All Databases) 2. 1-PARTICLE EXCHANGE IN ANTIPROTON COLLISIONS IN FLIGHT By: BESSIS, D; JACOB, M; ITZYKSON, C NUOVO CIMENTO Volume: 27 Issue: 2 Pages: 376-+ Published: 1963 Full Text from Publisher Times Cited: 19 (from All Databases) 3. POLARIZATION EFFECTS IN PROTON-PROTON HIGH-ENERGY SCATTERING By: ITZYKSON, C; JACOB, M NUOVO CIMENTO Volume: 28 Issue: 2 Pages: 250-+ Published: 1963 Full Text from Publisher Times Cited: 9 (from All Databases) 4. A POSSIBLE DETERMINATION OF THE SPIN AND RELATIVE PARITY OF THE HYPERON ISOBARS By: ITZYKSON, C; JACOB, M PHYSICS LETTERS Volume: 3 Issue: 4 Pages: 153-155 Published: 1963 Full Text from Publisher Times Cited: 5 (from All Databases) 5. PHENOMENOLOGICAL APPROACH TO HIGH-ENERGY LEPTON-NUCLEON SCATTERING By: ITZYKSON, C; JACOB, M; CHAN, CH NUOVO CIMENTO Volume: 32 Issue: 1 Pages: 71-+ Published: 1964 Full Text from Publisher Axiomatic field theory Repr´esentationsint´egralesde fonc- tions analytiques et formule de Jost-Lehman-Dyson J.Bros, C.Itzykson, F.Pham Annales de l'Institut Henri Poincar´e 1966 Back from Stanford in 1967 Non leptonic K decays (with Jacob and Mahoux) Non leptonic hyperon decays (with Jacob) High energy 2-body reactions in quark model (with Jacob) The Stanford days UNITARY GROUPS - REPRESENTATIONS AND DECOMPOSITIONS By: ITZYKSON, C; NAUENBER.M REVIEWS OF MODERN PHYSICS Volume: 38 Issue: 1 Pages: 95-& Published: 1966 .
    [Show full text]
  • Neutrino and Parity Violation in Weak Interaction
    Neutrino and Parity Violation in Weak Interaction Kiyoung Kim Department of Physics, University of Utah, SLC, UT 84112 Abstract It is shown that neutrino oscillation and Majorana type neutrino are not compatible with Special Theory of Relativity. Instead of the Majorana type neutrino, traditional neutrino (mν = 0) is considered with additional assumptions that νR andν ¯L neutrinos exist in nature and naturally thus parity is conserved. Besides, neutrino itself is considered as longitudi- nal vacuum-string oscillations. To explain parity conservation W ± bosons are suggested as momentary interacting states between e± and virtual-positive(negative)-charge strings, respectively. With these postulations, an alternative explanation is also suggested for solar neutrino problem. arXiv:hep-ph/9811522v1 30 Nov 1998 1 Introduction As the most amazing and even paradoxical one in elementary particles, neutrino has been known to us for a long time since 1931, when Wolfgang Pauli proposed a new particle – very penetrating and neutral – in β-dacay. Nevertheless, we don’t know much about neutrino itself. That is mainly because of experimental difficulty to detect neutrino itself and neutrino events too. Up to now, we are not quite sure if neutrino has a rest mass or not, and also we cannot explain solar neutrino deficit[25] [26][27][28] contrary to the expectation from Standard Solar Model[28]. Furthermore, Nature doesn’t seem to be fair in Weak Interaction in which neutrino is involved. That has been known as Parity Violation. 1 As one of trial solutions to explain the solar neutrino deficit, neutrino mass or flavor oscillation has been suggested, and many experiments have been done and doing until now.
    [Show full text]