Glycoalkaloids: Structure, Properties, and Interactions with Model Membrane Systems

Total Page:16

File Type:pdf, Size:1020Kb

Glycoalkaloids: Structure, Properties, and Interactions with Model Membrane Systems processes Review Glycoalkaloids: Structure, Properties, and Interactions with Model Membrane Systems Bishal Nepal and Keith J. Stine * Department of Chemistry and Biochemistry, University of Missouri—Saint Louis, Saint Louis, MO 63121, USA * Correspondence: [email protected]; Tel.: +1-314-516-5346 Received: 22 June 2019; Accepted: 31 July 2019; Published: 5 August 2019 Abstract: The glycoalkaloids which are secondary metabolites from plants have proven to be of significant interest for their biological properties both in terms of their roles in plant biology and the effects they exhibit when ingested by humans. The main feature of the action of glycoalkaloids is their strong binding to 3β-hydroxysterols, such as cholesterol, to form complexes with the consequence that membrane structure is significantly perturbed, and leakage or release of contents inside cells or liposomes becomes possible. The glycoalkaloids have been studied for their ability to inhibit the growth of cancer cells and in other roles such as vaccine adjuvants and as synergistic agents when combined with other therapeutics. The glycoalkaloids have rich and complex physical behavior when interacting with model membranes for which many aspects are yet to be understood. This review introduces the general properties of glycoalkaloids and aspects of their behavior, and then summarizes their effects against model membrane systems. While there are many glycoalkaloids that have been identified, most physical or biological studies have focused on the readily available ones from tomatoes (α-tomatine), potatoes (α-chaconine and α-solanine), and eggplant (α-solamargine and α-solasonine). Keywords: glycoalkaloid; membrane; monolayer; liposome 1. Introduction A number of classes of compounds are known to disrupt cell membranes by interfering with bilayer structure, including dendrimers [1], chitosan [2], and membrane-active lytic peptides [3]. In this review, the focus is on the disruption of membrane structure by the class of compounds known as glycoalkaloids [4,5] which exert such effects by binding to cholesterol that is ubiquitously present in cell membranes [6], forming complexes that can aggregate and compromise the membrane structure. A particularly unique feature of these compounds is that in addition to their membrane-disrupting effects, they also interact with biological pathways in cells [7,8] and function as inhibitors of cholinesterase enzymes [9,10]. In particular, this review focuses on studies that have involved model membrane systems such as liposomes and monolayers at the water–air interface. Glycoalkaloids have been widely studied for many reasons, including their anti-cancer activities [11,12] either alone or in combination with various therapeutic agents [13–16], and their potential use as vaccine adjuvants [17–19]. Their study remains of major interest given their potential medicinal applications [20]. This review also surveys the biological effects of glycoalkaloids, as the connection between the physical interactions with membranes as studied primarily in model systems such as liposomes and monolayers, and the biological effects as primarily studied in cell lines poses an important question for future research. Glycoalkaloids are readily available natural products that may prove useful in therapeutic applications, alone or in combination with other biologically active agents. Processes 2019, 7, 513; doi:10.3390/pr7080513 www.mdpi.com/journal/processes Processes 2019, 7, x FOR PEER REVIEW 2 of 26 Processes 2019, 7, 513 2 of 26 2. Origin, Structure, and General Properties of Glycoalkaloids 2.1.2. Origin, Origin Structure,of Glycoalkaloids and General Properties of Glycoalkaloids Plants of the Solanaceae family include tomatoes, potatoes, and eggplants, and are well known to 2.1. Origin of Glycoalkaloids produce secondary metabolites known as glycoalkaloids [21]. The glycoalkaloids are produced in the leaves,Plants flowers, of the andSolanaceae roots of familythe plant. include In the tomatoes, case of potatoes, potatoes, they and are eggplants, also found and in are the well sprouts known [22]. to produceTomato plants secondary produce metabolites the glycoalkaloid known as glycoalkaloidsα-tomatine, potato [21]. Theplants glycoalkaloids produce both are α produced-chaconine in and the αleaves,-solanine, flowers, and andeggplants roots of produce the plant. both In the α-solamargine case of potatoes, and they α-solasonine are also found (see inFigure the sprouts 1). Green [22]. Tomatotomatoes plants can have produce up to the 500 glycoalkaloid mg kg−1 of tomatineα-tomatine, in the potato fruit, plantswhich producewill decrease both toα-chaconine near 5 mg kg and−1 uponα-solanine, ripening and [5]. eggplants The concentration produce both ofα toma-solamarginetine in the and vinesα-solasonine will stay near (see Figure500 mg1). kg Green−1. The tomatoes amount 1 1 ofcan α have-tomatine up to in 500 red mg tomatoes kg− of consumed tomatinein by the humans fruit, whichis 10–30 will mg decrease kg−1, but to if near green 5 mg tomatoes kg− upon are 1 consumedripening [5 ].then The the concentration level will ofbe tomatine 200–500 in mg the vineskg−1. willIn eggplants, stay near500 the mg average kg− . Theglycoalkaloid amount of 1 concentrationα-tomatine in redfor tomatoes21 varieties consumed was found by humans to vary is 10–30from mg0.625–20.5 kg− , but mg if greenkg−1 [23]. tomatoes The glycoalkaloid are consumed 1 contentthen the of level potatoes will bevaries 200–500 widely mg with kg− potato. In eggplants, type and conditions the average of cultivation glycoalkaloid [24] concentration and will increase for 1 in21 damaged varieties wasplants found [25]. to The vary glycoalkaloid from 0.625–20.5 content mg of kg normal− [23]. potato The glycoalkaloid tubers is reported content as of 12–20 potatoes mg varieskg−1 while widely green with tubers potato can have type 250–280 and conditions mg kg−1 and of cultivationgreen skin 1500–2200 [24] and willmg kg increase−1 [26]. The in damaged enzymes 1 plantsinvolved [25 in]. Thethe natural glycoalkaloid synthesis content of the of oligosacchar normal potatoides tubersof the isglycoalkaloids reported as 12–20 have mgbeen kg reviewed− while 1 1 [27].green tubers can have 250–280 mg kg− and green skin 1500–2200 mg kg− [26]. The enzymes involved in the natural synthesis of the oligosaccharides of the glycoalkaloids have been reviewed [27]. 2.2. Structure of Glycoalkaloids 2.2. Structure of Glycoalkaloids The glycoalkaloids consist of a nitrogen-containing steroidal aglycone and an attached oligosaccharide.The glycoalkaloids The prefix consist α- refers of ato nitrogen-containingthe compound with steroidalfully intact aglycone oligosaccharide, and an attachedwhereas removaloligosaccharide. of one sugar The prefix wouldα- refersbe denoted to the compound by a β- prefix, with fullyremoval intact of oligosaccharide, two sugars by whereasa γ- prefix, removal and removalof one sugar of three would for be a denoted tetrasaccharide by a β-prefix, by a removalδ- prefix. of The two aglycones sugars by aareγ-prefix, referred and to removal as tomatidine, of three solanidine,for a tetrasaccharide and solasidine, by a δ-prefix. respectively. The aglycones The branched are referred tetrasaccharide to as tomatidine, of solanidine,α-tomatine and is solasidine,known as lycotetraose.respectively. TheThe branchedbranched tetrasaccharide trisaccharide chacotriose of α-tomatine constitutes is known asα-chaconine lycotetraose. when The linked branched to solanidine,trisaccharide and chacotriose α-solamargine constitutes when linkedα-chaconine to solasidine. when Th linkede branched to solanidine, trisaccharide and solatrioseα-solamargine forms whenα-solanine linked when to solasidine. linked to solanidine The branched and α trisaccharide-solasonine when solatriose linked forms to solasidine.α-solanine The when structures linked toof thesolanidine glycoalkaloids and α-solasonine from tomato, when potato, linked and to solasidine. eggplant are The shown structures in Figure of the glycoalkaloids1. The solubility from of tomatinetomato, potato, in water and decreases eggplant with are shown pH, being in Figure reported1. The as solubility 6 mM at of pH tomatine 5, 1 mM in at water pH decreases6, 0.040 mM with at pH,pH 7, being and reported0.030 mM as at 6 pH mM 8 at[28]. pH 5, 1 mM at pH 6, 0.040 mM at pH 7, and 0.030 mM at pH 8 [28]. Figure 1. Cont. Processes 2019, 7, 513 3 of 26 Processes 2019, 7, x FOR PEER REVIEW 3 of 26 Figure 1.1. Structures of thethe glycoalkaloidsglycoalkaloids αα-tomatine,-tomatine, αα-chaconine,-chaconine, αα-chaconine,-chaconine, α-solamargine,-solamargine, andand α-solasonine.-solasonine. 2.3. General Properties of Glycoalkaloids 2.3. General Properties of Glycoalkaloids These compounds are important for the defense of the plant against pests and pathogens [29,30] These compounds are important for the defense of the plant against pests and pathogens [29,30] and have numerous biological and medicinal effects if ingested by humans [31]. While α-tomatine and have numerous biological and medicinal effects if ingested by humans [31]. While α-tomatine can help to protect the tomato plant against fungal pathogens and inhibit fungal growth [32], a number of pathogens express an enzyme that can detoxify tomatine by hydrolysis of sugars [33]. For Processes 2019, 7, 513 4 of 26 can help to protect the tomato plant against fungal pathogens and inhibit fungal growth [32], a number of pathogens express an enzyme that can detoxify
Recommended publications
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Behavior of Α-Tomatine and Tomatidine Against Several Genera of Trypanosomatids from Insects and Plants and Trypanosoma Cruzi
    Acta Scientiarum http://periodicos.uem.br/ojs/acta ISSN on-line: 1807-863X Doi: 10.4025/actascibiolsci.v40i1.41853 BIOTECHNOLOGY Behavior of α-tomatine and tomatidine against several genera of trypanosomatids from insects and plants and Trypanosoma cruzi Adriane Feijó Evangelista1, Erica Akemi Kavati2, Jose Vitor Jankevicius3 and Rafael Andrade Menolli4* 1Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Barretos, São Paulo, Brazil. 2Laboratório de Genética, Instituto Butantan, São Paulo, São Paulo, Brazil. 3Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil. 4Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, 85819-110, Cascavel, Paraná, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. Glycoalkaloids are important secondary metabolites accumulated by plants as protection against pathogens. One of them, α-tomatine, is found in high concentrations in green tomato fruits, while in the ripe fruits, its aglycone form, tomatidine, does not present a protective effect, and it is usual to find parasites of tomatoes like Phytomonas serpens in these ripe fruits. To investigate the sensitivity of trypanosomatids to the action of α-tomatine, we used logarithmic growth phase culture of 20 trypanosomatids from insects and plants and Trypanosoma cruzi. The lethal dose 50% (LD50) was determined by mixing 107 cells of the different isolates with α-tomatine at concentrations ranging from 10-3 to 10-8 M for 30 min at room temperature. The same tests performed with the tomatidine as a control showed no detectable toxicity against the same trypanosomatid cultures. The tests involved determination of the percentage (%) survival of the protozoan cultures in a Neubauer chamber using optical microscopy.
    [Show full text]
  • Alpha-Tomatine Content in Tomato and Tomato Products Determined By
    J. Agric. Food Chem. 1995, 43, 1507-151 1 1507 a-Tomatine Content in Tomato and Tomato Products Determined by HPLC with Pulsed Amperometric Detection Mendel Friedman* and Carol E. Levin Food Safety and Health Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710 Tomato plants (Lycopersicon esculentum) synthesize the glycoalkaloid a-tomatine, possibly as a defense against insects and other pests. As part of an effort to improve the safety of plant foods, the usefulness of a new HPLC pulsed amperometric detection (PAD) method for the direct analysis of a-tomatine in different parts of the tomato plant; in store-bought and field-grown, including transgenic, tomatoes; in a variety of commercial and home-processed tomato products; and in eggplant and tomatillos was evaluated. The method was found to be useful for analysis of a variety of products including high-tomatine calyxes, flowers, leaves, roots, and stems of the tomato plant (14-130 mg/100 g of fresh weight), low-tomatine red tomatoes (0.03-0.08 mg/100 g), intermediate- tomatine tomatoes (0.1-0.8 mg/100 g), and high-tomatine fresh and processed green, including pickled and fried, tomatoes (0.9-55 mg/100 g). No experimental difficulties were encountered with extraction and analysis of tomatine in complex foods such as tomato juice, ketchup, salsa, sauce, and sun-dried tomatoes. Microwaving and frying did not significantly affect tomatine levels of tomato foods. The tomatine content of fresh market and transgenic delayed-ripening varieties was not different from the range ordinarily seen in tomato.
    [Show full text]
  • Riqueza De Espécies E Relevância Para a Conservação
    O Brasil é reconhecidamente um dos países de megadiversidade de mamíferos do mundo, abrigando cerca de 12% de todas as espécies desse grupo existentes no nosso planeta, distribuídas em 12 Ordens e 50 Famílias. Dentre as espécies que ocorrem no País, 210 (30% do total) são exclusivas do território brasileiro. Esses números não só indicam a importância do País para a conservação mundial desses animais como também trazem para a mastozoologia brasileira a responsabilidade de produzir e disseminar conhecimento científico de qualidade sobre um grupo carismático, bastante ameaçado pela ação antrópica e importante componente dos ecossistemas naturais. O próprio aumento no número de espécies reconhecidas para o Brasil nos últimos 15 anos já é um indicativo da resposta que vem sendo dada pelos pesquisadores do País a esse desafio de gerar conhecimento científico de qualidade sobre os mamíferos. Na publicação pioneira de Fonseca e colaboradores (Lista Anotada dos Mamíferos do Brasil, 1996), houve a indicação de 524 espécies brasileiras de mamíferos. Na compilação mais recente, de 2012, esse número passou para 701, o que representa um aumento de quase 34% em 16 anos (Paglia et al., Lista Anotada dos Mamíferos do Brasil , 2a ed., 2012). Visando contribuir para essa produção de conhecimento científico de qualidade sobre mamíferos, há alguns anos atrás nós organizamos uma publicação que reunia estudos científicos inéditos sobre vários aspectos da biologia do grupo, intitulada Mamíferos do Brasil: Genética, Sistemática, Ecologia e Conservação. Esse livro, publicado em 2006, contou com a participação de vários mastozoólogos brasileiros de destaque. A nossa intenção, com o mesmo, era contribuir para a produção e divulgação da informação científica para um público mais amplo, incluindo alunos de graduação e não-acadêmicos interessados em mastozoologia, além é claro dos pesquisadores especialistas na área.
    [Show full text]
  • Supplementary Table 1. References Used to Build the Dataset on Bat-Plant Interactions in the Neotropics
    Supplementary Table 1. References used to build the dataset on bat-plant interactions in the Neotropics. 1. Acosta y Lara, E. 1950. Quirópteros de Uruguay. Commun. Zool. Mus. Hist. Nat. Montevideo III: 1-74. 2. Alcorn, S.M., S.E. McGregor & G. Olin. 1961. Pollination of saguaro cactus by doves, nectar-feeding bats and honey bees. Science 133: 1594-1595. 3. Alcorn, S.M., S.E. McGregor & G. Olin. 1962. Pollination requirements of the organ pipe cactus. Cactus Succ. J. Soc. Am. 34: 134-138. 4. Alonso-Mejía, A. & R.A. Medellín. 1991. Micronycteris megalotis. Mammalian Species 376: 1-6. 5. Altringham, J.D. 1998. Bats. Biology and behavior. Oxford University Press. 6. Alvarez, J., M.R. Willig, J.K. Jones, Jr. & W.D. Webster. 1991. Glossophaga soricina. Mammalian Species 379: 1-7. 7. Alverson, W.S. 1989. Quararibea (Bombacaceae): five new species from moist and wet forests of Costa Rica and Panama. Brittonia 41: 61-74. 8. Andrade, J.C.d. & A.G.d. Andrade. 1983. Pouteria psammophila var. xestophylla (Miq. & Eichl.) Baehni (Sapotaceae) no litoral do Rio de Janeiro; uma alerta de extinção. Atas Soc. Bot. Brasil 1-8. 9. Areces-Mallea, A.E. 2002. Leptocereus (A. Berger) Britton and Rose: a monographic study of a West Indian genus of Cactaceae (Cactoideae). Ph.D. Dissertation. City University of New York, New York. 10. Arias-Cóyotl, E., K.E. Stoner & A. Casas. 2006. Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated populations in La Mixteca Baja, central Mexico. Amer. J. Bot.
    [Show full text]
  • Tomatine Adjuvantation of Protective Immunity to a Major Pre-Erythrocytic Vaccine Candidate of Malaria Is Mediated Via CD8+ T Cell Release of IFN-Γ
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2010, Article ID 834326, 7 pages doi:10.1155/2010/834326 Research Article Tomatine Adjuvantation of Protective Immunity to a Major Pre-erythrocytic Vaccine Candidate of Malaria is Mediated via CD8+ T Cell Release of IFN-γ Karen G. Heal1, 2 and Andrew W. Taylor-Robinson1 1 Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK 2 Department of Biology, University of York, York YO10 5YW, UK Correspondence should be addressed to Andrew W. Taylor-Robinson, [email protected] Received 1 August 2009; Revised 26 October 2009; Accepted 8 January 2010 Academic Editor: Abhay R. Satoskar Copyright © 2010 K. G. Heal and A. W. Taylor-Robinson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The glycoalkaloid tomatine, derived from the wild tomato, can act as a powerful adjuvant to elicit an antigen-specific cell-mediated immune response to the circumsporozoite (CS) protein, a major pre-erythrocytic stage malaria vaccine candidate antigen. Using a defined MHC-class-I-restricted CS epitope in a Plasmodium berghei rodent model, antigen-specific cytotoxic T lymphocyte activity and IFN-γ secretion ex vivo were both significantly enhanced compared to responses detected from similarly stimulated splenocytes from naive and tomatine-saline-immunized mice. Further, through lymphocyte depletion it is demonstrated that antigen-specific IFN-γ is produced exclusively by the CD8+ T cell subset.
    [Show full text]
  • 615.954Foo3rded.Pdf
    Index Acquired immunodeficiency syndrome pinnipeds (seals, sea lions, walruses), 47ll-1 (AIDS), 451-3, 474, 475 second intermediate hosts, 471 Acromelic acids, 605 Arcobacterspp., 272-3 Acute non-bacterial gastroenteritis see Arizona spp., 344 Noroviruses Ascaris suum, 476 Adenoviruses,404 Aspergillusflavus, A. parasiticus see Aeromonas spp., 342-3 Aflatoxin Aeramonas hydrophile, 342-3 Aspergillus mycotoxins (nitropropionic acid, Aflatoxin, 586--9, 609-12 territrems, sterigmatocystin), 597--8 Aspergillusjlavus, A. parasiticus, 586 Astroviruses, 402-3 biosynthesis, 587-8 carcinogenesis in humans, 588-9 Bacillary dysentery, 359-60 ebselen, 625 Bacillus cereus gastroenteritis, 563-77, hepatitis B virus and carcinogenesis, contemporary problems, 564 588-9 historical aspects, 563--4 human foods (com, cotton seeds, peanuts, outbreaks, 57ll-1 tree nuts), 588 treatment and prevention. 577 Agaricus bisporus, 606 Bacillus cereus, 56&-75 AIDS see Acquired immunodeficiency antibodies, 574-5 syndrome characteristics, 564-5 Alcaligenes[aecalis, 343--4 chemical preservatives, 572 Allyl isothiocyanates, 694 detection, 573--4 Alternaria mycotoxins, 600 growth and survival, 572 Amanita spp. toxins (amanitins, growth temperature, 568 phallotoxins, virotoxins). 602-3 isolation, 573 ibotenic acid (lBA), 604 peR test, 574 isoxazoles, 605 prevalence in foods. 571-2 muscarine (MUS), 604-5 spore antibodies, 574-5 Amnesic shellfish poisoning (domoic acid), spores, germination, 572 676,682--4 spores, heat resistance of, 572 Pseudo-nitzschia spp., 682-3 virulence
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • Fall TNP Herbals.Pptx
    8/18/14 Introduc?on to Objecves Herbal Medicine ● Discuss history and role of psychedelic herbs Part II: Psychedelics, in medicine and illness. Legal Highs, and ● List herbs used as emerging legal and illicit Herbal Poisons drugs of abuse. ● Associate main plant and fungal families with Jason Schoneman RN, MS, AGCNS-BC representave poisonous compounds. The University of Texas at Aus?n ● Discuss clinical management of main toxic Schultes et al., 1992 compounds. Psychedelics Sacraments: spiritual tools or sacred medicine by non-Western cultures vs. Dangerous drugs of abuse vs. Research and clinical tools for mental and physical http://waynesword.palomar.edu/ww0703.htm disorders History History ● Shamanic divinaon ○ S;mulus for spirituality/religion http://orderofthesacredspiral.blogspot.com/2012/06/t- mckenna-on-psilocybin.html http://www.cosmicelk.net/Chukchidirections.htm 1 8/18/14 History History http://www.10zenmonkeys.com/2007/01/10/hallucinogenic- weapons-the-other-chemical-warfare/ http://rebloggy.com/post/love-music-hippie-psychedelic- woodstock http://fineartamerica.com/featured/misterio-profundo-pablo- amaringo.html History ● Psychotherapy ○ 20th century: un;l 1971 ● Recreaonal ○ S;mulus of U.S. cultural revolu;on http://qsciences.digi-info-broker.com http://www.uspharmacist.com/content/d/feature/c/38031/ http://en.wikipedia.org/nervous_system 2 8/18/14 Main Groups Main Groups Tryptamines LSD, Psilocybin, DMT, Ibogaine Other Ayahuasca, Fly agaric Phenethylamines MDMA, Mescaline, Myristicin Pseudo-hallucinogen Cannabis Dissociative
    [Show full text]
  • Natural and Synthetic Derivatives of the Steroidal Glycoalkaloids of Solanum Genus and Biological Activity
    Natural Products Chemistry & Research Review Article Natural and Synthetic Derivatives of the Steroidal Glycoalkaloids of Solanum Genus and Biological Activity Morillo M1, Rojas J1, Lequart V2, Lamarti A 3 , Martin P2* 1Faculty of Pharmacy and Bioanalysis, Research Institute, University of Los Andes, Mérida P.C. 5101, Venezuela; 2University Artois, UniLasalle, Unité Transformations & Agroressources – ULR7519, F-62408 Béthune, France; 3Laboratory of Plant Biotechnology, Biology Department, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco ABSTRACT Steroidal alkaloids are secondary metabolites mainly isolated from species of Solanaceae and Liliaceae families that occurs mostly as glycoalkaloids. α-chaconine, α-solanine, solamargine and solasonine are among the steroidal glycoalkaloids commonly isolated from Solanum species. A number of investigations have demonstrated that steroidal glycoalkaloids exhibit a variety of biological and pharmacological activities such as antitumor, teratogenic, antifungal, antiviral, among others. However, these are toxic to many organisms and are generally considered to be defensive allelochemicals. To date, over 200 alkaloids have been isolated from many Solanum species, all of these possess the C27 cholestane skeleton and have been divided into five structural types; solanidine, spirosolanes, solacongestidine, solanocapsine, and jurbidine. In this regard, the steroidal C27 solasodine type alkaloids are considered as significant target of synthetic derivatives and have been investigated
    [Show full text]
  • Solanum Alkaloids and Their Pharmaceutical Roles: a Review
    Journal of Analytical & Pharmaceutical Research Solanum Alkaloids and their Pharmaceutical Roles: A Review Abstract Review Article The genus Solanum is treated to be one of the hypergenus among the flowering epithets. The genus is well represented in the tropical and warmer temperate Volume 3 Issue 6 - 2016 families and is comprised of about 1500 species with at least 5000 published Solanum species are endemic to the northeastern region. 1Department of Botany, India Many Solanum species are widely used in popular medicine or as vegetables. The 2Department of Botany, Trivandrum University College, India presenceregions. About of the 20 steroidal of these alkaloid solasodine, which is potentially an important starting material for the synthesis of steroid hormones, is characteristic of *Corresponding author: Murugan K, Plant Biochemistry the genus Solanum. Soladodine, and its glocosylated forms like solamargine, and Molecular Biology Lab, Department of Botany, solosonine and other compounds of potential therapeutic values. India, Email: Keywords: Solanum; Steroidal alkaloid; Solasodine; Hypergenus; Glocosylated; Trivandrum University College, Trivandrum 695 034, Kerala, Injuries; Infections Received: | Published: October 21, 2016 December 15, 2016 Abbreviations: TGA: Total Glycoalkaloid; SGA: Steroidal range of biological activities such as antimicrobial, antirheumatics, Glycoalkaloid; SGT: Sergeant; HMG: Hydroxy Methylglutaryl; LDL: Low Density Lipoprotein; ACAT: Assistive Context Aware Further, these alkaloids are of paramount importance in drug Toolkit; HMDM: Human Monocyte Derived Macrophage; industriesanticonvulsants, as they anti-inflammatory, serve as precursors antioxidant or lead molecules and anticancer. for the synthesis of many of the steroidal drugs which have been used CE: Cholesterol Ester; CCl4: Carbon Tetrachloride; 6-OHDA: 6-hydroxydopamine; IL: Interleukin; TNF: Tumor Necrosis Factor; DPPH: Diphenyl-2-Picryl Hydrazyl; FRAP: Fluorescence treatments.
    [Show full text]
  • Brazilian Journal of Biology
    Brazilian Journal of Biology This is an Open Access artcle distributed under the terms of the Creatie Commons Attributon License ohich permits unrestricted use distributon and reproducton in any medium proiided the original oork is properly cited. Fonte: http:::ooo.scielo.br:scielo.php? script=sci_artteettpid=S1519-69842017000300506tlng=entnrm=iso. Acesso em: 16 jan. 2018. REFERÊNCIA SILVA-NETO C. M. et al. High species richness of natie pollinators in Brazilian tomato crops. Brazilian Journal of Biology São Carlos i. 77 n. 3 p. 506-513 jul.:set. 2017. Disponíiel em: <http:::ooo.scielo.br:scielo.php?script=sci_artteettpid=S1519- 69842017000300506tlng=entnrm=iso>. Acesso em: 16 jan. 2018. Epub Sep 26 2016. doi: http:::de.doi.org:10.1590:1519-6984.17515. http://dx.doi.org/10.1590/1519-6984.17515 Original Article High species richness of native pollinators in Brazilian tomato crops C. M. Silva-Netoa*, L. L. Bergaminib, M. A. S. Eliasc, G. L. Moreirac, J. M. Moraisc, B. A. R. Bergaminib and E. V. Franceschinellia aDepartamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás – UFG, Campus Samambaia, CP 131, CEP 74001-970, Goiânia, GO, Brazil bDepartamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás – UFG, Campus Samambaia, CP 131, CEP 74001-970, Goiânia, GO, Brazil cInstituto de Ciências Biológicas, Universidade de Brasília – UnB, Campus Darcy Ribeiro, Bloco E, Asa Norte, CEP 70910-900, Brasília, DF, Brazil *e-mail: [email protected] Received: October 26, 2015 – Accepted: May 4, 2016 – Distributed: August 31, 2017 (With 3 figures) Abstract Pollinators provide an essential service to natural ecosystems and agriculture.
    [Show full text]