Riqueza De Espécies E Relevância Para a Conservação
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Godbois-222-227.Pdf
222 Author’s name Bobcat Diet on an Area Managed for Northern Bobwhite Ivy A. Godbois, Joseph W. Jones Ecological Research Center, Newton, GA 39870 L. Mike Conner, Joseph W. Jones Ecological Research Center, Newton, GA 39870 Robert J. Warren, Warnell School of Forest Resources, University of Georgia, Athens, GA 30602 Abstract: We quantified bobcat (Lynx rufus) diet on a longleaf pine (Pinus palustris) dominated area managed for northern bobwhite (Colinus virginianus), hereafter quail. We sorted prey items to species when possible, but for analysis we categorized them into 1 of 5 classes: rodent, bird, deer, rabbit, and other species. Bobcat diet did not dif- fer seasonally (X2 = 17.82, P = 0.1213). Most scats (91%) contained rodent, 14% con- tained bird, 9% contained deer (Odocoileus virginianus), 6% contained rabbit (Sylvila- gus sp.), and 12% contained other. Quail remains were detected in only 2 of 135 bobcat scats examined. Because of low occurrence of quail (approximately 1.4%) in bobcat scats we suggest that bobcats are not a serious predator of quail. Key Words: bobcat, diet, Georgia, Lynx rufus Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies 57:222–227 Bobcats are opportunistic in their feeding habits, and their diet often reflects prey availability (Latham 1951). In the Southeast, bobcats prey most heavily on small mammals such as rabbits and cotton rats (Davis 1955, Beasom and Moore 1977, Miller and Speake 1978, Maehr and Brady 1986, Baker et al. 2001). In some regions, bobcats also consume deer. Deer consumption is often highest during fall- winter when there is the possibility for hunter-wounded deer to be consumed and during spring-summer when fawns are available as prey (Buttrey 1979, Story et al. -
Supplementary Table 1. References Used to Build the Dataset on Bat-Plant Interactions in the Neotropics
Supplementary Table 1. References used to build the dataset on bat-plant interactions in the Neotropics. 1. Acosta y Lara, E. 1950. Quirópteros de Uruguay. Commun. Zool. Mus. Hist. Nat. Montevideo III: 1-74. 2. Alcorn, S.M., S.E. McGregor & G. Olin. 1961. Pollination of saguaro cactus by doves, nectar-feeding bats and honey bees. Science 133: 1594-1595. 3. Alcorn, S.M., S.E. McGregor & G. Olin. 1962. Pollination requirements of the organ pipe cactus. Cactus Succ. J. Soc. Am. 34: 134-138. 4. Alonso-Mejía, A. & R.A. Medellín. 1991. Micronycteris megalotis. Mammalian Species 376: 1-6. 5. Altringham, J.D. 1998. Bats. Biology and behavior. Oxford University Press. 6. Alvarez, J., M.R. Willig, J.K. Jones, Jr. & W.D. Webster. 1991. Glossophaga soricina. Mammalian Species 379: 1-7. 7. Alverson, W.S. 1989. Quararibea (Bombacaceae): five new species from moist and wet forests of Costa Rica and Panama. Brittonia 41: 61-74. 8. Andrade, J.C.d. & A.G.d. Andrade. 1983. Pouteria psammophila var. xestophylla (Miq. & Eichl.) Baehni (Sapotaceae) no litoral do Rio de Janeiro; uma alerta de extinção. Atas Soc. Bot. Brasil 1-8. 9. Areces-Mallea, A.E. 2002. Leptocereus (A. Berger) Britton and Rose: a monographic study of a West Indian genus of Cactaceae (Cactoideae). Ph.D. Dissertation. City University of New York, New York. 10. Arias-Cóyotl, E., K.E. Stoner & A. Casas. 2006. Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated populations in La Mixteca Baja, central Mexico. Amer. J. Bot. -
Advances in Cytogenetics of Brazilian Rodents: Cytotaxonomy, Chromosome Evolution and New Karyotypic Data
COMPARATIVE A peer-reviewed open-access journal CompCytogenAdvances 11(4): 833–892 in cytogenetics (2017) of Brazilian rodents: cytotaxonomy, chromosome evolution... 833 doi: 10.3897/CompCytogen.v11i4.19925 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data Camilla Bruno Di-Nizo1, Karina Rodrigues da Silva Banci1, Yukie Sato-Kuwabara2, Maria José de J. Silva1 1 Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil 2 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP 05508-900, São Paulo, SP, Brazil Corresponding author: Maria José de J. Silva ([email protected]) Academic editor: A. Barabanov | Received 1 August 2017 | Accepted 23 October 2017 | Published 21 December 2017 http://zoobank.org/203690A5-3F53-4C78-A64F-C2EB2A34A67C Citation: Di-Nizo CB, Banci KRS, Sato-Kuwabara Y, Silva MJJ (2017) Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data. Comparative Cytogenetics 11(4): 833–892. https://doi. org/10.3897/CompCytogen.v11i4.19925 Abstract Rodents constitute one of the most diversified mammalian orders. Due to the morphological similarity in many of the groups, their taxonomy is controversial. Karyotype information proved to be an important tool for distinguishing some species because some of them are species-specific. Additionally, rodents can be an excellent model for chromosome evolution studies since many rearrangements have been described in this group.This work brings a review of cytogenetic data of Brazilian rodents, with information about diploid and fundamental numbers, polymorphisms, and geographical distribution. -
Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A
Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A. simpsoni U.Miocene Florida(US) Abra see Ochotona Abrana see Ochotona Abrocoma U.Miocene-Recent Peru A. oblativa 60 cm? U.Holocene Peru Abromys see Perognathus Abrosomys L.Eocene Asia Abrothrix U.Pleistocene-Recent Argentina A. illuteus living Mouse Lujanian-Recent Tucuman(ARG) Abudhabia U.Miocene Asia Acanthion see Hystrix A. brachyura see Hystrix brachyura Acanthomys see Acomys or Tokudaia or Rattus Acarechimys L-M.Miocene Argentina A. minutissimus Miocene Argentina Acaremys U.Oligocene-L.Miocene Argentina A. cf. Murinus Colhuehuapian Chubut(ARG) A. karaikensis Miocene? Argentina A. messor Miocene? Argentina A. minutissimus see Acarechimys minutissimus Argentina A. minutus Miocene? Argentina A. murinus Miocene? Argentina A. sp. L.Miocene Argentina A. tricarinatus Miocene? Argentina Acodon see Akodon A. angustidens see Akodon angustidens Pleistocene Brazil A. clivigenis see Akodon clivigenis Pleistocene Brazil A. internus see Akodon internus Pleistocene Argentina Acomys L.Pliocene-Recent Africa,Europe,W Asia,Crete A. cahirinus living Spiny Mouse U.Pleistocene-Recent Israel A. gaudryi U.Miocene? Greece Aconaemys see Pithanotomys A. fuscus Pliocene-Recent Argentina A. f. fossilis see Aconaemys fuscus Pliocene Argentina Acondemys see Pithanotomys Acritoparamys U.Paleocene-M.Eocene W USA,Asia A. atavus see Paramys atavus A. atwateri Wasatchian W USA A. cf. Francesi Clarkforkian Wyoming(US) A. francesi(francesci) Wasatchian-Bridgerian Wyoming(US) A. wyomingensis Bridgerian Wyoming(US) Acrorhizomys see Clethrionomys Actenomys L.Pliocene-L.Pleistocene Argentina A. maximus Pliocene Argentina Adelomyarion U.Oligocene France A. vireti U.Oligocene France Adelomys U.Eocene France A. -
Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits
RESEARCH ARTICLE Extensive Chromosomal Reorganization in the Evolution of New World Muroid Rodents (Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits Adenilson Leão Pereira1, Stella Miranda Malcher1, Cleusa Yoshiko Nagamachi1,2, Patricia Caroline Mary O’Brien3, Malcolm Andrew Ferguson-Smith3, Ana Cristina Mendes- Oliveira4, Julio Cesar Pieczarka1,2* 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil, 2 CNPq Researcher, Brasília, Brasil, 3 Cambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Laboratório de Zoologia e Ecologia de Vertebrados, ICB, Universidade Federal do Pará, Belém, Pará, Brasil * [email protected] OPEN ACCESS Citation: Pereira AL, Malcher SM, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Mendes-Oliveira Abstract AC, et al. (2016) Extensive Chromosomal Reorganization in the Evolution of New World Muroid Sigmodontinae rodents show great diversity and complexity in morphology and ecology. Rodents (Cricetidae, Sigmodontinae): Searching for This diversity is accompanied by extensive chromosome variation challenging attempts to Ancestral Phylogenetic Traits. PLoS ONE 11(1): reconstruct their ancestral genome. The species Hylaeamys megacephalus–HME (Oryzo- e0146179. doi:10.1371/journal.pone.0146179 myini, 2n = 54), Necromys lasiurus—NLA (Akodontini, 2n = 34) and Akodon sp.–ASP (Ako- Editor: Riccardo Castiglia, Universita degli Studi di dontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the Roma La Sapienza, ITALY rearrangements that are responsible for such differences. In this study we analyzed these Received: June 5, 2015 changes using whole chromosome probes of HME in cross-species painting of NLA and Accepted: December 13, 2015 ASP to construct chromosome homology maps that reveal the rearrangements between Published: January 22, 2016 species. -
Rodentia: Cricetidae: Sigmodontinae) Reveladas Por Abordagens
Camilla Bruno Di-Nizo Diversificação e caracterização de espécies em dois gêneros da tribo Oryzomyini (Rodentia: Cricetidae: Sigmodontinae) reveladas por abordagens moleculares e citogenéticas Diversification and species limits in two genera of the tribe Oryzomyini (Rodentia: Cricetidae: Sigmodontinae) revealed by combined molecular and cytogenetic approaches Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências Biológicas, na Área de Biologia/Genética. Orientadora: Dra. Maria José de Jesus Silva São Paulo 2018 Chapter 1 Introduction 1. Integrative Taxonomy Delimiting species boundaries is the core in many subjects of evolutionary biology (Sites and Marshall, 2004). Associating scientific names unequivocally with species is essential for a reliable reference system. However, reaching a scientific consensus on the concept of species is one of the major challenges, since there are more than 20 concepts described (de Queiroz, 2005; 2007; Padial et al., 2010). An unified concept of species, based on the common fundamental idea among all the concepts, was proposed by de Queiroz (1998), in which species are lineages composed of metapopulations that evolve separately. Currently, several methods have been used in order to delimit and / or describe species, since any character can be used for this purpose, as long as they are inheritable and independent (Schlick-Stein et al., 2010). Traditionally, the primary identification of species is morphological. The advantage is that morphology is applicable to living, preserved or fossil specimens (Padial et al., 2010). However, delimitation of taxa based only on morphology has some limitations: (i) it can hide lineages in which quantitative and qualitative morphological characteristics overlap, (ii) lineages that differ only in ecological or behavioral characteristics, (iii) species that exhibit large phenotypic plasticity or (iv) cryptic species (Bickford et al., 2007; Padial et al., 2010). -
Description of a New Species Fuhrmannetta Jurubatensis N. Sp
Journal of Helminthology Description of a new species Fuhrmannetta jurubatensis n. sp. (Cestoda, Davaineidae) cambridge.org/jhl from Cerradomys goytaca Tavares, Pessôa & Gonçalves, 2011 (Rodentia, Cricetidae) Research Paper 1 1 2 Cite this article: Oliveira LC, Oliveira FCR, L.C. Oliveira , F.C.R. Oliveira and N.B. Ederli Ederli NB. Description of a new species 1 Fuhrmannetta jurubatensis n. sp. (Cestoda, Laboratório de Sanidade Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Davaineidae) from Cerradomys goytaca Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Brazil, 28013-602 and Tavares, Pessôa & Gonçalves, 2011 (Rodentia, 2Instituto do Noroeste Fluminense de Educação Superior (INFES), Universidade Federal Fluminense (UFF), Cricetidae). Journal of Helminthology https:// Av. João Jasbick, s/n, Aeroporto, Santo Antônio de Pádua, RJ, Brazil, 28.470-000 doi.org/10.1017/S0022149X17000773 Received: 5 April 2017 Abstract Accepted: 31 July 2017 A new species of cestode of the genus Fuhrmannetta found in the small intestine of Author for correspondence: Cerradomys goytaca is described herein, named Fuhrmannetta jurubatensis n. sp. Rodents N.B. Ederli, E-mail: [email protected] were collected from the sand-plains areas of the northern coast of the State of Rio de Janeiro, Brazil. Morphological analyses were conducted by light and scanning electron micros- copy. From the morphological analysis and a comparison with the known species of the genus, F. jurubatensis n. sp. can be identified by a combination of morphological and morpho- metrical characteristics, including strobila length, number and length of rostellar hooks, pos- ition of the genital pore and the number of eggs per uterine capsule. -
Solanum Alkaloids and Their Pharmaceutical Roles: a Review
Journal of Analytical & Pharmaceutical Research Solanum Alkaloids and their Pharmaceutical Roles: A Review Abstract Review Article The genus Solanum is treated to be one of the hypergenus among the flowering epithets. The genus is well represented in the tropical and warmer temperate Volume 3 Issue 6 - 2016 families and is comprised of about 1500 species with at least 5000 published Solanum species are endemic to the northeastern region. 1Department of Botany, India Many Solanum species are widely used in popular medicine or as vegetables. The 2Department of Botany, Trivandrum University College, India presenceregions. About of the 20 steroidal of these alkaloid solasodine, which is potentially an important starting material for the synthesis of steroid hormones, is characteristic of *Corresponding author: Murugan K, Plant Biochemistry the genus Solanum. Soladodine, and its glocosylated forms like solamargine, and Molecular Biology Lab, Department of Botany, solosonine and other compounds of potential therapeutic values. India, Email: Keywords: Solanum; Steroidal alkaloid; Solasodine; Hypergenus; Glocosylated; Trivandrum University College, Trivandrum 695 034, Kerala, Injuries; Infections Received: | Published: October 21, 2016 December 15, 2016 Abbreviations: TGA: Total Glycoalkaloid; SGA: Steroidal range of biological activities such as antimicrobial, antirheumatics, Glycoalkaloid; SGT: Sergeant; HMG: Hydroxy Methylglutaryl; LDL: Low Density Lipoprotein; ACAT: Assistive Context Aware Further, these alkaloids are of paramount importance in drug Toolkit; HMDM: Human Monocyte Derived Macrophage; industriesanticonvulsants, as they anti-inflammatory, serve as precursors antioxidant or lead molecules and anticancer. for the synthesis of many of the steroidal drugs which have been used CE: Cholesterol Ester; CCl4: Carbon Tetrachloride; 6-OHDA: 6-hydroxydopamine; IL: Interleukin; TNF: Tumor Necrosis Factor; DPPH: Diphenyl-2-Picryl Hydrazyl; FRAP: Fluorescence treatments. -
Brazilian Journal of Biology
Brazilian Journal of Biology This is an Open Access artcle distributed under the terms of the Creatie Commons Attributon License ohich permits unrestricted use distributon and reproducton in any medium proiided the original oork is properly cited. Fonte: http:::ooo.scielo.br:scielo.php? script=sci_artteettpid=S1519-69842017000300506tlng=entnrm=iso. Acesso em: 16 jan. 2018. REFERÊNCIA SILVA-NETO C. M. et al. High species richness of natie pollinators in Brazilian tomato crops. Brazilian Journal of Biology São Carlos i. 77 n. 3 p. 506-513 jul.:set. 2017. Disponíiel em: <http:::ooo.scielo.br:scielo.php?script=sci_artteettpid=S1519- 69842017000300506tlng=entnrm=iso>. Acesso em: 16 jan. 2018. Epub Sep 26 2016. doi: http:::de.doi.org:10.1590:1519-6984.17515. http://dx.doi.org/10.1590/1519-6984.17515 Original Article High species richness of native pollinators in Brazilian tomato crops C. M. Silva-Netoa*, L. L. Bergaminib, M. A. S. Eliasc, G. L. Moreirac, J. M. Moraisc, B. A. R. Bergaminib and E. V. Franceschinellia aDepartamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás – UFG, Campus Samambaia, CP 131, CEP 74001-970, Goiânia, GO, Brazil bDepartamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás – UFG, Campus Samambaia, CP 131, CEP 74001-970, Goiânia, GO, Brazil cInstituto de Ciências Biológicas, Universidade de Brasília – UnB, Campus Darcy Ribeiro, Bloco E, Asa Norte, CEP 70910-900, Brasília, DF, Brazil *e-mail: [email protected] Received: October 26, 2015 – Accepted: May 4, 2016 – Distributed: August 31, 2017 (With 3 figures) Abstract Pollinators provide an essential service to natural ecosystems and agriculture. -
Genetic Diversity Between and Within the Arenavirus Species Indigenous to Western Venezuela ☆
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 378 (2008) 205–213 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Genetic diversity between and within the arenavirus species indigenous to western Venezuela ☆ Charles F. Fulhorst a,⁎, Maria N.B. Cajimat b, Mary Louise Milazzo a, Hector Paredes c, Nuris M.C. de Manzione c, Rosa A. Salas d,1, Pierre E. Rollin e, Thomas G. Ksiazek e a University of Texas Medical Branch, Department of Pathology, 301 University Boulevard, Galveston, Texas 77555-0609, USA b University of Texas Medical Branch, Graduate School of Biomedical Sciences, Microbiology and Immunology Graduate Program, 301 University Boulevard, Galveston, Texas 77555-1019, USA c Centro de Investigaciones de Virosis Hemorrágicas y Enfermedades Transmisibles, Sector La Colonia Parte Alta, Via Escuela Granja, Quinta CIVIHET, Guanare, Estado Portuguesa, Venezuela d Instituto Nacional de Higiene “Rafael Rangel”, Ciudad Universitaria, Los Chaguaramos, Caracas, Venezuela e Centers for Disease Control and Prevention, Special Pathogens Branch, Atlanta, Georgia 30333, USA article info abstract Article history: The results of analyses of Z, RNA-dependent RNA polymerase, glycoprotein precursor, and nucleocapsid protein Received 4 October 2007 gene sequence data suggested that Guanarito virus was the most common cause of Venezuelan hemorrhagic Returned to author for revision fever in a 7-year period in the 1990s and that the evolution of Pirital virus in association with Sigmodon 27 March 2008 alstoni (Alston's cotton rat) has occurred at a significantly higher rate than the evolution of Guanarito virus in Accepted 13 May 2008 association with Zygodontomys brevicauda (short-tailed cane mouse) on the plains of western Venezuela. -
A New Food Product from Solanum Lycocarpum [1] Dhuruva Warshini
www.foodagrispectrum.org FASJ010410 A new food product from solanum lycocarpum [1] Dhuruva warshini. T* [1] Department of agricultural engineering Dhanalakshmi srinivasan institute of research and technology, siruvachur -13 Tamilnadu, India. [1] [email protected]* Abstract— The wolf apple is otherwise known as fruit of wolf. It is grown in small brushes or small branched tree. It is perennial. It belongs to the family of tomato, but it is wild species. Now-a-days most of the people are suffer by diabetes, heart problem, hypertension, hypercholestrolemia, blood pressure,obesity due to high cholesterol in our body.The overall raised cholesterol is estimated to cause 2.6 million death and 29.7 million people cannot lead their normal life.Not only it control cholesterol but also it contains many medicine benefits,like resist slash and burn.The main advantage it is grown in dry and arid conditions.So it is grown where the cultivation is less due to irrigation. Index Terms— wolf apple; butter; diabetes; obesity; cholesterol The agar agar is completely dissolving in hot water and add to three vessels. Stir the mixture well. I. INTRODUCTION Keep the vessels on the stove and boil at the The solanum lycocarpum is known as wolf medium flame between 70-75°c.Turn off the stove, apple, because maned wolf’s feed these apples to if the mixture gets well cooked. Finally add little cure its health problems. It is perennial plant, but in amount of organic food red color which is extract rainy season the flowering intensity is high. The from beetroot. -
Morphometric Variations of Laelapine Mite
Morphometric variations of laelapine mite (Acari: Mesostigmata) populations infesting small mammals (Mammalia) in Brazil Martins-Hatano, F.a*, Gettinger, D.b, Manhães, ML.c and Bergallo, HG.d aUniversidade Federal Rural da Amazônia – UFRA, Av. Presidente Tancredo Neves, 2501, Montese, CEP 66077-901, Belém, PA, Brazil bHarold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln – UNL, Lincoln, NE, USA cLaboratório de Ixodides, Fundação Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, RJ, Brazil dDepartamento de Ecologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brazil *e-mail: [email protected] Received June 13, 2011 – Accepted October 4, 2011 – Distributed August 31, 2012 (With 4 figures) Abstract The goal of this study was to evaluate the morphometric variation of laelapine populations (Acari, Mesostigmata) associated with neotropical oryzomyine rodents at different geographic localities in Brazil. Three nominal mite species were selected for study, all infesting the pelage of small mammals at different localities in Rio de Janeiro, Espírito Santo, Bahia, and the Federal District, Brazil. To analyse morphometric characteristics, thirty-seven morphological characters distributed across the whole body of each specimen were measured. We use the Analysis of Principal Components, extracting the three first axes and projecting each mite in these axes. Major species level changes in the taxonomy of the host mammals allows an independent examination of morphometric variation of mites infesting a set of distinctly different host species at different geographic localities. Gigantolaelaps vitzthumi and Laelaps differens are associated with oryzomyine rodents of the genus Cerradomys, and consistently showed a tendency to cluster by host phylogeny.