Local Ecotype Seed Species Available
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bwsr Featured Plant Minnesota's Milkweeds
BWSR FEATURED PLANT MINNESOTA’S MILKWEEDS Publication Date: 6‐1‐13 Milkweeds play a key role in wetlands, prairies, savannas and forests in Minnesota. The genus (Asclepias) is particularly important as a nectar and larval food source for a wide range of insect species. The best known example is the monarch butterfly whose larvae appear to feed only on milkweeds. Milkweeds have a unique pollination mechanism where pollen grains are enclosed in waxy sacs called “pollina” that attach to the legs of butterflies, moths, bees, ants and wasps and are then deposited in another milkweed flower if they step into a specialized anther opening. Most milkweeds are toxic to vertebrate herbivores due to cardiac glycosides that are in their plant cells. In addition to supporting insect populations, Butterfly Milkweed milkweeds also provide other landscape benefits due to their extensive root systems (sometimes deep roots, sometimes horizontal) that Photos by Dave Hanson decrease compaction, add organic material to the soil and improve unless otherwise stated water infiltration. Common milkweed is probably the best known milkweed species as it is found in all counties of the state and was included on some county prohibited noxious weed lists. The species was considered a common agricultural weed as its extensive root network made it difficult to remove from agricultural fields with cultivators. Now the species is effectively removed from genetically modified corn and soybean fields that are sprayed with herbicide. This practice has contributed to significant declines in milkweed species, with an estimated 58% decline in the Midwest between 1999 and 2010 and a corresponding 81% decline in monarch butterfly production (Pleasants & Oberhauser, 2013). -
Asclepias Purpurascens L. Purple Milkweed
Asclepias purpurascens L. purple milkweed State Distribution Photo by Michael R. Penskar Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Legal status: State threatened one or two additional umbels are present in the upper leaf axils. The individual flowers, which are usually Global and state rank: G4G5/S3 from 13-17 mm long, bear reflexed, purplish corolla lobes that are glabrous (smooth), pale purple hoods Family: Asclepiadaceae (milkweed family) (forming the corona) 5-7 mm long, and incurved flat horns that are shorter than the hood. The reproductive Total range: Asclepias purpurascens is found parts (filaments, anthers, and style) are fused into a principally in eastern North America, occurring from structure called the gynostegium. The fruit is a smooth New Hampshire south to Virginia and ranging west to follicle (a pod) filled with seeds attached to downy hairs Wisconsin, Iowa, Kansas, and Oklahoma. (coma) that aid in wind dispersal. State distribution: Purple milkweed is known from Asclepias purpurascens is often difficult to distinguish more than 60 occurrences in southern Michigan; thirty- from the very similar looking common milkweed, four of these records are derived from collections made Asclepias syriaca, which despite its unfortunate prior to 1930. This species is concentrated primarily Latin epithet is also a native milkweed. Overall, the in southeastern and southwestern Lower Michigan, leaves of A. purpurascens are more acute and less where it is known from 19 counties, with most counties predominately pinnately–veined (i.e. more strongly tallying only a single occurrence. Counties with the net-veined) than A. -
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species. -
Hybridization Between Asclepias Purpurascens and Asclepias Syriaca (Apocynaceae): a Cause for Concern?1
Journal of the Torrey Botanical Society 146(4): 278–290, 2019. Hybridization between Asclepias purpurascens and Asclepias syriaca (Apocynaceae): A cause for concern?1 Steven B. Broyles2,4 and Geordie Elkins3 2Biological Sciences Department, SUNY Cortland, Cortland, NY 13045 and 3Highstead, 127 Lonetown Road, Redding, CT 06896 Abstract. Rare plant species can be at risk of hybridization, reduced genetic variation, and genetic assimilation when a numerically abundant congener co-occurs in or invades their habitat. We investigated hybridization between a species in decline, Asclepias purpurascens L., and its common and widespread congener, Asclepias syriaca L. A total of 40 morphological traits were measured on 60 flowering plants from a mixed population in Connecticut. Cluster and principal component analyses identified two distinct clusters of parental species taxa and a third cluster representing putative hybrids. Although leaf traits of putative hybrids were more similar to A. syriaca, floral traits and the morphological space on the principal component analysis were more similar to A. purpurascens. This suggests that the population contains a mix of F1 and advanced generation hybrids with the possibility of introgression into A. purpurascens. Although putative hybrids are intermediate for most traits, pollen counts reveal reduced fertility of presumed hybrid that might influence mating behaviors and increase the likelihood of backcrossing with A. purpurascens. We suggest a combination of morphological traits that better identify the two parental species as well as hybrids in the field. Conservationists should consider options of managing A. syriaca where A. purpurascens needs protection from competition to prevent genetic assimilation of the latter. Key words: Asclepias, conservation, hybridization Angiosperms abound with natural and anthro- 2015). -
Open Myers THESIS.Pdf
The Pennsylvania State University The Graduate School School of Science, Engineering, and Technology IMPACT OF OZONE ON MILKWEED (ASCLEPIAS) SPECIES A Thesis in Environmental Pollution Control by Abigail C. Myers 2016 Abigail C. Myers Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2016 The thesis of Abigail C. Myers was reviewed and approved* by the following: Dennis R. Decoteau Professor of Horticulture and Plant Ecosystem Health Thesis Advisor Donald D. Davis Professor of Plant Pathology and Environmental Microbiology Richard Marini Professor of Horticulture Shirley Clark Associate Professor of Environmental Engineering Graduate Program Coordinator, Environmental Engineering and Environmental Pollution Control *Signatures are on file in the Graduate School ii Abstract Tropospheric (or ground level) ozone in ambient concentrations can damage vegetation and interfere with the human respiratory system. Plants as bioindicators of ozone are commonly used to detect phytotoxic levels of tropospheric ozone where physical/chemical/electrical monitoring equipment cannot be utilized due to expense, electrical needs, or availability of instruments. Asclepias syriaca (Common Milkweed) has been effectively used as a bioindicator for ozone. Visual ozone injury on Common Milkweed is characterized as purple stippling of the upper surface of older leaves as the season progresses, the purple coloration of the upper leaf surface may encompass most of the leaf surface. While sensitivity to ozone has been documented on Common Milkweed, less is known about the ozone sensitivity of other Asclepias species and little is known regarding the concentration dose response of Common Milkweed to ozone and timing of visual symptoms. Of the Asclepias species evaluated Tropical Milkweed (A. -
Milkweed and Monarchs
OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE MILKWEEDS AND MONARCHS Acknowledgments Table of Contents We thank Dr. David Horn, past president of the Ohio Lepidopterists, 03 MONARCH LIFE CYCLE for his thoughtful review of this publication. Our appreciation goes 04 MONARCH MIGRATION to the Ohio Lepidopterists, and Monarch Watch. These organizations work tirelessly to promote the conservation of butterflies and moths. 05 PROBLEMS & DECLINE COVER PHOTO BY KELLY NELSON 06 MILKWEEDS 07 OTHER MILKWEED SPECIALISTS 08 MONARCH NURSERY GARDEN Introduction 09 FIVE EXCELLENT MILKWEEDS Text and photos by Jim McCormac, Ohio Division of Wildlife, unless otherwise stated. 10 SUPERB MONARCH NECTAR SOURCES The Monarch butterfly (Danaus plexippus) is one of North Amer- ica’s most iconic insects. The gorgeous golden-brown and black but- terfly is probably the most celebrated insect on the continent, and the migration of the eastern population is conspicuous and spectacular. Southbound Monarchs can appear anywhere, even in highly urban- ized locales, and the butterflies often use backyard gardens as way sta- tions. Occasionally a resting swarm of hundreds or even thousands of butterflies is encountered. The spectacle of trees dripping with living leaves of butterflies is unlikely to be forgotten. PHOTO BY CHRIS FROST A Pictorial Journey From Caterpillar to Chrysalis to Butterfly PHOTOS BY STEVEN RUSSEL SMITH Monarch Butterfly Life Cycle Like all species in the order Lepidoptera (moths and butterflies), soon hatch. The caterpillars begin eating the milkweed foliage, and Monarchs engage in complete metamorphosis. This term indicates grow rapidly. The growth process involves five molts where the cater- that there are four parts to the life cycle: egg, caterpillar, pupa, and pillar sheds its skin and emerges as a larger animal. -
Native Plants & Pollinators
Native Plants & Pollinators What is a “Native” plant? A plant that is a part of the balance of nature that has developed over hundreds or thousands of years in a particular region or ecosystem. What is Ecotype? “Ecotype” refers to a genetically unique population of plants adapted to a local environment. This matters when it comes to foliage, flowering, seed set, seed germination and overall plant performance. What is Nectar? Nectar is a sweet liquid secreted by plants to attract pollinators. It is an important food source for butterflies, bees and hummingbirds. What is Pollen? Pollen carries cells which enable fertilization of plants, thus enabling the plant to reproduce. Examples of Pollinators: Bees, butterflies, beetles, flies, as well as some birds and bats are pollinators. About 12% of the world’s flowering plants are wind-pollinated, including grasses, cereal crops, and many trees. Cross-pollination Self-pollination Why is Pollination So Important? Pollination is mutually beneficial to plants AND to pollinators. Pollination results in the production of seeds and is necessary for many plants to reproduce. Why is Pollination So Important? (cont’d) Pollinators receive nectar and/or pollen rewards from the flowers they visit. Sugary nectar provides pollinators with carbohydrates, while pollen offers proteins, fats, vitamins, minerals, and necessary phytochemicals. Why Do Humans Need Pollinators? Pollinators are necessary for three- quarters of our major food crops. Without pollinators, our diets would be severely limited, and it would be more difficult to acquire the variety of vitamins and minerals we need to stay healthy. Go Native! Add Native Plants Pollinators have evolved with native plants, which often need less water than ornamentals. -
Biotic Inventory and Analysis of the Kettle Moraine State Forest a Baseline Inventory and Analysis of Natural Communities, Rare Plants, and Animals
Biotic Inventory and Analysis of the Kettle Moraine State Forest A Baseline Inventory and Analysis of Natural Communities, Rare Plants, and Animals June 2010 Natural Heritage Inventory Program Bureau of Endangered Resources Department of Natural Resources P.O. Box 7921 PUBL ER-821 2010 Kettle Moraine State Forest - 1 - Cover Photos (Clockwise from top left): Oak Woodland at Kettle Moraine Oak Opening SNA. Photo by Drew Feldkirchner, WDNR; prairie milkweed (Asclepias sullivantii). Photo by Ryan O’Connor, WDNR; Ephemeral Pond on the KMSF. Photo by Ryan O’Connor, WDNR; Northern Ribbon Snake (Thamnophis sauritus). Ohio DNR. Copies of this report can be obtained by writing to the Bureau of Endangered Resources at the address on the front cover. This publication is available in alternative format (large print, Braille, audio tape, etc) upon request. Please call (608-266-7012) for more information. The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. Kettle Moraine State Forest - 2 - Biotic Inventory and Analysis of the Kettle Moraine State Forest A Baseline Inventory and Analysis of Natural Communities, Rare Plants, and Animals Primary Authors: Terrell Hyde, Christina Isenring, Ryan O’Connor, Amy Staffen, Richard Staffen Natural Heritage Inventory Program Bureau of Endangered Resources Department of Natural Resources P.O. -
CENTRAL Oklahoma Plant List for Monarch Butterflies Why Monarchs? Why Oklahoma? Take Action!
CENTRAL Oklahoma Plant List for Monarch Butterflies Why Monarchs? Why Oklahoma? Take Action! In the last decade, due to habitat loss and other Oklahoma is centrally located in the From Enid to Durant and Elk City to Tahlequah, factors, monarch butterfly populations have monarch migration flyway! now is the time (before it's too late) for us Okies to plummeted at an alarming rate. And they continue get our hands dirty and help the monarchs! to decline. Each spring, monarchs migrate north through Oklahoma and the Great Plains to Canada in Action 1 - Show your support by taking the pledge Since 1996, monarch colonies have declined 90%. search of milkweed plants on which to lay their to save the monarchs online at If all monarchs from the population high in the eggs. In the fall, they fly back through Oklahoma okiesformonarchs.org. mid-1990s were grouped onto football fields, the and the Great Plains south to Mexico to spend the area they covered has been reduced from 39 fields winter. Action 2 - Provide monarchs with habitat by to an area barely larger than one. planting milkweed and nectar plants on your In order for Monarchs to thrive, we Okies property. Did you know that Oklahoma has 26 Additionally, monarchs and other butterflies help must provide ample food, shelter and breeding different kinds of native milkweed plants and more polinate our crops. It is important to restore and grounds during both their migrations. than 79 monarch-friendly, native nectar plants? protect their habitat so we can continue to grow There's plenty to choose from! We made it easy our food. -
Milkweeds and Monarchs Submitted by Faye Mahaffey OSUE Brown County Master Gardener Volunteer
OHIO STATE UNIVERSITY EXTENSION Milkweeds and Monarchs Submitted by Faye Mahaffey OSUE Brown County Master Gardener Volunteer On a recent visit to the Chaparral Prairie (close to West Union) I noticed some milkweed pods spread wide open so that seeds could start dispersing in the wind. There were lots of insects flying around, but not many butterflies. Most of us have heard about the decline in Monarch butterflies. Programs are being developed nation-wide to help create “Milkweed Communities” that also contain other beneficial plants such as grasses and flowers that will hopefully increase the number of Monarch Butterflies. The Monarch butterfly, Danaus plexippus, is unique in the insect world for its annual migration. Monarchs that breed in eastern North America migrate up to 2,500 miles to wintering sites in Mexico. Monarchs that breed in western North America migrate to the California coast for the winter. The Monarch’s wingspan is about 3.5 to 4 inches. The average Monarch weighs 500 mg, about the same as a paperclip. The Monarch lives for only 2-6 weeks during the breeding season. During the wintering season, Monarchs can live up to 8 months. Adult Monarch butterflies eat nectar. They are generalists and can feed from a variety of different kinds of flowers. Monarch caterpillars are specialists and eat only milkweed. The Ohio Department of Natural Resources Division of Wildlife’s new Publication 5474 (0115), Milkweeds & Monarchs, provides excellent information about five of the native Ohio milkweeds known to host monarchs. Remember that Monarch butterflies deposit eggs on milkweed plants, which then provide nutrition for the caterpillar phase of the butterfly’s life cycle. -
Pollinator Plants of the Central United States: Native Milkweeds Scape Between 1999 and 2010, with a Corresponding 81% De- and Garden Pests
Pollinator Plants of the Central United States Native Milkweeds (Asclepias spp.) June 2013 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements Lead Author Brianna Borders (The Xerces Society) Co-Authors Allen Casey (USDA-NRCS Missouri), John M. Row and Rich Wynia (USDA-NRCS Kansas), Randy King and Alayna Jacobs (USDA-NRCS Arkansas), Chip Taylor (Mon- arch Watch), Eric Mader (The Xerces Society) Editing and layout Hailey Walls and Kaitlyn Rich (The Xerces Society) Photographs We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Butterfly milkweed (Asclepias tuberosa) with black and gold bumble bee (Bombus auricomus). Sarah Foltz Jordan, The Xerces Society Cover bottom left: Monarch caterpillar Danaus( plexippus). William M. Ciesla, Forest Health Management International, Bugwood.org Cover bottom right: Green antelopehorn milkweed (Asclepias viridis). Marion Doss. Map Credits Special thanks to the USDA-NRCS East Remote Sensing Laboratory in conjunction with the National Plant Data Team for producing the species range maps. Data sources used were the USDA PLANTS database and ESRI Spatial Data (2006). Funding The Xerces Society’s milkweed conservation work is supported by a national USDA- NRCS Conservation Innovation Grant, The Hind Foundation, SeaWorld & Busch Gardens Conservation Fund, Disney Worldwide Conservation Fund, The Elizabeth Ordway Dunn Foundation, The William H. and Mattie Wattis Harris Foundation, the Monarch Joint Venture, Turner Foundation Inc., The McCune Charitable Foundation, and Xerces Society members. The Xerces Society for Invertebrate Conservation 628 NE Broadway Suite 200, Portland, OR 97232 855-232-6639 www.xerces.org The Xerces Society is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat.