Agranulocytic Angina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digitalcommons@UNMC Granulocytopenia
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1936 Granulocytopenia Howard E. Mitchell University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Mitchell, Howard E., "Granulocytopenia" (1936). MD Theses. 457. https://digitalcommons.unmc.edu/mdtheses/457 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. G PA~lULOCYTOPENI A SENIOR THESIS By Howard E. Mitchell April 17, 1936 TABLE OF CONT'ENTS Introduction Definition • · 1 History . • • • 1 Nomenclature • • • • • 4 ClassificBtion • • • • 6 Physiology • • • • .10 Etiology • • 22 Geographic Distribution • 23 Age, Sex, and R9ce • • ·• 23 Occupation • .. • • • • .. • 23 Ba.cteria • • • • .. 24 Glandu18.r Dysfunction • • • 27 Radiation • • • • 28 Allergy • • • 28 Chemotactic and Maturation Factors • • 28 Chemicals • • • • • 30 Pathology • • • • • 36 Symptoms • • • • • • • 43 DiEtgnosis • • • • • .. • • • • • .. • 4'7 Prognosis 48 '" • • • • • • • • • • • • Treatment • • • • • • • • 49 Non"'specific Therapy • • • • .. 50 Transfusion • • • • .. 51 X-Ray • • • • • • • • • 52 Liver ·Extract • • • • • • • 53 Nucleotides • • • • • • • • • • • 53 General Ca.re • • • • • • • • 57 Conclusion • • • • • • • • • 58 480805 INTHODUCTION Although t~ere is reference in literature of the Nineteenth Century to syndromes similating the disease (granulocytopenia) 9.8 W(~ know it todes, it "vas not un til the year 1922 that Schultz 8ctually described his C8se as a disease entity and by so doing, stimulated the interest of tne medical profession to further in vestigation. -
Chediak Higashi Syndrome Masquerading As Acute Leukemia / Storage Disorder - a Rare Case Report
International Journal of Research in Medical Sciences Asif Baig M et al. Int J Res Med Sci. 2015 Jul;3(7):1785-1787 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20150271 Case Report Chediak Higashi Syndrome masquerading as acute leukemia / storage disorder - A rare case report Mirza Asif Baig1,*, Anil Sirasgi2 1Former Asst. professor, BLDUs Shri B.M. Patil Medical College, Bijapure, Karnataka, India 2Associate professor, ESI Medical College, Gulbarga, Karnataka, India Received: 19 April 2015 Revised: 09 May 2015 Accepted: 23 May 2015 *Correspondence: Dr. Mirza Asif Baig, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Chediak higashi Syndrome (CHS) is a rare autosomal recessive multisystem disorder with a defect in granule morphogenesis with giant lysosomes in leucocyte and other cells. CHS is a rare disease, approximately 200 cases have been reported so far. It was described in detail by Chediak in 1952 and Higashi in 1954. 1½ year old male child presented with multiple hypopigment patches on lower extremities, light colored hair, Hepatosplenomegaly and generalised Lymphadenopathy. PBS shows giant prominent liliac to purple granules in neutrophils, band forms, few lymphocytes and monocytes. Bone marrow is hypercellular showing giant prominent gray blue to purple heterogeneous granules often multiple seen in many myeloid precursors, Neutrophils, few lymphocytes and monocytes. -
Clozapine, Agranulocytosis, and Benign Ethnic Neutropenia
EDITORIAL 545 Postgrad Med J: first published as 10.1136/pgmj.2004.031641 on 2 September 2005. Downloaded from Pharmacology and toxicology ethnic groups in the Middle East, ....................................................................................... including Yemenite Jews and Jordanians, have BEN.12 13 BEN has only been reported in ethnic groups that have Clozapine, agranulocytosis, and tanned or dark skin.13 Subjects with BEN do not show increased incidence of benign ethnic neutropenia infections, and their response to infec- tions is similar to those without BEN.13 S Rajagopal ................................................................................... CLINICAL IMPLICATIONS In the United Kingdom and Ireland, the Current knowledge and clinical implications Clozaril patient monitoring service (CPMS) supervises the prescribing of clozapine and the haematological test- lozapine is an atypical antipsycho- agranulocytosis, is more common in ing (Clozaril is the brand name of tic that is effective in treatment black people.6 A white cell count spike clozapine). The CPMS uses a lower cut resistant schizophrenia.1 The of 15% or more above the immediately C off point for patients with BEN than for National Institute for Health and preceding measurement may predict the general population (table 1). A Clinical Excellence (NICE) guidelines agranulocytosis within the next ‘‘green’’ alert indicates satisfactory for schizophrenia specify that ‘‘in indi- 75 days.7 However, as these differences count, an ‘‘amber’’ alert requires a viduals with evidence of treatment between the risk factors for agranulocy- repeat FBC test while clozapine can be resistant schizophrenia, clozapine tosis and neutropenia have been extra- should be introduced at the earliest polated primarily from epidemiological continued, and a ‘‘red’’ alert warrants opportunity’’.2 studies, they may be subject to change immediate cessation of clozapine. -
Severe Agranulocytosis in Two Patients with Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms
Acta Derm Venereol 2016; 96: 842–843 SHORT COMMUNICATION Severe Agranulocytosis in Two Patients with Drug-induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms Miyuki Kato, Yoko Kano*, Yohei Sato and Tetsuo Shiohara Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa Mitaka, Tokyo 181-8611, Japan. *E-mail: [email protected] Accepted Mar 24, 2016; Epub ahead of print Mar 30, 2016 Drug-induced hypersensitivity syndrome/drug reac- No evidence was seen of lymphoma or other haematological tion with eosinophilia and systemic symptoms (DIHS/ malignancies. Granulocyte-colony stimulating factor (G-CSF) DRESS) is a life-threatening adverse reaction characteri- and intravenous immunoglobulin at 5 g/day were administered for 5 days. As high-grade fever continued, antibiotics were zed by skin rashes, fever, leukocytosis with eosinophilia started. During the appearance of agranulocytosis, atypical and/or atypical lymphocytosis, lymph node enlargement, lymphocytosis (2–11%) was detected. On day 24 after onset, and liver and/or renal dysfunctions (1, 2). A wide variety leucocyte count was normalized, but liver dysfunction ap- of other involvements have also been reported, including peared (aspartate aminotransferase (AST) 276 IU/l (normal limbic encephalitis, myocarditis, and gastrointestinal < 33 IU/l); alanine aminotransferase (ALT) 159 IU/l (normal < 30 IU/l)). Renal function was also exacerbated (BUN 86.6 disease, developing during the course of the disease mg/dl; Cr 2.8 mg/dl). Seven days later, leucocytes overshot (3–5). It has been demonstrated that human herpesvirus to 21.3 × 109/l (neutrophil 81.0%; eosinophil 0.5%; monocyte 6 (HHV-6), Epstein-Barr virus (EBV) and cytomegalo- 8%; lymphocyte 10%; atypical lymphocyte 0.5%). -
Fatal Cerebral Hemorrhage Revealing Acute Lymphoblastic Leukemia with Leukostasis
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-2882 Fatal cerebral hemorrhage revealing acute lymphoblastic leukemia with leukostasis 1Said Khallikane ,2 Mehdi Samali,3Aziz Benakrout, 4Abderrazzak Sabir, 5Samir Siah 1. Service of Anesthesiology and Intensive Care Unit, Third Military Hospital, Laayoune, Morocco 2. Service of Anesthesiology and Intensive Care Unit, Third Military Hospital, Laayoune, Morocco 3. Service of Anesthesiology and Intensive Care Unit, Military Teaching Mohammed V Hospital, Rabat, Morocco 4. Medico-Surgical Pole of laayoune, Sakia El Hamra Region, Service of Gastro-Enterology and Proctology, Third Military Hospital, Laayoune, Morocco 5. Service of Anesthesiology and Intensive Care Unit of Severe Burn Management, Military Teaching Mohammed V Hospital, Faculty of Medicine and Pharmacy of Rabat, Morocco 1. Service of Anesthesiology and Intensive Care Unit, Third Military Hospital, Laayoune, Morocco 1. Service of Cardiovascular Anesthesiology and Cardiac Intensive Care Unit, Mohammed V Military Teaching Hospital, Rabat, Morocco SUMMARY Neurological involvement is frequent in leukemia but is rarely the inaugural event. We report the case of a 15-year-old boy whose acute lymphoblastic leukemia was revealed by fatal cerebral hemorrhage associated with sepsis secondary to lung infection. Intracerebral hemorrhage remains a cause of death in hematologic malignancies. The patient presented with thrombocytopenia (24,000/mm3), leucostasis and hypofibrinogemia (1.10 g/L). Despite maximal medical and surgical treatment (platelets and fresh- frozen plasma transfusions, red blood cells transfusion, and craniotomy discharge), the patient died. The risk of death is high, and surgical treatment has not proven superior to medical therapy in terms of mortality rates and 6-month survival. -
Computed Tomography of the Buccomasseteric Region: 1
605 Computed Tomography of the Buccomasseteric Region: 1. Anatomy Ira F. Braun 1 The differential diagnosis to consider in a patient presenting with a buccomasseteric James C. Hoffman, Jr. 1 region mass is rather lengthy. Precise preoperative localization of the mass and a determination of its extent and, it is hoped, histology will provide a most useful guide to the head and neck surgeon operating in this anatomically complex region. Part 1 of this article describes the computed tomographic anatomy of this region, while part 2 discusses pathologic changes. The clinical value of computed tomography as an imaging method for this region is emphasized. The differential diagnosis to consider in a patient with a mass in the buccomas seteric region, which may either be developmental, inflammatory, or neoplastic, comprises a rather lengthy list. The anatomic complexity of this region, defined arbitrarily by the soft tissue and bony structures including and surrounding the masseter muscle, excluding the parotid gland, makes the accurate anatomic diagnosis of masses in this region imperative if severe functional and cosmetic defects or even death are to be avoided during treatment. An initial crucial clinical pathoanatomic distinction is to classify the mass as extra- or intraparotid. Batsakis [1] recommends that every mass localized to the cheek region be considered a parotid tumor until proven otherwise. Precise clinical localization, however, is often exceedingly difficult. Obviously, further diagnosis and subsequent therapy is greatly facilitated once this differentiation is made. Computed tomography (CT), with its superior spatial and contrast resolution, has been shown to be an effective imaging method for the evaluation of disorders of the head and neck. -
1000 Lives Plus Website 1000 Lives Plus ‘Improving Mouth Care for Patients in Hospital’ Page
Improving Mouth Care for Adult Patients in Hospital Mouth Care for Adult Patients in Hospital / Vers 5 (07/13) This resource is for nurses, health care support workers and other health care professionals (for example, doctors, respiratory physiotherapists, speech and language therapists, dieticians) who provide or give advice on mouth care for adult patients in hospital. It is designed to Improve oral health knowledge and skills for health care professionals who support patients in hospital and those living with complex medical conditions and advanced illness. Enable health care professionals to provide and deliver a high standard of mouth care for adult patients in hospital. Support person centred training, and to suit individual needs and local circumstances. Support hands on training and teaching, and will be helpful for health and care professionals who find it difficult to clean a patients mouth. Learning Outcomes 1 Demonstrate an understanding of why good oral health is important for patients in hospital 2 Recognise risk factors that contribute to poor oral health and the association with systemic disease 3 Identify risk factors associated with Dental Caries (tooth decay) 4 Identify risk factors associated with Gingivitis and Periodontitis (gum disease) 5 Understand the mouth care documentation (e.g. mouth care risk assessment, care plans and documentation forms) 6 Complete a mouth care risk assessment / care plan 7 Process and report any oral health concerns (depending on local protocols) 8 Identify techniques and strategies that may help patients with challenging behaviour or who resist oral care / are unable to co-operate 9 Recognise the need for specialised mouth care / support for patients who require assistance Mouth Care for Adult Patients in Hospital / Vers 5 (07/13) This resource is in several sections, some of which can be used on their own. -
Microbiology Chapter 19 Outline
Microbiology Chapter 19 Outline Introduction (p. 515) 1. Hay fever, transplant rejection, and autoimmunity are examples of harmful immune reactions. 2. Immunosuppression is inhibition of the immune system. 3. Superantigens activate many T cell receptors that can cause adverse host responses. Hypersensitivity (pp. 516–526) 1. Hypersensitivity reactions represent immunological responses to an antigen (allergen) that lead to tissue damage rather than immunity. 2. Hypersensitivity reactions occur when a person has been sensitized to an antigen. 3. Hypersensitivity reactions can be divided into four classes: types I, II, and III are immediate reactions based on humoral immunity, and type IV is a delayed reaction based on cell-mediated immunity. Allergies and the Microbiome (p. 516) 4. Childhood exposure to microbes may decrease development of allergies. Type I (Anaphylactic) Reactions (pp. 516–522) 5. Anaphylactic reactions involve the production of IgE antibodies that bind to mast cells and basophils to sensitize the host. 6. The binding of two adjacent IgE antibodies to an antigen causes the target cell to release chemical mediators, such as histamine, leukotrienes, and prostaglandins, which cause the observed allergic reactions. 7. Systemic anaphylaxis may develop in minutes after injection or ingestion of the antigen; this may result in circulatory collapse and death. 8. Localized anaphylaxis is exemplified by hives, hay fever, and asthma. 9. Skin testing is useful in determining sensitivity to an antigen. 10. Desensitization to an antigen can be achieved by repeated injections of the antigen, which leads to the formation of blocking (IgG) antibodies. Microbiology Chapter 19 Outline Type II (Cytotoxic) Reactions (pp. 522–524) 11. -
Congenital Neutropenia in a Newborn
Journal of Perinatology (2011) 31, S22–S23 r 2011 Nature America, Inc. All rights reserved. 0743-8346/11 www.nature.com/jp ORIGINAL ARTICLE Congenital neutropenia in a newborn K Walkovich and LA Boxer Department of Pediatrics and Communicable Disease, University of Michigan, Ann Arbor, MI, USA in HAX1, ELANE (previously ELA2), GFI1, WAS, CSF3R and Severe congenital neutropenia (SCN) is a genetically heterogenous, rare G6PC3.6,7 Regardless of the mode of inheritance or specific À3 disorder defined by a persistent absolute neutrophil count <500k mm mutation, newborns with SCN have severe neutropenia, defined with neutrophil maturation arrest at the promyelocyte stage and an as an absolute neutrophil count (ANC) <500 k mmÀ3, often increased risk for infection as well as a propensity towards developing appreciable at birth or shortly thereafter.1,8 Frequent episodes of myelodysplastic syndrome and acute myelogenous leukemia. We report a fever, skin infections, gingivitis, stomatitis, pneumonia and case of incidentally identified SCN in a full-term, otherwise healthy infant perirectal abscesses are common in the first few months of life and girl. Routine complete blood counts obtained for follow up of ABO before the advent of G-CSF therapy death from overwhelming incompatibility-induced jaundice and anemia identified mild neutropenia serious infection was common by 1 year of age.8 Prompt diagnosis at birth followed by severe persistent neutropenia by 1 week of birth. Genetic of SCN in infancy and initiation of treatment to prevent infection is testing confirmed the clinical suspicion of SCN with the identification of a crucial to decreasing morbidity and mortality. -
Severe Congenital Neutropenia
Severe congenital neutropenia Description Severe congenital neutropenia is a condition that causes affected individuals to be prone to recurrent infections. People with this condition have a shortage (deficiency) of neutrophils, a type of white blood cell that plays a role in inflammation and in fighting infection. The deficiency of neutrophils, called neutropenia, is apparent at birth or soon afterward. It leads to recurrent infections beginning in infancy, including infections of the sinuses, lungs, and liver. Affected individuals can also develop fevers and inflammation of the gums (gingivitis) and skin. Approximately 40 percent of affected people have decreased bone density (osteopenia) and may develop osteoporosis, a condition that makes bones progressively more brittle and prone to fracture. In people with severe congenital neutropenia, these bone disorders can begin at any time from infancy through adulthood. Approximately 20 percent of people with severe congenital neutropenia develop certain cancerous conditions of the blood, particularly myelodysplastic syndrome or leukemia during adolescence. Some people with severe congenital neutropenia have additional health problems such as seizures, developmental delay, or heart and genital abnormalities. Frequency The incidence of severe congenital neutropenia is estimated to be 1 in 200,000 individuals. Causes Severe congenital neutropenia can result from mutations in one of many different genes. These genes play a role in the maturation and function of neutrophils, which are cells produced by the bone marrow. Neutrophils secrete immune molecules and ingest and break down foreign invaders. Gene mutations that cause severe congenital neutropenia lead to the production of neutrophils that die off quickly or do not function properly. -
Blood and Immunity
Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood. -
CDC Definitions of Nosocomial Infections (PDF)
1672 Section XV: Organization and Implementation of Infection Control Programs insic risk-adjusted rates of adverse outcomes. Failure to do so will certainly make interhospital comparisons meaningless or From: Horan TC, Gaynes RP. Surveillance of nosocomial infections. In:Hospital Epidemiology and Infection Control, CVS Cardiovascular System Infection 3rd ed., Mayhall CG, editor. Philadelphia:Lippincott VASC Arterial or venous infection Williams & Wilkins, 2004:1659-1702. ven misleading (27). ENDO Endocarditis CARD Myocarditis or pericarditis MED Mediastinitis APPENDIX A-1. CDC DEFINITIONS OF EENT Eye, Ear, Nose, Throat, or Mouth Infection NOSOCOMIAL INFECTIONS [EXCLUDING CONJ Conjunctivitis PNEUMONIA (SEE APPENDIX A-2)] EYE Eye Other than conjunctivitis EAR Ear Mastoid Listing of Major and Specific Site Codes and ORAL Oral Cavity (mouth, tongue, or gums) Descriptions SINU Sinusitis UTI Urinary Tract Infection UR Upper respiratory tract, pharyngitis, SUTI Symptomatic urinary tract infection laryngitis, epiglottitis ASB Asymptomatic bacteriuria GI Gastrointestinal System Infection OUTI Other infections of the urinary tract GE Gastroenteritis GIT Gastrointestinal (GI) tract SSI Surgical Site Infection HEP Hepatitis SKIN Superficial incisional site, except after IAB Intraabdominal, not specified elsewhere CBGB1 NEC Necrotizing enterocolitis SKNC After CBGB, report SKNC for superficial LRI Lower Respiratory Tract Infection, Other Than incisional infection at chest incision site Pneumonia SKNL After CBGB, report SKNL for superficial BRON Bronchitis,