Lithium Australia PFS Vindicates High-Value Potential of LFP Battery

Total Page:16

File Type:pdf, Size:1020Kb

Lithium Australia PFS Vindicates High-Value Potential of LFP Battery 14 April 2021 Lithium Australia PFS vindicates high-value potential of LFP battery materials HIGHLIGHTS Superior performance of VSPC lithium ferro phosphate ('LFP') product demonstrated. Positive pre-feasibility study ('PFS') confirms veracity of independent LFP cathode powder production chain. US$253 million net present value ('NPV') and internal rate of return ('IRR') of 33% for 13 years of LFP production. LFP attributes driving demand and market growth include: o superior safety o low-cost o no conflict metals required. Lithium Australia has committed to a definitive feasibility study. Comment from Lithium Australia MD, Adrian Griffin “Lithium Australia’s subsidiary VSPC Ltd ('VSPC') has demonstrated its capacity to produce some of the most advanced LFP cathode powders available and also higher energy density variants such as lithium manganese ferro phosphate (‘LMFP’). VSPC has completed a PFS that clearly demonstrates the value of establishing an alternative cathode powder supply chain using VSPC’s proprietary technology. "These major milestones have been achieved in an environment in which the largest electric vehicle ('EV') producers are moving to incorporate LFP lithium-ion ('Li-ion') batteries into entry-level vehicles, due to their superior safety, lower cost, longer life and reduced exposure to conflict metals. These LFP attributes are also expanding its utilisation in stationary energy-storage applications. Indeed, major battery producers worldwide are racing to expand their LFP production to meet demand as LFP becomes the fastest growing sector of the battery industry. "At present there is little LFP production outside of China, with original equipment manufacturers striving to secure alternative supply chains. Lithium Australia and VSPC aim to provide that supply chain security.” VSPC, which has 17 years’ experience in the production of nano powders, operates a pilot facility in Brisbane, Australia, where it produces advanced LFP and LMFP cathode powders. ASX ANNOUNCEMENT Batteries Page 1 Introduction VSPC is a wholly owned subsidiary of Lithium Australia NL (ASX: LIT, ‘the Company’). At its R&D facility in Brisbane, Australia, VSPC is developing LFP-based cathode powders and derivatives, as well as LMFP cathode powders. VSPC's LFP is superior in quality and performance to most of the other LFP cathode powders currently available, and it has now completed a PFS for the proposed production of that LFP cathode powder. The PFS considered three jurisdictions for that production: Australia, Vietnam, and India. Robust project economics The PFS has confirmed robust project economics for the manufacture of VSPC's LFP cathode powder, with production to ramp up to a capacity of 10,000 tonnes per annum ('tpa') over a three-year period, reaching nameplate capacity in 2026. The case for locating the plant in India is revealed as the best financial outcome with a net present value ('NPV') of US$253 million and an internal rate of return ('IRR') of 33%. The PFS is based on proprietary VSPC process technology that provides competitive, if not superior, performance when compared with other processes for the manufacture of advanced LFP materials, notably the more expensive sol-gel processes used in China and Vietnam. While the PFS has provided a detailed evaluation of the three possible jurisdictions, further factors – such as strategic partnerships with upstream mining, refining and chemical producers – may provide further benefits for the commercialisation of VSPC cathode powders. Similarly, downstream partnerships (cathode and battery manufacturing) may provide additional financial benefits in other jurisdictions, and to that end the Company is evaluating specific opportunities in Australia, South Korea, Europe and the United States. PFS base case The PFS includes a base case for location of the plant in southern India, with a discount rate of 8%. Major indicators include: an LFP production rate of 10,000 tpa; an NPV of US$253 million (13 years' operation); an IRR of 33%; a payback period of five years; annual LFP sales revenue of US$140 million; EBITDA (earnings before interest, taxes, depreciation and amortisation) of US$66 million per annum; a free cash flow of US$56 million per annum, and plant investment of US$113 million in two stages over three years. Further particulars of the PFS considerations are provided in Appendix I – Executive Summary. ASX ANNOUNCEMENT Batteries Page 2 LFP market outlook strong Over the past 12 months, global demand for LFP has increased by more than 25%, bringing Chinese LFP cathode powder manufacturing up to over 100,000 tpa. Only 2% of the global LFP cathode powder production originates from outside China. With many major EV producers already manufacturing LFP-powered vehicles within China, and making these available in other jurisdictions, North America and Europe are likely to be areas of high demand. Added to this mix is the recent announcement by the Volkswagen Group ('VW') that its entry-level EVs will be powered by LFP. Major EV manufacturer, BYD has announced it will discontinue the production of batteries containing nickel and cobalt, directing all of its production capacity to LFP. The use of LFP in battery energy-storage systems (BESS) and marine application will further increase demand. This creates a great opportunity to supply into a market with little competition. Global trends in LFP production are expected to follow what is occurring in China, where rising LFP demand, as forecast by Roskill (below), are likely to see it become the dominant Li-ion chemistry in the next few years, due to its greater safety characteristics, environmental, social and governance (ESG) values and more positive cost structure. LCE = lithium carbonate equivalent LP = lithium phosphate Sources: Roskill, June 2020. The resurgence of LFP cathodes (White paper); ITRI, November 2020. LFP Market report. ASX ANNOUNCEMENT Batteries Page 3 Next steps These include: completing a business case review for the preferred Indian option; engaging an engineering firm for the definitive feasibility phase, confirmation of project location, as well as site selection, and conduct a Life Cycle Assessment analysis of the project to determine sustainability factors and identify opportunities to reduce carbon footprint and other sustainability initiatives. Lithium Australia will continue to evaluate opportunities for downstream partnerships, particularly in jurisdictions where demand for LFP consumption is likely to increase rapidly; in, for example, Europe and North America. Authorised for release by the Board. Adrian Griffin Barry Woodhouse Managing Director CFO and Company Secretary Mobile +61 (0) 418 927 658 Mobile +61 (0) 438 674 259 [email protected] [email protected] About Lithium Australia Lithium Australia aims to ensure an ethical and sustainable supply of energy metals to the battery industry by creating a circular battery economy and enhancing energy security in the process. Recycling spent Li-ion batteries to create new ones is intrinsic to this plan. The Company is rationalising its portfolio of lithium projects/alliances while furthering its research into, and development of, proprietary extraction processes for the conversion of all lithium silicates (including mine waste), and of unused fines from spodumene processing, to lithium chemicals. Lithium Australia will use those chemicals to produce advanced components for the battery industry globally and for stationary energy-storage systems within Australia. By uniting resources and innovation, the Company is working to vertically integrate lithium extraction, processing and recycling to create a more sustainable battery industry. About VSPC VSPC is a wholly owned subsidiary of Lithium Australia. It operates a battery material R&D facility and pilot plant in Brisbane, Queensland, Australia, where it has developed advanced processes for the manufacture of cathode powders applicable to all Li-ion battery chemistries, as well as anode materials like lithium titanate ('LTO'). VSPC’s simple, scaleable processes for the production of nano-structured battery cathode powders allow precise control of chemical composition, particle size and surface characteristics; moreover, they are flexible and cost-competitive (given their ability to use low-cost raw materials and recycled lithium as feed) and readily adaptable to a range of nanostructured materials. Currently, VSPC is commercialising its process technology for the manufacture of cathode material for LFP- and LMFP-type Li-ion batteries. ASX ANNOUNCEMENT Batteries Page 4 Forward-looking statements This document contains forward-looking statements. Forward-looking statements are necessarily based on a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward- looking statements, and may include, among other things, statements regarding targets, estimates and assumptions in respect of commodity prices, operating costs and results, capital expenditures, ore reserves and mineral resources and anticipated grades and recovery rates and are, or may be, based on assumptions and estimates related to future technical, economic, market,
Recommended publications
  • Presentation Materials
    Annual General Meeting 25 November 2016 Creative Resources Leadership Overview § Lepidico is a well funded ASX-listed lithium exploration and development company with an experienced management team § Lepidico’s strategic objective is to become a sustainable lithium producer with a portfolio of assets and pipeline of projects § Lepidico’s exploration initiatives largely focus on hard rock minerals that prior to L-Max® were not traditional sources of lithium § Lepidico is differentiated by having successfully produced lithium carbonate and a suite of by-products from non-traditional hard rock lithium bearing minerals using its patented L-Max® process technology § Lepidico provides exposure to a portfolio of lithium exploration assets through its wholly owned properties, JV’s and IP licence agreements in Asia, Australia, Canada, Europe and South America § At 30 September 2016 Lepidico had A$3.0M in cash and no debt 2 New sources of lithium § Micas and phosphates have been largely overlooked as a source of lithium as no commercially viable process was available to extract the lithium and process through to lithium chemicals prior to L-Max® § Lithium bearing micas Lepidolite and Zinnwaldite contain up to 5% Li2O and like spodumene, are hosted in pegmatites § Lepidolite and Zinnwaldite often occur with tin and tantalum bearing minerals as well as with spodumene § Lithium phosphates such as Amblygonite contain up to 10% Li2O Lepidolite (light purple) Zinnwaldite (dArk grey) Ambygonite/MontebrAsite K(Li,Al,Rb)3(Al,Si)4O10(F,OH)2 KLiFeAl(AlSi3)O10(OH,F)2
    [Show full text]
  • Experiment on Charging an Electric Vehicle Lifepo4 Battery After Over-Discharge
    INTERNATIONAL SCIENTIFIC JOURNAL "MACHINES. TECHNOLOGIES. MATERIALS" WEB ISSN 1314-507X; PRINT ISSN 1313-0226 Experiment on charging an electric vehicle LiFePO4 battery after over-discharge Nikolay Pavlov*, Diana Dacova Technical University - Sofia, Bulgaria [email protected] Abstract: The efficiency and technical and economic properties of the electric cars depend mainly on the rechargeable traction battery. LiFePo4 batteries belongs to the lithium-ion type and has a number of advantages such as high capacity, long life cycle, resistance to fire at high temperatures or shock. They have safe and stable over-charging and over-discharging performances. This paper describes the process of charging the individual cells of an electric car battery after their over-discharge. Keywords: LITHIUM IRON PHOSPHATE (LiFePO4) BATTERY, OVER-DISCHARGE, CHARGING, ELECTRIC VEHICLE 1. Introduction the battery does not ignite, explode or smoke. The authors of this publication have also performed experiments on over-discharged Early vehicles were created to meet the transport needs in the cells with high-current charging, using the on-board charger of the settlements. Due to low speeds and low mileage, in the middle of electric car. In this experiment, some of the cells deformed the 19th and the beginning of the 20th century the use of electric (swollen). cars and cars with internal combustion engine was equal, but social In this work the process of charging the battery of an electric and technical factors gave an advantage in the development of cars car after over-discharging of the individual cells is described. [1]. The harmful effects of emissions from internal combustion Charge experiments of lithium iron phosphate (LiFePO4) battery engines, the reduction of fossil fuel resources and improvements in have been performed on an electric car.
    [Show full text]
  • Lithium 2017
    2017 Minerals Yearbook LITHIUM [ADVANCE RELEASE] U.S. Department of the Interior September 2020 U.S. Geological Survey Lithium By Brian W. Jaskula Domestic survey data and tables were prepared by Annie Hwang, statistical assistant. In the United States, one lithium brine operation with an cobalt oxide and 2,160 kg of lithium-nickel-cobalt-aluminum associated lithium carbonate plant operated in Silver Peak, oxide (Defense Logistics Agency Strategic Materials, 2017). At NV. Domestic and imported lithium carbonate, lithium yearend 2017, the NDS held 540 kg of lithium-cobalt oxide and chloride, and lithium hydroxide were consumed directly 1,620 kg of lithium-nickel-cobalt-aluminum oxide. in industrial applications and used as raw materials for downstream lithium compounds. In 2017, lithium consumption Production in the United States was estimated to be equivalent to The U.S. Geological Survey (USGS) collected domestic 3,000 metric tons (t) of elemental lithium (table 1) [16,000 t production data for lithium from a voluntary canvass of the of lithium carbonate equivalent (LCE)], primarily owing to only U.S. lithium carbonate producer, Rockwood Lithium Inc. demand for lithium-based battery, ceramic and glass, grease, (a subsidiary of Albemarle Corp. of Charlotte, NC). Production pharmaceutical, and polymer products. In 2017, the gross weight and stock data collected from Rockwood Lithium were withheld of lithium compounds imported into the United States increased from publication to avoid disclosing company proprietary data. by 7% and the gross weight of exports increased by 29% from The company’s 6,000-metric-ton-per-year (t/yr) Silver Peak those in 2016.
    [Show full text]
  • Lithium Phosphate Refining Vindicates Cathode Production with No Requirement for Lithium Hydroxide Or Carbonate
    05 March 2019 Lithium phosphate refining vindicates cathode production with no requirement for lithium hydroxide or carbonate HIGHLIGHTS ▪ Lithium phosphate produced from Lithium Australia's SiLeach® Gen-2 Pilot Plant has been further refined using a simple, proprietary purification process. ▪ The resulting product has a significantly higher purity than that previously used to create lithium-iron-phosphate cells via Lithium Australia's 100%-owned VSPC cathode powder technology. ▪ The latest refining process paves the way for the production of very high-purity cathodes while bypassing the supply restrictions of lithium carbonates and hydroxides. ▪ High-quality lithium-ion batteries generated from mine waste are now a reality. Lithium Australia NL (ASX: LIT, or 'the Company') has successfully refined lithium phosphate (‘LP') generated by its SiLeach® Gen-2 Pilot Plant to create a very pure product that is suitable for the direct generation of lithium-iron-phosphate ('LFP') powders for the production of lithium-ion batteries ('LIBs'). The Company's production of LIBs using LP generated direct from mine waste was first reported on 21 November 2018. Batteries produced in that manner demonstrated outstanding potential, notwithstanding the fact that they were manufactured from unrefined LP. Now, further refining of the LP by way of a simple proprietary process (details of which will be provided once updated IP applications are in place) has reduced the concentrations of impurities such as potassium, sodium and sulphur by orders of magnitude, providing scope to further improve battery performance. The new LP refining stage fits seamlessly into the Company's SiLeach® process, developed to capitalise on the abundance of lithium micas (for which SiLeach® is ideally suited).
    [Show full text]
  • A Review of Lithium Occurrences in Africa
    A Review of Lithium occurrences in Africa Paul Nex, Kathryn Goodenough, Richard Shaw and Judith Kinnaird Lithium occurrences and exploration activity in Africa are dominated by pegmatite occurrences . Greenbushes, Australia No known brine resources as yet, Mineral Formula although Spodumene LiAl(SiO3)2 Botswana is Petalite LiAlSi4O10 being Eucryptite LiAlSiO4 investigated: Amblygonite (Li,Na)AlPO (F,OH) (by Lithium 4 Consolidated Mineral Lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH) Exploration Ltd-ASX) Pegmatites:typically granitic, enriched in incompatible elements, occurrences correlate with times of collisional orogeny and supercontinent assembly. Pegmatite classification needs reworking, however two types of interest - LCT: Lithium-caesium-tantalum NYF: Niobium-yttrium-fluorine Rubicon (Namibia) Bikita (Zimbabwe) Two dominant genetic models: 1. Products of the fractionation of a parental granite. 2. Products of low volume partial melting of metasediments during post-collisional orogenic collapse associated with decompression Nigeria: Pegmatites are ~probably younger than 560 Ma. Contenders for parental granites are 640-600 Ma Recent research in Norway (Muller et al 2017, or 60-580 Ma “thousands of pegmatites without parental granites”), NW Scotland, Nigeria and Namibia suggests that the low volume partial melting model for the genesis of granitic pegmatites is more prevalent than previously appreciated. In Namibia, potential parental granites are ~25 Ma older than the pegmatites and are deformed while the pegmatites are undeformed Most
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits
    Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30, 2005 © 2006 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved. Printed in Canada. 0964-1823/00 $17.00 + .00 A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits JULIE B. SELWAY, FREDERICK W. BREAKS Precambrian Geoscience Section, Ontario Geological Survey 933 Ramsey Lake Road, Sudbury, ON P3E 6B5 ANDREW G. TINDLE Department of Earch Sciences, Open University Milton Keynes, Buckinghamshire, UK MK7 6AA (Received February 16, 2004; accepted September 20, 2004) Abstract — Rare-element pegmatites may host several economic commodities, such as tantalum (Ta- oxide minerals), tin (cassiterite), lithium (ceramic-grade spodumene and petalite), and cesium (pollucite). Key geological features that are common to pegmatites in the Superior province of Ontario and Manitoba, Canada, and in other large tantalum deposits worldwide, can be used in exploration. An exploration project for rare-element pegmatites should begin with an examination of a regional geology map. Rare-element pegmatites occur along large regional-scale faults in greenschist and amphibolite facies metamorphic terranes. They are typically hosted by mafic metavolcanic or metasedimentary rocks, and are located near peraluminous granite plutons (A/CNK > 1.0). Once a peraluminous granite pluton has been identified, then the next step is to determine if the pluton is barren or fertile. Fertile granites have elevated rare element contents, Mg/Li ratio < 10, and Nb/Ta ratio < 8. They commonly contain blocky K-feldspar and green muscovite. Key fractionation indicators can be plotted on a map of the fertile granite pluton to determine the fractionation direction: presence of tourmaline, beryl, and ferrocolumbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk granite samples.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Mineralogy of Pegmatites
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Conference Collection 1-1-1960 Mineralogy of Pegmatites Peacor, D.R. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Peacor, D.R., "Mineralogy of Pegmatites" (1960). NEIGC Trips. 40. https://scholars.unh.edu/neigc_trips/40 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Conference Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. TRIP E MINERALOGY OP PEGMATITES OP THE NEWRY HILL AREA, NEWRY, MAINE Leader: D. R. Peacor Meet at 8:15 A.M., Sunday, October 9, at the base of Plumbago Mountain, on Route 5. The meeting place is easily recognized through the Abbott farmhouse on the east side of the road, and the ore hopper and pas ture on the west side. The one mile long dirt road up to the mines was passable by car on July l6. If it has been washed out by October we will arrange for jeeps to ferry those few who are unable to walk to the top of the hill. INTRODUCTION There are five major quarries in the area (Pig. 1) and many smaller prospect pits. The mineral suites from three of these quarries are different and a unique opportunity to study a wide range of pegmatite minerals is available.
    [Show full text]
  • Alkaline Process for Extracting Lithium from Spodumene
    Alkaline Process for Extracting Lithium from Spodumene Paulo Braga1, Silvia França1, Reiner Neumann1, Mario Rodriguez2 and Gustavo Rosales2 1. Center for Mineral Technology (CETEM), Brazil 2. Laboratory of Extractive Metallurgy and Materials Synthesis, Universidad Nacional de Cuyo, Argentina ABSTRACT The growing market demand for lithium is mainly due to its use in the manufacture of batteries for electric or hybrid vehicles and portable equipment (cellphones, tablets, power tools, notebooks, etc.). Currently there is great interest in finding new sources of lithium and technologies for its utilization. Brazil has large lithium pegmatite reserves and spodumene is the most important commercially mined lithium mineral. There are two main routes to obtain lithium carbonate and lithium hydroxide from mineral concentrates. In the first - the acid process - the mineral concentrate is roasted, sulfated with sulfuric acid and leached with water. Soda ash is added to form lithium carbonate. In the second process - the alkaline one - the mineral concentrate is roasted with lime or limestone, forming a clinker which is leached with water, filtered and crystallized as lithium hydroxide monohydrate. In Brazil, only the acidic process is used, although lithium hydroxide is the product most in demand in the domestic market, used mainly by automotive lubricant manufacturers. Lithium hydroxide is the main product in the alkaline process. The processing of spodumene concentrate to produce lithium hydroxide via the alkaline process can provide advantages to the production process, especially by replacing expensive chemicals such as sulfuric acid and soda ash with products such as limestone or hydrated lime, which are produced domestically and have more affordable prices.
    [Show full text]
  • Electron Transport and Ion Diffusivity Through the Solid
    ELECTRON TRANSPORT AND ION DIFFUSIVITY THROUGH THE SOLID ELECTROLYTE INTERPHASE IN LITHIUM ION BATTERIES WITH SILICON ANODES A Dissertation by LAURA ELENA BENITEZ Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Jorge M. Seminario Committee Members, Jun Zou Perla B. Balbuena Jose Silva-Martinez Head of Department, Miroslav M. Begovic August 2017 Major Subject: Electrical Engineering Copyright 2017 Laura Elena Benitez ABSTRACT Lithium-ion batteries (LIB) are the best option among batteries for portable electronic, power tools, and electric vehicles due to their higher energy storage, higher power, and lighter weight than other battery technologies such as Ni-based or lead acid. However, Li-ion batteries still face challenges such as safety, life, performance, and cost. One way to contribute to the solutions of these challenges and, consequently, improve the performance of Li-ion cells is to develop and design more stable passivation films at the electrode-electrolyte interface. Therefore, having a better understanding of the molecular processes that lead to the nucleation, growth, structure and morphology, as well as the electron and ion transport properties of the solid electrolyte interphase (SEI) is highly important for the development of new or improved lithium-ion batteries. In this work, computational methods, which allow studying phenomena not easily observable with experimental techniques, are used to study the electron transfer characteristics and the lithium ion diffusivity of the materials found in the SEI film formed in LIB with silicon anodes. First, ab initio computational methods are used to study the electron transfer through selected finite models of SEI films formed at the anode-electrolyte interface.
    [Show full text]
  • Light-Assisted Delithiation of Lithium Iron Phosphate Nanocrystals Towards Photo-Rechargeable Lithium Ion Batteries
    ARTICLE Received 7 Nov 2016 | Accepted 17 Jan 2017 | Published 10 Apr 2017 DOI: 10.1038/ncomms14643 OPEN Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries Andrea Paolella1,2, Cyril Faure1, Giovanni Bertoni3, Sergio Marras4, Abdelbast Guerfi1, Ali Darwiche1, Pierre Hovington1, Basile Commarieu1, Zhuoran Wang2, Mirko Prato4, Massimo Colombo4, Simone Monaco4, Wen Zhu1, Zimin Feng1, Ashok Vijh1, Chandramohan George5, George P. Demopoulos2, Michel Armand6 & Karim Zaghib1 Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo- oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron–hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries. 1 Institute de Recherche d-Hydro-Que´bec (IREQ), 1800 Boulevard Lionel Boulet, Varennes, Quebec, Canada J3X 1S1. 2 Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, Quebec, Canada H3A OC5. 3 IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
    [Show full text]