Ammonium Sulfate Cas N°: 7783-20-2

Total Page:16

File Type:pdf, Size:1020Kb

Load more

OECD SIDS AMMONIUM SULFATE FOREWORD INTRODUCTION AMMONIUM SULFATE CAS N°: 7783-20-2 UNEP PUBLICATIONS 1 OECD SIDS AMMONIUM SULFATE SIDS Initial Assessment Report For SIAM 19 Berlin, Germany, 19–22 October 2004 1. Chemical Name: Ammonium Sulfate 2. CAS Number: 7783-20-2 3. Sponsor Country: Germany Contact Point: BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) Contact person: Prof. Dr. Ulrich Schlottmann Postfach 12 06 29 D- 53048 Bonn-Bad Godesberg 4. Shared Partnership with: BASF AG/Germany; 5. Roles/Responsibilities of - the Partners: • Name of industry sponsor BASF AG/Germany /consortium Contact: Dr. Rolf Sarafin, GUP/CL - Z570 Carl-Bosch-Strasse D-67056 Ludwigshafen on behalf of the Ammonium sulfate consortium • Process used see next page 6. Sponsorship History • How was the chemical or By ICCA initiative category brought into the OECD HPV Chemicals Program? 7. Review Process Prior to last literature search (update): the SIAM: 29 September 2003 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 25 August 2003 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA 8. Quality check process: IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). 9. Date of Submission: Deadline for circulation: 23 July 2004 2 UNEP PUBLICATIONS OECD SIDS AMMONIUM SULFATE 10. Comments: - OECD/ICCA - The BUA* Peer Review Process Qualified BUA personnel (toxicologists, ecotoxicologists) perform a quality control on the full SIDS dossier submitted by industry. This quality control process follows internal BUA guidelines/instructions for the OECD/ICCA peer review process and includes: – a full (or update) literature search to verify completeness of data provided by industry in the IUCLID/HEDSET – Review of data and assessment of the quality of data – Review of data evaluation – Check of adequacy of selection process for key studies for OECD endpoints, and, where relevant, for non-OECD endpoints by checking original reports/publications – Review of key study description according robust summaries requirements; completeness and correctness is checked against original reports/publications (if original reports are missing: reliability (4), i.e. reliability not assignable) – Review o f validity of structure-activity relationships – Review of full SIDS dossier (including SIAR, SIAP and proposal for conclusion and recommendation for further work) – In case of data gaps, review of testing plan or rationale for not testing * BUA (GDCh-Beratergremium für Altstoffe): Advisory Committee on Existing Chemicals of the Association of German Chemists (GDCh) UNEP PUBLICATIONS 3 OECD SIDS AMMONIUM SULFATE SIDS INITIAL ASSESSMENT PROFILE CAS No. 7783-20-2 Chemical Name Ammonium sulfate (NH4)2SO4 Structural Formula SUMMARY CONCLUSIONS OF THE SIAR Human Health Fertility and developmental toxicity studies with ammonium sulfate were not available. As ammonium sulfate dissociates in biological systems studies with other ammonium and sulfate salts can be used to cover these endpoints: A screening study according to OECD TG 422 with ammonium phosphate as analogue substance, which forms ammonium ions in aqueous solutions is available. Fully valid fertility studies with analogue compounds containing sulfate ions are however lacking. Two limited studies with sodium sulfate can be used for assessment of fertility and developmental toxicity, however, in none of these studies have the fetuses been examined histologically. There are no in vivo data on genotoxicity for ammonium sulfate. To bridge the data gap, data for ammonium chloride, which dissociates in aqueous media to form ammonium ions, as does ammonium sulfate, will be used. + 2- In aqueous media, ammonium sulfate dissociates in the ammonium and sulfate ions (NH4 , SO4 ). These can be taken up into the body by the oral and respiratory routes. Absorbed ammonium is transported to the liver and there metabolised to urea and excreted via the kidneys. Ammonium is also an endogenous substance that serves a major role in the maintenance of the acid-base balance. Minor amounts of ammonium nitrogen are incorporated in the physiological N-pool. Sulfate is a normal intermediate in the metabolism of endogenous sulfur compounds, and is excreted unchanged or in conjugated form in urine. Ammonium sulfate is of relatively low acute toxicity (LD50, oral, rat: 2000 - 4250 mg/kg bw; LD50 dermal, rat/mouse 3 > 2000 mg/kg bw; 8-h LC50, inhalation, rat > 1000 mg/m ). Clinical signs after oral exposure included staggering, prostration, apathy, and laboured and irregular breathing immediately after dosing at doses near to or exceeding the LD50 value. In humans, inhalation exposure to 0.1 – 0.5 mg ammonium sulfate/m³ aerosol for two to four hours produced no pulmonary effects. At 1 mg ammonium sulfate/m3 very slight pulmonary effects in the form of a decrease in expiratory flow, in pulmonary flow resistance and dynamic lung compliance were found in healthy volunteers after acute exposure. Neat ammonium sulfate was not irritating to the skin and eyes of rabbits. There is no data on sensitisation available. A 14-day inhalation study on rats exposed to 300 mg/m3 , the only tested dose, did not report histopathological changes in the lower respiratory tract. As the respiratory tract is the target organ for inhalation exposure, the NOEL for toxicity to the lower respiratory tract is 300 mg/m3. The NOAEL after feeding diets containing ammonium sulfate for 13 weeks to rats was 886 mg/kg bw/day. The only toxicity sign found was diarrhea in male animals of the high-dose group (LOAEL: 1792 mg/kg bw/day). Ammonium sulfate was not mutagenic in bacteria (Ames test) and yeasts with and without metabolic activation systems. It did not induce chromosomal aberrations in mammalian or human cell cultures. No in vivo genotoxicity tests are available. Based on the negative results from in vitro studies and the negative results in the micronucleus test in vivo with ammonium chloride a mutagenic activity of ammonium sulfate in vivo is unlikely. 4 UNEP PUBLICATIONS OECD SIDS AMMONIUM SULFATE Similarly to other salts, high doses of ammonium sulfate may have the capability of tumor promotion in the rat stomach; it is, however, much less potent than sodium chloride when tested under identical conditions. There are no valid studies available on the effects of ammonium sulfate on fertility and development. Based on data from a similar ammonium compound (diammonium phosphate), which has been tested up to 1500 mg/kg bw in a screening study according to OECD TG 422 in rats it can be concluded that ammonium ions up to the dose tested have no negative effects on fertility. In the 13-week feeding study of ammonium sulfate with rats, no histological changes of testes were observed up to 1792 mg/kg bw. The ovaries were not examined. Fully valid studies with sulfate on fertility are not available. In a limited study (pretreatment time short, low number of animals, no fertility indices measured) where female mice were treated with up to ca. 6550 mg sulfate/kg bw (as sodium sulfate) no effects on litter size were found. Studies of developmental toxicity for ammonium sulfate are not available. In the screening study according to OECD TG 422 with up to 1500 mg diammonium phosphate/kg bw no effects on development have been detected in rats. In another limited screening study with exposure of mice to a single dose of 2800 mg sodium sulfate/kg bw no macroscopic effects or adverse effects on body weight gain have been detected in the pups. In both studies fetuses were not examined histopathologically. Environment Ammonium sulfate is a white solid, with a solubility in water of 764 g/l at 25 °C. When heated, decomposition starts at temperatures between 150 and 280 °C, depending on the experimental conditions and purity of the test substance, and is complete at 336 - 357 °C. The relative density is 1.77, and the partial pressure of ammonia over solid ammonium sulfate at 25 °C is 4.053*10-7 Pa. The log Kow was determined as –5.1 in a test according to OECD TG 107; as this method applies only to substances which do not dissociate, the validity of this method for ammonium sulfate is uncertain. Due to the ionic nature of the substance the calculation of sorption onto organic soil matter does not have any practical meaning. Due to the salt-character of the substance the calculation of a fugacity model and Henrys Law Constant is not appropriate. Based on the physico-chemical properties of ammonium sulfate, water is expected to be the main target compartment. Although ammonium sulfate can be created in the atmosphere from ammonia and sulfur dioxide, this process is limited by atmospheric sulfur dioxide, not by ammonia, which has many natural sources. Particulate ammonium sulfate is removed from air by wet and dry deposition. There is no evidence for photodegradation of ammonium sulfate. In unsterilized soil, ammonium sulfate is mineralized fairly rapidly, and subsequently nitrified. Nitrification and de- nitrification processes also occur naturally in streams and rivers, as well as in many secondary sewage treatment processes. Based on the high water solubility and the ionic nature, ammonium sulfate is not expected to adsorb or bioaccumulate to a significant extent. However,
Recommended publications
  • Effects of Different Sources of Fertilizer Nitrogen on Growth and Nutrition of Western Hemlock Seedlings

    Effects of Different Sources of Fertilizer Nitrogen on Growth and Nutrition of Western Hemlock Seedlings

    Effects of Different Sources U.S. Department of Agriculture Forest Service Pacific Northwest Forest of FertiIizer Nitrogen and Range Experiment Station Research Paper PNW-267 on Growth and Nutrition oJ February 1980 Western Hemlock Seedlings ---. --_. ------------------------ , I _J Authors M. A. RADWAN is Principal Plant Physiologist and DEAN S. DeBELL is Principal Silviculturist with the Forest Service, u.S. Department of Agriculture, Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, Olympia, Washington. En gl ish Equivalents 1 liter 0.2642 gallon 1 kilogram = 2.2046 pound 1 gram = 0.0353 ounce 1 centimeter = 0.3937 inch 1 kilogram per hectare 1.1206 pounds per acre (9/50C) + 32 = of EFFECTS OF DIFFERENT SOURCES OF FERTILIZER NITROGEN ON GROWTH AND NUTRITION OF WESTERN HEMLOCK Reference Abstract Radwan, M. A. , and Dean S. DeBell. 1980. Effects of different sources of fertilizer nitrogen on growth and nutrition of western hemlock seedlings. USDA For. Servo Res. Pap. PNW-267, 15 p. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. Twelve different nitrogen (N) fertilizer treatments were tested on potted western hemlock (Tsuga heterophylla (Raf. ) Sarg.) seedlings. Fertilizers affected soil N and pH, and growth and foliar chemical com­ position of seedlings. Ura plus N-Serve and sulfur-coated urea appear more promising for promoting growth than other fertilizers tested. Results, however, do not explain reported variability in response of hemlock stands to N fertilization. Keywords: Nitrogen fertilizer response, seedling growth, western hemlock, Tsuga heterophylla. RESEARCH SUMMARY Research Paper PNW-267 1980 The following fertilization treatments were applied in the spring to potted, 4-year-old western hemlock (Tsuga heterophylla (Raf.
  • Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: a Short Review

    Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: a Short Review

    sustainability Review Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review Adele Folino 1, Demetrio Antonio Zema 1,* and Paolo S. Calabrò 2 1 Department Agraria, Mediterranea University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy; [email protected] 2 Department Diceam, Mediterranea University of Reggio Calabria, Via Graziella, Località Feo di Vito, I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] Received: 30 April 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: One of the most promising systems to treat swine wastewater is air stripping. This system simultaneously recovers nitrogen salts, to be used as fertiliser, and reduces the organic pollutant load in the effluents of swine breeding farms. Several reviews have discussed the air stripping as a treatment for many types of industrial wastewater or nitrogen-rich digestate (the liquid effluent derived from the anaerobic digestion plants) for the stripping/recovery of nutrients. However, reviews about the use of air stripping as treatment for raw or anaerobically digested swine wastewater are not available in literature. To fill this gap, this study: (i) Summarises the experiences of air stripping for recovery of ammonium salts from both raw and digested swine wastewater; and (ii) compares air stripping efficiency under different operational conditions. Moreover, combined systems including air stripping (such as struvite crystallisation, chemical precipitation, microwave radiation) have been compared. These comparisons have shown that air stripping of raw and digested swine wastewater fits well the concept of bio-refinery, because this system allows the sustainable management of the piggery effluent by extracting value-added compounds, by-products, and/or energy from wastewater.
  • Listed Toxic Air Contaminants and Common Chemicals

    Listed Toxic Air Contaminants and Common Chemicals

    Listed Toxic Air Contaminants and Common Chemicals (sorted by Chemical name) CHEMICAL NAME CAS # Listed Air Toxic 1,1,1,2-Tetrachloroethane 630206 Y 1,1,1,2-Tetrafluoroethane 811972 Y 1,1,2,2-Tetrachloroethane 79345 Y 1,1,2-Trichloroethane 79005 Y 1,1-Difluoroethane (HCFC 152a) 75376 Y 1,1-Dimethyl hyrazine 57147 Y 1,2,4 Trimethylbenzene 95636 N 1,2,4-Trichlorobenzene 120821 Y 1,2-Dibromo-3-chloropropane 96128 Y 1,2-Dichlorobenzene 95501 Y 1,2-Dimethyl hyrazine 540738 Y 1,2-Diphenylhydrazine (Hydrazobenzene) 122667 Y 1,2-Epoxybutane 106887 Y 1,2-Propylenimine (2-Methyl aziridine) 75558 Y 1,3-Butadiene 106990 Y 1,3-Dichloropropene 542756 Y 1,3-Propane sultone 1120714 Y 1,4-Dichlorobenzene (p-Dichlorobenzene) 106467 Y 1,4-Dioxane (1,4-Diethyleneoxide) 123911 Y 1-Chloro-1,1-difluoroethane (CFC 142B) 75683 Y 2,2,4-Trimethylpentane 540841 Y 2,4,5-Trichlorophenol 95954 Y 2,4,6-Trichlorophenol 88062 Y 2,4-and 2,6-Toluene diisocyanateh 26471625 Y 2,4-Diaminoanisole 615054 Y 2,4-Diaminotoluene 95807 Y 2,4-Dichlorophenoxyacetic acid, salts & esters 94757 Y (2,4-D) 2,4-Dimethylphenol 105679 Y 2,4-Dinitrophenol 51285 Y 2,4-Dinitrotoluene 121142 Y 2,4-Toluene diamine (2,4-Diaminotoluene) 95807 Y 2-Acetylaminofluorene 53963 Y 2-Aminoanthraquinone 117793 Y CHEMICAL NAME CAS # Listed Air Toxic 2-Chloroacetophenone 532274 Y 2-Chlorophenol 95578 Y 2-Nitropropane 79469 Y 3,3'-Dichlorobenzidene 91941 Y 3,3'-Dimethoxybenzidine 119904 Y 3,3'-Dimethyl benzidine 119937 Y 4,4-Methylene bis (2-chloroaniline) 101144 Y 4,4-Methylenedianiline 101779 Y 4,6-Dinitro-o-cresol
  • Material Safety Data Sheet Ferrous Ammonium Sulfate Hexahydrate MSDS

    Material Safety Data Sheet Ferrous Ammonium Sulfate Hexahydrate MSDS

    He a lt h 1 0 Fire 0 1 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n E Material Safety Data Sheet Ferrous ammonium sulfate hexahydrate MSDS Section 1: Chemical Product and Company Identification Product Name: Ferrous ammonium sulfate hexahydrate Contact Information: Catalog Codes: SLF1990 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 7783-85-9 (Hexahydrate); 10045-89-3 (anhydrous) Houston, Texas 77396 RTECS: BR6500000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: No products were found. Ferrous Ammonium Sulfate hexahydrate is not TSCA listed Order Online: ScienceLab.com because it is a hydrate. CHEMTREC (24HR Emergency Telephone), call: CI#: Not applicable. 1-800-424-9300 Synonym: Ammonium ferrous sulfate, hexahydrate; Iron International CHEMTREC, call: 1-703-527-3887 ammonium sulfate hydrate; Sulfuric acid, ammomium iron For non-emergency assistance, call: 1-281-441-4400 (2+) salt, hexahydrate Chemical Name: Ammonium iron (II) sufate, hexahydrate (2:1:2:6) Chemical Formula: FeSO4(NH4)2SO4.6H2O Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Ferrous ammonium sulfate 7783-85-9 100 hexahydrate (Hexahydrate); 10045-89-3 (anhydrous) Toxicological Data on Ingredients: Ferrous ammonium sulfate hexahydrate: ORAL (LD50): Acute: 3250 mg/kg [Rat]. Section 3: Hazards Identification Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health Effects: p. 1 CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available.
  • Ammonium Chloride As a Nitrogen Fertilizer: Chloride Ion

    Ammonium Chloride As a Nitrogen Fertilizer: Chloride Ion

    AMMONIUM CHLORIDE AS A NITROGEN FERTILIZER: CHLORIDE ION EFFECTS ON YIELDS AND UPTAKE OF NUTRIENTS BY CROPS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Woodson Teater, B.S., M.S. The Ohio State University 1957 Approved by: Adviser Department of Agronomy AC KNOWLED GEMENTS The author wishes to express his sincere appreciation and thanks to Dr. H. J. Mederski under whose supervision and guidance this study was conducted; to Dr. G. W. Volk for his advice, encouragement, and criticism of the manu­ script; and to Dr. E. 0. McLean and Dr. C. J. Willard for criticism and assistance in preparing the manuscript. Thanks is also extended to other faculty members and graduate students of the Department of Agronomy for their assistance and cooperation during the course of the study. The author is grateful for the financial assistance provided by the Columbia Southern Chemical Corporation through a grant-in-aid agreement with the Ohio Agricultural Experiment Station. For her patience and assistance the author is deeply grateful to his wife. TABLE OF CONTENTS Page INTRODUCTION............................. 1 REVIEW OF LITERATURE ' . 5 NATURE AND SCOPE OF THE INVESTIGATION................ 12 I. GENERAL FIELD STUDIES MATERIALS AND METHODS. * .............................. 13 Soil, Crops, and Fertilizers....................... 13 Sampling and Harvesting............................ 14 Analytical Procedures.............................. 15 EXPERIMENTAL........................................... 21 Comparison of Ammonium Chloride and Ammonium Sulfate in Broadcast Applications for Continuous Corn.................................... 21 Procedure........................................ 21 Results and Discussion.......................... 21 Comparison of Ammonium Chloride and Ammonium Sulfate in Row Applications for Corn............... 30 Procedure.......................................
  • Sulfuric Acid Aerosol Is Formed by the Oxidation of SO in Standard, NH /N ) Diluted to 2 RELATIVE HUMIDITY (RH) 3 2 Gas/Aqueous/Aerosol Phase

    Sulfuric Acid Aerosol Is Formed by the Oxidation of SO in Standard, NH /N ) Diluted to 2 RELATIVE HUMIDITY (RH) 3 2 Gas/Aqueous/Aerosol Phase

    INVESTIGATIONS OF THE HETEROGENEOUS REACTION BETWEEN AMMONIA AND SULFURIC/SULFUROUS ACID AEROSOLS Thomas Townsend, Colette Noonan and John R. Sodeau Centre for Research into Atmospheric Chemistry, Department of Chemistry, University College Cork, and Environmental Research Institute, Cork, Ireland. [email protected] INTRODUCTION EXPERIMENTAL SET-UP AMMONIA (100ppm Sulfuric acid aerosol is formed by the oxidation of SO in standard, NH /N ) diluted to 2 RELATIVE HUMIDITY (RH) 3 2 gas/aqueous/aerosol phase. The preferred form of sulfuric acid tuned between 1% and 70%. ppb range. Admitted to flow AEROSOL GENERATION tube via a 6mm diameter in the aerosol phase is ammonium sulfate (NH4)2SO4. If there H2SO4 /C2H2O4 aerosol Dilution Unit movable, glass injector. is not enough ammonia present, sulfuric acid exists either as generated by passing a flow (200-500 ccm) of air over a P H2SO4(aq) or NH4HSO4. heated solution or via a nebuliser. AEROSOL FLOW-REACTOR Aerosols AerosolAerosol Humidifier Generator Made of glass, ID: 10cm, maximal ….are tiny particles suspended in the air. Those larger than reactive length Z: 80cm. Aerosol Flow Carrier Flow Operated at room temperature and Soluble trace gases such as Ammonia, about 1μm in size are mainly produced by windblown dust Comp. Air atmospheric pressure. NH3, are produced from agricultural and sea-spray. Aerosols smaller than 1μm are mostly formed Unit by condensation processes e.g. conversion of SO gas released PARTICLE SIZER (SMPS) sources and represents a significant 2 from volcanic eruptions to sulfate-type particles. Monitors aerosol fraction, NH3/N2 atmospheric pollutant in Ireland. particle size, mass, surface SMPS CHEMILUMINESCENCE area, volume.
  • Orca Corrosion Chart

    Orca Corrosion Chart

    Unsaturated Polyester Vinylster (Epoxy Acrylate Resins) CHEMICAL Conc Resins NO ISO BIS Novolac Bromine ENVIRONMENT % 511/512 301 585 570 545/555 A 1 Acetaldehyde 20 NR 40 40 40 2 Acetic Acid 10 80 100 100 100 3 Acetic Acid 15 60 100 100 100 4 Acetic Acid 25 60 100 100 100 5 Acetic Acid 50 - 80 80 80 6 Acetic Acid 75 NR 65 65 65 7 Acetic Acid, Glacial 100 NR NR 40 NR 8 Acetic Anhydride 100 NR NR 40 NR 9 Acetone 10 NR NR 80 80 10 Acetone 100 NR NR NR NR 11 Acetonitrile 20 - 40 40 40 12 Acetyl Acetone 20 - 40 50 40 13 Acrolein (Acrylaldehyde) 20 - 40 40 40 14 Acrylamide 50 NR 40 40 40 15 Acrylic Acid 25 NR 40 40 40 16 Acrylic Latex All - 80 80 80 17 Acrylonitrile Latex Dispersion 2 NR 25 25 25 Activated Carbon Beds, Water 18 - 80 100 80 Treatment Adipic Acid(1.5g solution in 19 23 - 80 80 80 water at 25℃, sol in hot water) 20 ALAMINE amines - 65 80 65 21 Alkyl(C8-10) Dimethyl Amine 100 - 80 100 80 22 Alkyl(C8-10) Chloride All - 80 100 95 23 Alkyl Benzene Sulfonic Acid 90 NR 50 50 50 Alkyl Tolyl Trimethyl 24 - - 40 50 40 Ammonium Chloride 25 Allyl Alcohol 100 NR NR 25 NR 26 Allyl Chloride All NR 25 25 25 27 Alpha Methylstyrene 100 NR 25 50 25 28 Alpha Oleum Sulfates 100 NR 50 50 50 29 Alum Sat'd 80 100 120 100 30 Aluminum Chloride Sat'd 80 100 120 100 31 Aluminum Chlorohydrate All - 100 100 100 32 Aluminum Chlorohydroxide 50 - 100 100 100 33 Aluminum Fluoride All - 25 25 25 34 Aluminum Hydroxide 100 80 80 95 80 35 Aluminum Nitrate All 80 100 100 100 36 Aluminum Potassium Sulfate Sat'd 80 100 120 100 37 Aluminum Sulfate Sat'd 80 100 120 100
  • Honeywell Sulf-N® 26: a New Fertilizer for a New World

    Honeywell Sulf-N® 26: a New Fertilizer for a New World

    Honeywell Sulf-N® 26: A New Fertilizer for a New World What’s at stake How Sulf-N® 26 can help Seven billion people need to eat every day and we need nitrogen fertilizers Powerful agricultural benefits to feed them …but nitrate fertilizers can be unsafe Safe to handle, transport, and store to transport and store …and nitrate fertilizers, especially ammonium nitrate, can be used Low detonation potential to make explosives Powerful agricultural benefits Equal or better crop yields and quality for a broad range of crop and soil combinations In multiple crop tests pitting Sulf-N® 26 • Dry solid fertilizer, 26-0-0-14S • 26% nitrogen (N) and 14% sulfur (S), against various combinations of nitrogen two essential nutrients plants need to thrive and sulfur fertilizers, Sulf-N® 26 has • Both critical forms of nitrogen delivered equal or superior crop yields - 6.5% nitrate nitrogen for early green up and quality. For grains, vegetables, tree - 19.5% ammonium nitrogen for healthier root zone crops, and berries – Sulf-N® 26 delivers. • Sulfate form of sulfur - Sulfate is immediately available to plants unlike other forms of sulfur - Plants need sulfur for maximum nitrogen uptake Compatibility with phosphorus Compatibility Ease of - World soils are increasingly sulfur and potassium with urea application deficient fertilizers Improves operational efficiency Difficult Ammonium nitrate Moderate Low “sugars” in hot, • Blends with other fertilizers and humid climates crop-protection chemicals unlike Calcium Moderate Good ammonium nitrate (AN) ammonium nitrate Moderate • Stable when stored with urea even in humid climates Urea High — Good - Retains particle integrity Sulf-N® 26 High High Good - Does not “sugar” like AN Safe to handle, transport, and store Safe to handle • Classified as non-hazardous • Safe to handle and apply unlike Ammonium nitrate accidents have killed other fertilizers such as anhydrous ammonia or injured thousands of people and cost • Can be safely impregnated with ® petroleum based pesticides billions of dollars.
  • United States Patent (19) (11 3,954,955 Furkert (45) *May 4, 1976

    United States Patent (19) (11 3,954,955 Furkert (45) *May 4, 1976

    United States Patent (19) (11 3,954,955 Furkert (45) *May 4, 1976 54 PROCESS FOR WORKING UP THE WASH Engineering, Duan Nostrand Co., N.Y., N.Y., 1932, SOLUTION OBTAINED IN THE WASHING pp. 1-3. OF SOCONTAINING OFF-GASES 75) Inventor: Herbert Furkert, Grosskonigsdorf, Primary Examiner-Oscar R. Vertiz Germany Assistant Examiner-Gary P. Straub 73) Assignee: Davy Powergas GmbH, Attorney, Agent, or Firm-Millen, Raptes & White Cologne-Braunsfeld, Germany * Notice: The portion of the term of this patent subsequent to Mar. 5, 1991, 57 ABSTRACT has been disclaimed. In a process which comprises scrubbing an SO 22 Filed: Aug. 30, 1972 containing gas with an aqueous ammonia solution to form ammonium sulfite and ammonium bisulfite as re (21) Appl. No.: 284,709 action products, neutralizing said reaction products Related U.S. Application Data with sulfuric acid to form SO, and aqueous ammo nium sulfate, and concentrating the resultant aqueous 63 Continuation-in-part of Ser. No. 228,258, Feb. 22, ammonium sulfate by evaporation, the improvement 1972, Pat. No. 3,795,731. which comprises: 30 Foreign Application Priority Data a heating the concentrated aqueous ammonium sulfate to a temperature of 900-1250°C in a Aug. 31, 197 Germany............................ 2143444 combustion chamber burning a carbon or sulfur containing fuel, in the presence of sufficient 52 U.S. Cl.............................. 423/541 A; 423/242 oxygen to maintain an oxygen content of 1-10 vol (5) Int. Cl..................... C01B 17160; C01B 17/50 % in the gas exiting from the combustion (58) Field of Search........... 423/522,539, 541, 542, chamber, to form a hot split gas consisting 4231544, 545, 547, 550, 242, 523 essentially of sulfur dioxide, sulfur trioxide, molecular nitrogen, molecular oxygen and water (56) References Cited vapor; and UNITED STATES PATENTS b.
  • List of Lists

    List of Lists

    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
  • Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L

    Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L

    Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-69001 September 2017 Contract No. DE-AC36-08GO28308 Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. Prepared under Task No. VTOP.10335.04.01.03 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5400-69001 Golden, CO 80401 September 2017 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
  • Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production Agni E

    Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production Agni E

    361 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 45, 2015 of Chemical Engineering www.aidic.it/cet Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi, Jun Yow Yong, Xia Liu Copyright © 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-36-5; ISSN 2283-9216 DOI: 10.3303/CET1545061 Investigation of the Solar Hybrid Photo-Thermochemical Sulfur-Ammonia Water Splitting Cycle for Hydrogen Production Agni E. Kalyvaa, Ekaterini Ch. Vagiaa, Athanasios G. Konstandopoulosb, Arun R. Srinivasac, Ali T-Raissid, Nazim Muradovd, Konstantinos E. Kakosimos*,a aTexas A&M University at Qatar, Chemical Engineering Department, Sustainable Energy Research Laboratory (SERL), PO Box 23874, Doha, Qatar bChemical Process Engineering Research Institute, Aerosol and Particle Technology Laboratory (APTL), Center for Research and Technology-Hellas (CERTH/CPERI), P.O. Box 361, 57001 Thermi-Thessaloniki, Greece cTexas A&M University, Department of Mechanical Engineering, College Station, TX 77843-3123, USA dFlorida Solar Energy Center, University of Central Florida, Cocoa, FL 32922, USA [email protected] Hydrogen is currently being used in many industries, from chemical and refining to metallurgical, glass and electronics, while being at the same time a promising energy carrier. Therefore the need for hydrogen is experiencing a very rapid growth. At the same time, the traditional hydrogen production methods (e.g., steam methane reforming, water electrolysis) are energy and resources intensive. Thus, research focus is on sustainable technologies that can produce hydrogen in an economic and environmental friendly way. Hydrogen production via a solar driven hybrid sulfur-ammonia water splitting cycle (HySA) developed at Florida Solar Energy Center is such a promising technology.