Ammonium Chloride As a Nitrogen Fertilizer: Chloride Ion

Total Page:16

File Type:pdf, Size:1020Kb

Ammonium Chloride As a Nitrogen Fertilizer: Chloride Ion AMMONIUM CHLORIDE AS A NITROGEN FERTILIZER: CHLORIDE ION EFFECTS ON YIELDS AND UPTAKE OF NUTRIENTS BY CROPS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Woodson Teater, B.S., M.S. The Ohio State University 1957 Approved by: Adviser Department of Agronomy AC KNOWLED GEMENTS The author wishes to express his sincere appreciation and thanks to Dr. H. J. Mederski under whose supervision and guidance this study was conducted; to Dr. G. W. Volk for his advice, encouragement, and criticism of the manu­ script; and to Dr. E. 0. McLean and Dr. C. J. Willard for criticism and assistance in preparing the manuscript. Thanks is also extended to other faculty members and graduate students of the Department of Agronomy for their assistance and cooperation during the course of the study. The author is grateful for the financial assistance provided by the Columbia Southern Chemical Corporation through a grant-in-aid agreement with the Ohio Agricultural Experiment Station. For her patience and assistance the author is deeply grateful to his wife. TABLE OF CONTENTS Page INTRODUCTION............................. 1 REVIEW OF LITERATURE ' . 5 NATURE AND SCOPE OF THE INVESTIGATION................ 12 I. GENERAL FIELD STUDIES MATERIALS AND METHODS. * .............................. 13 Soil, Crops, and Fertilizers....................... 13 Sampling and Harvesting............................ 14 Analytical Procedures.............................. 15 EXPERIMENTAL........................................... 21 Comparison of Ammonium Chloride and Ammonium Sulfate in Broadcast Applications for Continuous Corn.................................... 21 Procedure........................................ 21 Results and Discussion.......................... 21 Comparison of Ammonium Chloride and Ammonium Sulfate in Row Applications for Corn............... 30 Procedure........................................ 30 Results and Discussion.......................... 31 Comparison of Ammonium Chloride, Ammonium Nitrate and Ammonium Sulfate for Wheat when Applied at Planting................................ 33 Procedure........................................ 33 Results and Discussion. ...................... 33 iii \ Page Comparison of Ammonium Chloride, Ammonium Nitrate, and Ammonium Sulfate for Wheat Applied as Spring Top Dressing................................ 34 Procedure...........................................37 Results and Discussion......................... 37 Comparison of Ammonium Chloride, Ammonium Nitrate, and Ammonium Sulfate for Oats when Applied at Planting................................ 38 Procedure...........................................38 Results and Discussion....................... 38 SUMMARY AND CONCLUSIONS.................................. 4l II. NUTRIENT ION UPTAKE STUDIES MATERIALS AND METHODS.................................... 43 Technique of Study.................................... 43 Analytical Methods.................................... 46 EXPERIMENTAL........................................... 49 Optimum Time and Solution Concentration for Accumulation of KC1 by Corn Seedlings................ 49 Procedure. .................................. 49 Results and Discussion.......................... 49 Relative Competitive Effects of Chloride, Nitrate, and Phosphate Anions on Their Mutual Uptake by Corn Seedlings.........................................51 Procedure...........................................52 Results and Discussion. ....................... 52 iv Page Exchange of Plant Chlorides with Ions in the Outside Solution.......................................59 Procedure...........................................60 Results and Discussion. ..... ............. 60 SUMMARY AND CONCLUSIONS................... ...... 65 LITERATURE CITED...................................... 65 AUTOBIOGRAPHY............................................. 70 v LIST OP TABLES Page Table 1. Effect of form of nitrogen and rate of broadcast application on yield of corn. 23 Table 2. Chloride content of Miami silt loam plow layer under different fertilization treatments over a two year period............. 24 Table 3. Chloride content of corn plant leaves grown on Miami silt loam under different fertilization treatments.......................26 Table 4. Nitrogen and phosphorus content of corn leaves as compared to chloride content. 28 Table 5- Effect of high applications of ammonium chloride and ammonium sulfate on soil pH. 29 Table 6. Effect of source of nitrogen on yield of corn and on chloride* nitrogen* and phosphorus content of the leaves.............. 32 Table 7* Yield of wheat as affected by various sources of nitrogen and rates of fertili­ zation..........................................35 Table 8. Chloride content of wheat plants and grain yield as affected by various sources and rates of nitrogen..........................36 Table 9 . Chloride content of soil* chloride and nitrogen content of oat plants* and yield of oats as affected by various nitrogen carriers and rates of application............. 39 Table 10. Effect of absorption time and solution concentration on accumulation of KC1 by corn seedlings.............................. 50 Table 11. Change in pH of KC1 solution after absorp­ tion by corn seedlings for different periods of time. .......................... 50 vi Page Table 12. Uptake of various combinations of potassium salts by corn seedlings........................5^- Table 13. The effects of aeration and nitrate con­ centration of the substrate on uptake of nitrate and loss of chloride by corn seed­ lings...................................... 62 vii LIST OP FIGURES Page Fig. 1. Cell assembly used to determine chloride. 17 Fig. 2. Potentiometric titration of 15 ml. of 0.01 N KC1 solution with 1/71 N AgNO^. 19 Fig. 5. Eleven day old corn seedlings grown in silica sand....... ■ ......................... 47 Fig. 4. System for aeration of corn seedlings during uptake studies....................... 47 Fig. 5. Relative effects of the complementary ions Cl“ or HgPO^ on the uptake of NOz" by corn seedlings.............................. 55 Fig. 6. Relative effects of the complementary ions NO" or HpPO: on the uptake of Cl" by corn seedlings.............................. 56 Fig. 7 . Relative effects of the complementary ions Cl“ or NOz on the uptake of HpPOju by corn seedlings................... 57 viii INTRODUCTION Ammonium chloride is produced primarily as a by-product of the Solvay process for making sodium carbonate. Normally, the ammonium chloride is decomposed by lime and the ammonia formed is recycled in the process. However, with an out­ side source of ammonia, the ammonium chloride may be extract­ ed from the process and used as a nitrogen fertilizer or for other purposes. As a nitrogen fertilizer it would com­ pete with other nitrogen materials provided it was economi­ cally priced and that the total chloride content would not exceed the point where injury to crops occurs. The effects of chloride have been reported to be either beneficial or detrimental depending upon the concentration, growth medium, crop, and climatic conditions. The -essenti­ ality of chlorine for plant growth has been neither fully affirmed nor denied. At any rate, large quantities are not required. In fact, it has long been known that large quanti­ ties are in some way detrimental to most crops. Rather large amounts of potash fertilizer in the form of potassium chlor­ ide are being applied to the soils in eastern United States. Thus, additional amounts of chloride may bring about a tem­ porary but undesirable excess of soil chlorides immediately following the application of fertilizer. 1 The purpose of this investigation is to evaluate ammonium chloride as a source of nitrogen for field crops and to secrue information relative to its properties and effects on soil-plant relationships. The mechanism of chloride injury will he a prime consideration in this in­ vestigation. REVIEW OP LITERATURE The element chlorine occurs in most soils and plants and it is usually in the form of water soluble chlorides. The chloride ion, being extremely mobile, is held very slightly by soils and may be taken up by most plants with extreme ease. The amount of Cl in plant material is quite variable. The extremes of Cl content in Kentucky burley tobacco were 0.02 to 1.05 per cent and in some dark grades the extremes were 0.04 to 2.99 per cent (44). The use of fertilizers containing Cl increases the Cl content of the sap of corn plants in approximate proportion to the amount supplied in the fertilizer (39). Irwin (30) found the average Cl concentration of the cell sap of Nitella to be 0.128 M. This value was much higher than that of the water in which the plant had grown. The presence of Cl in plant material has led to several investigations concerning plant requirements for and toler­ ance to this element. The literature on this subject, though not extensive, is difficult to coordinate and summar­ ize because of the diverse experimental conditions and pro­ cedures employed in both the field and laboratory. Although the essentiality of Cl for plant growth has not been wholly accepted, most work shows some beneficial response from its presence in small quantities. Eaton (17) reported beneficial effects of this element for growth of tomatoes and cotton in sand and solution cultures. Lipman (34) found that buckwheat and peas were improved when Cl was present in the solution cultures. Recently,
Recommended publications
  • Effects of Different Sources of Fertilizer Nitrogen on Growth and Nutrition of Western Hemlock Seedlings
    Effects of Different Sources U.S. Department of Agriculture Forest Service Pacific Northwest Forest of FertiIizer Nitrogen and Range Experiment Station Research Paper PNW-267 on Growth and Nutrition oJ February 1980 Western Hemlock Seedlings ---. --_. ------------------------ , I _J Authors M. A. RADWAN is Principal Plant Physiologist and DEAN S. DeBELL is Principal Silviculturist with the Forest Service, u.S. Department of Agriculture, Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, Olympia, Washington. En gl ish Equivalents 1 liter 0.2642 gallon 1 kilogram = 2.2046 pound 1 gram = 0.0353 ounce 1 centimeter = 0.3937 inch 1 kilogram per hectare 1.1206 pounds per acre (9/50C) + 32 = of EFFECTS OF DIFFERENT SOURCES OF FERTILIZER NITROGEN ON GROWTH AND NUTRITION OF WESTERN HEMLOCK Reference Abstract Radwan, M. A. , and Dean S. DeBell. 1980. Effects of different sources of fertilizer nitrogen on growth and nutrition of western hemlock seedlings. USDA For. Servo Res. Pap. PNW-267, 15 p. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. Twelve different nitrogen (N) fertilizer treatments were tested on potted western hemlock (Tsuga heterophylla (Raf. ) Sarg.) seedlings. Fertilizers affected soil N and pH, and growth and foliar chemical com­ position of seedlings. Ura plus N-Serve and sulfur-coated urea appear more promising for promoting growth than other fertilizers tested. Results, however, do not explain reported variability in response of hemlock stands to N fertilization. Keywords: Nitrogen fertilizer response, seedling growth, western hemlock, Tsuga heterophylla. RESEARCH SUMMARY Research Paper PNW-267 1980 The following fertilization treatments were applied in the spring to potted, 4-year-old western hemlock (Tsuga heterophylla (Raf.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • Environmental Protection Agency § 117.3
    Environmental Protection Agency § 117.3 (4) Applicability date. This paragraph TABLE 117.3—REPORTABLE QUANTITIES OF (i) is applicable beginning on February HAZARDOUS SUBSTANCES DESIGNATED PUR- 6, 2020. SUANT TO SECTION 311 OF THE CLEAN (j) Process waste water means any WATER ACT—Continued water which, during manufacturing or Cat- RQ in pounds processing, comes into direct contact Material egory (kilograms) with or results from the production or use of any raw material, intermediate Ammonium benzoate ...................... D ...... 5,000 (2,270) Ammonium bicarbonate .................. D ...... 5,000 (2,270) product, finished product, byproduct, Ammonium bichromate ................... A ....... 10 (4.54) or waste product. Ammonium bifluoride ...................... B ....... 100 (45.4) Ammonium bisulfite ......................... D ...... 5,000 (2,270) [44 FR 50776, Aug. 29, 1979, as amended at 58 Ammonium carbamate .................... D ...... 5,000 (2,270) FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, Ammonium carbonate ..................... D ...... 5,000 (2,270) 2000; 80 FR 37112, June 29, 2015; 83 FR 5208, Ammonium chloride ........................ D ...... 5,000 (2,270) Feb. 6, 2018] Ammonium chromate ...................... A ....... 10 (4.54) Ammonium citrate dibasic ............... D ...... 5,000 (2,270) Ammonium fluoborate ..................... D ...... 5,000 (2,270) § 117.2 Abbreviations. Ammonium fluoride ......................... B ....... 100 (45.4) NPDES equals National Pollutant Ammonium hydroxide ..................... C
    [Show full text]
  • Nutritional Strategies to Managing Pork Market Disruptions Frequently Asked Questions from the Webinar
    P a g e | 1 NUTRITIONAL STRATEGIES TO MANAGING PORK MARKET DISRUPTIONS FREQUENTLY ASKED QUESTIONS FROM THE WEBINAR May 1, 2020 VERSION 2 Authors: Dr. Laura Greiner: [email protected], Dr. John Patience: [email protected], Amanda Chipman: [email protected], Dr. Dan Andersen: [email protected], Dr. Brett Ramirez: [email protected], Colin Johnson: [email protected], David Stender: [email protected], Mark Storlie: [email protected], Russel Euken: [email protected], Matt Romoser: [email protected], Dr. Chris Rademacher: [email protected], Dr. Jason Ross: [email protected], Sherry Hoyer: [email protected]. Additional Contacts: https://www.extension.iastate.edu/ag/swine FIBER Q. What are my other options for high fiber ingredients besides DDGS? A. The cost of all ingredients, including high fiber ingredients, varies by location and over time. So, message #1 here is to always keep an eye on ingredient costs because they can change as conditions change. And what is economical in one location may be priced out of the market in another. But high fiber ingredient options with greater than 25% NDF include (typical NDF % in brackets): corn cobs (81), soybean hulls (59), safflower meal (56), brewers grains (49), sugar beet pulp (45), corn germ meal (44), alfalfa meal (42), sunflower meal (37), wheat middlings (35), sorghum DDGS (34), corn bran without solubles (33), wheat bran (32), dehulled sunflower meal (30), wheat shorts (29), rice bran (26), dehulled safflower meal (26). Q. Will the use of high fiber diets lead to the build-up of solids in the pit? A. Using an example of a 35% DDGS diet or 20% soy hulls diet, it generally depends on how you grind them.
    [Show full text]
  • Disinfectant Concentrations, Contact Times, and Use Settings for Products Effective Against Coronavirus SARS-Cov-2
    Disinfectant Concentrations, Contact Times, and Use Settings for Products Effective against Coronavirus SARS-CoV-2 This table provides disinfectant concentrations, contact times, and use settings for EPA's List N, which covers antimicrobial products effective against SARS-CoV-2 but does not specify disinfectant concentrations. Our list will help you ensure you're using an effective disinfectant at a sufficient concentration and contact time to kill SARS-CoV-2 in appropriate settings. This table accompanies ECRI's article "Disinfectant Concentrations, Contact Times, and Use Settings for EPA's List of Products Effective against Coronavirus SARS-CoV-2, the Cause of COVID-19," available at http://ly.ecri.org/epalist. It was last updated on June 2, 2021. The Last Updated column, below, refers to the date when ECRI last reviewed EPA’s information for the product listed. EPA Reg. Primary Registered Active Disinfectant Disinfectant Disinfectant Healthcare Institutional Home Last No. Product Name Concentration Contact Time Use Use Use Updated (by weight) (min) 10190-14 Penetone XF-7117 n-Alkyl (50% C14, 40% C12, 4.34% 10 No Yes No November 10% C16) dimethyl benzyl 2020 ammonium chloride Octyl decyl dimethyl 3.25% ammonium chloride Didecyl dimethyl ammonium 1.63% chloride Dioctyl dimethyl ammonium 1.63% chloride 10324-105 Maquat 128 PD n-Alkyl (60% C14, 30% C16, 4.50% 10 Yes Yes Yes November 5% C12, 5% C18) dimethyl 2020 benzyl ammonium chloride n-Alkyl (68% C12, 32% C14) 4.50% dimethyl ethylbenzyl ammonium chloride 10324-108 Maquat 256-MN n-Alkyl
    [Show full text]
  • Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: a Short Review
    sustainability Review Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review Adele Folino 1, Demetrio Antonio Zema 1,* and Paolo S. Calabrò 2 1 Department Agraria, Mediterranea University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy; [email protected] 2 Department Diceam, Mediterranea University of Reggio Calabria, Via Graziella, Località Feo di Vito, I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] Received: 30 April 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: One of the most promising systems to treat swine wastewater is air stripping. This system simultaneously recovers nitrogen salts, to be used as fertiliser, and reduces the organic pollutant load in the effluents of swine breeding farms. Several reviews have discussed the air stripping as a treatment for many types of industrial wastewater or nitrogen-rich digestate (the liquid effluent derived from the anaerobic digestion plants) for the stripping/recovery of nutrients. However, reviews about the use of air stripping as treatment for raw or anaerobically digested swine wastewater are not available in literature. To fill this gap, this study: (i) Summarises the experiences of air stripping for recovery of ammonium salts from both raw and digested swine wastewater; and (ii) compares air stripping efficiency under different operational conditions. Moreover, combined systems including air stripping (such as struvite crystallisation, chemical precipitation, microwave radiation) have been compared. These comparisons have shown that air stripping of raw and digested swine wastewater fits well the concept of bio-refinery, because this system allows the sustainable management of the piggery effluent by extracting value-added compounds, by-products, and/or energy from wastewater.
    [Show full text]
  • Material Safety Data Sheet Ferrous Ammonium Sulfate Hexahydrate MSDS
    He a lt h 1 0 Fire 0 1 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n E Material Safety Data Sheet Ferrous ammonium sulfate hexahydrate MSDS Section 1: Chemical Product and Company Identification Product Name: Ferrous ammonium sulfate hexahydrate Contact Information: Catalog Codes: SLF1990 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 7783-85-9 (Hexahydrate); 10045-89-3 (anhydrous) Houston, Texas 77396 RTECS: BR6500000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: No products were found. Ferrous Ammonium Sulfate hexahydrate is not TSCA listed Order Online: ScienceLab.com because it is a hydrate. CHEMTREC (24HR Emergency Telephone), call: CI#: Not applicable. 1-800-424-9300 Synonym: Ammonium ferrous sulfate, hexahydrate; Iron International CHEMTREC, call: 1-703-527-3887 ammonium sulfate hydrate; Sulfuric acid, ammomium iron For non-emergency assistance, call: 1-281-441-4400 (2+) salt, hexahydrate Chemical Name: Ammonium iron (II) sufate, hexahydrate (2:1:2:6) Chemical Formula: FeSO4(NH4)2SO4.6H2O Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Ferrous ammonium sulfate 7783-85-9 100 hexahydrate (Hexahydrate); 10045-89-3 (anhydrous) Toxicological Data on Ingredients: Ferrous ammonium sulfate hexahydrate: ORAL (LD50): Acute: 3250 mg/kg [Rat]. Section 3: Hazards Identification Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health Effects: p. 1 CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available.
    [Show full text]
  • Ammonium Chloride Safety Data Sheet According to Federal Register / Vol
    Ammonium Chloride Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Issue date: 07/24/2006 Revision date: 05/21/2020 Supersedes: 11/02/2016 Version: 2.2 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Ammonium Chloride CAS-No. : 12125-02-9 Product code : LC10972 Formula : NH4Cl Synonyms : amchlor / amchloride / ammonii chloridum / ammonium muriate / muriate of ammonia / sal ammoniac / salmiac 1.2. Recommended use and restrictions on use Use of the substance/mixture : Pharmaceutical product: component Electrolyte Fertilizer Laboratory chemical Chemical raw material Explosive: additive Food industry: additive Veterinary medicine Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem, Inc. 1010 Jackson's Pointe Ct. Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS US classification Acute toxicity (oral) Category 4 H302 Harmful if swallowed Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS US labeling Hazard pictograms (GHS US) : Signal word (GHS US) : Warning Hazard statements (GHS US) : H302 - Harmful if swallowed Precautionary statements (GHS US) : P264 - Wash exposed skin thoroughly after handling. P270 - Do not eat, drink or smoke when using this product. P301+P312 - IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
    [Show full text]
  • Effect of Various Chlorides and Calcium Carbonate on Calcium Phosphorus, Sodium, Potassium and Chloride Balance and Their Relationship to Urinary Calculi in Lambs D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota Sheep Field Day Research Reports, Animal Science Reports 1967 1967 Effect of Various Chlorides and Calcium Carbonate on Calcium Phosphorus, Sodium, Potassium and Chloride Balance and Their Relationship to Urinary Calculi in Lambs D. H. Bushman South Dakota State University R. J. Emerick L. B. Embry Follow this and additional works at: http://openprairie.sdstate.edu/sd_sheepday_1967 Recommended Citation Bushman, D. H.; Emerick, R. J.; and Embry, L. B., "Effect of Various Chlorides and Calcium Carbonate on Calcium Phosphorus, Sodium, Potassium and Chloride Balance and Their Relationship to Urinary Calculi in Lambs" (1967). South Dakota Sheep Field Day Research Reports, 1967 . Paper 1. http://openprairie.sdstate.edu/sd_sheepday_1967/1 This Report is brought to you for free and open access by the Animal Science Reports at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in South Dakota Sheep Field Day Research Reports, 1967 by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. South Dakota State University Brookings, South Dakota Animal Sc1.ence Dtpartment Agricultural Experiment Station A. S. Series 67-20 • EFFECT OF VARIOUS CHLORIDES AND CALCIUM CARBONATE ON CALCIUM, PHOSPHORUS, SODIUM, POTASSiffif AND CHLORIDE BALANCE AND THEIR RELATIONSHIP TO URINARY CALCULI IN LAMBS 1 2 3 D. H. Bushman , R. J. Emerick and L. B. Embry Various salts have· been used in ruminant rations in attempts to reduce the incidence of urinary calculi.
    [Show full text]
  • Honeywell Sulf-N® 26: a New Fertilizer for a New World
    Honeywell Sulf-N® 26: A New Fertilizer for a New World What’s at stake How Sulf-N® 26 can help Seven billion people need to eat every day and we need nitrogen fertilizers Powerful agricultural benefits to feed them …but nitrate fertilizers can be unsafe Safe to handle, transport, and store to transport and store …and nitrate fertilizers, especially ammonium nitrate, can be used Low detonation potential to make explosives Powerful agricultural benefits Equal or better crop yields and quality for a broad range of crop and soil combinations In multiple crop tests pitting Sulf-N® 26 • Dry solid fertilizer, 26-0-0-14S • 26% nitrogen (N) and 14% sulfur (S), against various combinations of nitrogen two essential nutrients plants need to thrive and sulfur fertilizers, Sulf-N® 26 has • Both critical forms of nitrogen delivered equal or superior crop yields - 6.5% nitrate nitrogen for early green up and quality. For grains, vegetables, tree - 19.5% ammonium nitrogen for healthier root zone crops, and berries – Sulf-N® 26 delivers. • Sulfate form of sulfur - Sulfate is immediately available to plants unlike other forms of sulfur - Plants need sulfur for maximum nitrogen uptake Compatibility with phosphorus Compatibility Ease of - World soils are increasingly sulfur and potassium with urea application deficient fertilizers Improves operational efficiency Difficult Ammonium nitrate Moderate Low “sugars” in hot, • Blends with other fertilizers and humid climates crop-protection chemicals unlike Calcium Moderate Good ammonium nitrate (AN) ammonium nitrate Moderate • Stable when stored with urea even in humid climates Urea High — Good - Retains particle integrity Sulf-N® 26 High High Good - Does not “sugar” like AN Safe to handle, transport, and store Safe to handle • Classified as non-hazardous • Safe to handle and apply unlike Ammonium nitrate accidents have killed other fertilizers such as anhydrous ammonia or injured thousands of people and cost • Can be safely impregnated with ® petroleum based pesticides billions of dollars.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]