Nuclear Power and Nuclear Weapons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Nuclear Waste Primer September 2016 What Is Nuclear Waste?
The Nuclear Waste Primer September 2016 What is Nuclear Waste? Nuclear waste is the catch-all term for anything contaminated with radioactive material. Nuclear waste can be broadly divided into three categories: • Low-level waste (LLW), comprised of protective clothing, medical waste, and other lightly-contaminated items • Transuranic waste (TRU), comprised of long-lived isotopes heavier than uranium • High-level waste (HLW), comprised of spent nuclear fuel and other highly-radioactive materials Low-level waste is relatively short-lived and easy to handle. Currently, four locations for LLW disposal exist in the United States. Two of them, Energy Solutions in Clive, Utah and Waste Control Specialists in Andrews, Texas, accept waste from any U.S. state. Transuranic waste is often a byproduct of nuclear weapons production and contains long-lived radioactive elements heavier than uranium, like plutonium and americium. Currently, the U.S. stores TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. High-level waste includes spent nuclear fuel and the most radioactive materials produced by nuclear weapons production. Yucca Mountain is the currently designated high-level waste repository for the United States. 1 | What is Spent Nuclear Fuel? Spent nuclear fuel (SNF), alternatively referred to as used nuclear fuel, is the primary byproduct of nuclear reactors. In commercial power reactors in the U.S., fuel begins as uranium oxide clad in a thin layer of zirconium-aluminum cladding. After several years inside of the reactor, around fi ve percent of the uranium has been converted in some way, ranging from short-lived and highly radioactive fi ssion products to long-lived actinides like plutonium, americium, and neptunium. -
IAEA Guidelines and Formatting Rules for Papers for Proceeding
Interactive Computer Codes for Education and Training on Nuclear Safety and Radioprotection Francisco leszczynski∗ RA-6 Division, Nuclear Engineering Unit, Bariloche Atomic Center, CNEA, Av.E.Bustillo 8500, S.C.de Bariloche, RN, Argentina Abstract. Two interactive computer codes for education and training on nuclear safety and radioprotection developed at RA6 Reactor Division-Bariloche Atomic Center-CNEA are presented on this paper. The first code named SIMREACT has been developed in order to simulate the control of a research nuclear reactor in real time with a simple but accurate approach. The code solves the equations of neutron punctual kinetics with time variable reactivity. Utilizing the timer of the computer and the controls of a PC keyboard, with an adequate graphic interface, a simulation in real time of the temporal behavior of a research reactor is obtained. The reactivity can be changed by means of the extraction or insertion of control rods. It was implemented also the simulation of automatic pilot and scram. The use of this code is focalized on practices of nuclear reactor control like start-up from the subcritical state with external source up to power to a desired level, change of power level, calibration of a control rod with different methods, and approach to critical condition by interpolation of the answer in function of reactivity. The second code named LICEN has been developed in order to help the studies of all the topics included in examination programs for obtaining licenses for research reactor operators and radioprotection officials. Using the PC mouse, with an adequate graphic interface, the student can gradually learn the topics related with general and special licenses. -
Ncomms9592.Pdf
ARTICLE Received 9 May 2015 | Accepted 9 Sep 2015 | Published 9 Oct 2015 DOI: 10.1038/ncomms9592 OPEN High-intensity power-resolved radiation imaging of an operational nuclear reactor Jonathan S. Beaumont1, Matthew P. Mellor2, Mario Villa3 & Malcolm J. Joyce1,4 Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. 1 Department of Engineering, Gillow Avenue, Lancaster University, Lancaster, LA1 4YW, UK. 2 Createc Ltd., Derwent Mills Commercial Park, Cockermouth CA13 0HT, UK. 3 Atominstitut, Vienna University of Technology, 1020 Vienna, Austria. 4 Hybrid Instruments Ltd., Unit 16, ICT Centre, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ, UK. Correspondence and requests for materials should be addressed to J.S.B. (email: [email protected]). NATURE COMMUNICATIONS | 6:8592 | DOI: 10.1038/ncomms9592 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. -
Evaluation of Covert Plutonium Production from Unconventional Uranium Sources
International Journal of Nuclear Security Volume 2 Number 3 Article 7 12-31-2016 Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources Ondrej Chvala University of Tennessee Steven Skutnik University of Tennessee Tyrone Christopher Harris University of Tennessee Emily Anne Frame University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/ijns Part of the Defense and Security Studies Commons, Engineering Education Commons, International Relations Commons, National Security Law Commons, Nuclear Commons, Nuclear Engineering Commons, Radiochemistry Commons, and the Training and Development Commons Recommended Citation Chvala, Ondrej; Skutnik, Steven; Harris, Tyrone Christopher; and Frame, Emily Anne (2016) "Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources," International Journal of Nuclear Security: Vol. 2: No. 3, Article 7. https://doi.org/10.7290/v7rb72j5 Available at: https://trace.tennessee.edu/ijns/vol2/iss3/7 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in International Journal of Nuclear Security by an authorized editor. For more information, please visit https://trace.tennessee.edu/ijns. Chvala et al.: Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources International Journal of Nuclear Security, Vol. 2, No. 3, 2016 Evaluation of Covert Plutonium Production from Unconventional Uranium Sources Tyrone Harris, Ondrej Chvala, Steven E. Skutnik, and Emily Frame University of Tennessee, Knoxville, Department of Nuclear Engineering, USA Abstract The potential for a relatively non-advanced nation to covertly acquire a significant quantity of weapons- grade plutonium using a gas-cooled, natural uranium-fueled reactor based on relatively primitive early published designs is evaluated in this article. -
Monica Mwanje on How Inclusion and Diversity Will Shape the Future of the Industry
www.nuclearinst.com The professional journal of the Nuclear Institute Vol. 16 #6 u November/December 2020 u ISSN 1745 2058 Monica Mwanje on how inclusion and diversity will shape the future of the industry BRANCH The latest updates from your region ROBOT WARS The future of contamination testing YGN Staying connected in a virtual world FOCUS ANALYSIS NET ZERO Why glossy marketing won’t New capabilities in radioactive Could nuclear-produced fix the gender diversity materials research hydrogen be the answer problem to climate change? u Network u Learn u Contribute u CNL oers exciting opportunities in the burgeoning nuclear and environmental clean-up eld. CNL’s Chalk River campus is undergoing a major transformation that requires highly skilled engineers, scientists and technologists making a dierence in the protection of our environment and safe management of wastes. PRESIDENT’S PERSPECTIVE 4 Gwen Parry-Jones on building a new normal NEWS, COLUMNS & INSIGHT 6-7 News 23 8-9 Branch news 10-11 BIG PICTURE: Robot Wars 12 Letters to the Editor 13 BY THE NUMBERS: Russia’s nuclear plans 14-15 MEMBER VALUE: Supporting diversity 18 News 19 Supply chains in the nuclear industry FEATURES 20-22 FOCUS: Fixing the gender diversity problem – by Jill Partington of Assystem 23-25 ANALYSIS: New capabilities in radioactive material research - by Malcolm J Joyce, Chris Grovenor and Francis Livens 26-27 NUCLEAR FOR NET ZERO: Could nuclear-produced hydrogen solve climate issues? - by Eric Ingersoll and Kirsty Gogan of LucidCatalyst 20 YOUNG GENERATION NETWORK -
Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid
energies Article Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid Sergio Ciattaglia 1, Maria Carmen Falvo 2,* , Alessandro Lampasi 3 and Matteo Proietti Cosimi 2 1 EUROfusion Consortium, 85748 Garching, Germany; [email protected] 2 DIAEE—Department of Astronautics, Energy and Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy; [email protected] 3 ENEA Frascati, 00044 Frascati, Rome, Italy; [email protected] * Correspondence: [email protected] Received: 31 March 2020; Accepted: 22 April 2020; Published: 1 May 2020 Abstract: Towards the middle of the current century, the DEMOnstration power plant, DEMO, will start operating as the first nuclear fusion reactor capable of supplying its own loads and of providing electrical power to the European electrical grid. The presence of such a unique and peculiar facility in the European transmission system involves many issues that have to be faced in the project phase. This work represents the first study linking the operation of the nuclear fusion power plant DEMO to the actual requirements for its correct functioning as a facility connected to the power systems. In order to build this link, the present work reports the analysis of the requirements that this unconventional power-generating facility should fulfill for the proper connection and operation in the European electrical grid. Through this analysis, the study reaches its main objectives, which are the definition of the limitations of the current design choices in terms of power-generating capability and the preliminary evaluation of advantages and disadvantages that the possible configurations for the connection of the facility to the European electrical grid can have. -
Endless Trouble: Britain's Thermal Oxide Reprocessing Plant
Endless Trouble Britain’s Thermal Oxide Reprocessing Plant (THORP) Martin Forwood, Gordon MacKerron and William Walker Research Report No. 19 International Panel on Fissile Materials Endless Trouble: Britain’s Thermal Oxide Reprocessing Plant (THORP) © 2019 International Panel on Fissile Materials This work is licensed under the Creative Commons Attribution-Noncommercial License To view a copy of this license, visit ww.creativecommons.org/licenses/by-nc/3.0 On the cover: the world map shows in highlight the United Kingdom, site of THORP Dedication For Martin Forwood (1940–2019) Distinguished colleague and dear friend Table of Contents About the IPFM 1 Introduction 2 THORP: An Operational History 4 THORP: A Political History 11 THORP: A Chronology 1974 to 2018 21 Endnotes 26 About the authors 29 About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006 and is an independent group of arms control and nonproliferation experts from both nuclear- weapon and non-nuclear-weapon states. The mission of the IPFM is to analyze the technical basis for practical and achievable pol- icy initiatives to secure, consolidate, and reduce stockpiles of highly enriched uranium and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to achieving nuclear disarmament, to halting the proliferation of nuclear weapons, and to ensuring that terrorists do not acquire nuclear weapons. Both military and civilian stocks of fissile materials have to be addressed. The nuclear- weapon states still have enough fissile materials in their weapon stockpiles for tens of thousands of nuclear weapons. On the civilian side, enough plutonium has been sepa- rated to make a similarly large number of weapons. -
Nuclear Radiation Health Effects
(C) Safety In Engineering Ltd Radiation health effects and nuclear accident consequences – an overview Jim Thomson www.safetyinengineering.com 1 Radiation doses and radiological hazards (C) Safety In Engineering Ltd • Other issue - Doserate effects - uncertain Dose/risk• Normal cancer risk ~ 30% Additional Cancer Risk 5% Region where data are available, e.g. from Hiroshima-Nagasaki Gradient = 5%/Sv survivors Delayed health effects (cancers) – the linear dose -risk hypothesis Region of interest for societal risk in nuclear Effective dose (Sv) reactor accidents 1 Sv 100% Risk due to radiation sickness Acute effects (radiation sickness) Effective dose (Sv) 3 4 5 2 Radiation doses and radiological hazards (C) Safety In Engineering Ltd • The Emergency Reference Level (ERL) = 300mSv effective dose • Very small fractionsRadiological of a reactor core’s inventory wouldhazards yield a major radiological hazard to the public if released off-site, e.g. typically a release of about one-millionth of the I-131 inventory in a reactor would equate to the Emergency Reference Level (ERL) for someone at the site boundary. Isotopes Characteristics Iodine - 131 Volatile. Beta/gamma thyroid-seeker. Short half life (8d). Effects can be mitigated by swallowing iodate tablets. Caesium - 137 Volatile. Permeates whole body (mimics sodium). Actinides May be air-borne by fine (e.g. Plutonium, Curium, particles of U 3O8 in accidents. Americium isotopes) Alpha lung and bone seeker. Very long half lives. 3 Radiation doses and radiological hazards (C) Safety In Engineering Ltd 4 different terms used:Radiological hazards DOSE is measured in Grays (Gy). 1 Gy = 1 Joule of radiation energy absorbed per kg of organ tissue DOSE-EQUIVALENT is measured in Sieverts (Sv). -
Chernobyl: Worst but Not First
(reprinted with permission from Bulletin of the Atomic Scientists, August/September 1986, www.thebulletin.org) Chernobyl: worst but not first Until Chernobyl, only two nuclear reactor accidents had spread significant amounts of ionizing radiation beyond the site of the mishap: a fire at the Windscale No. 1 plutonium production pile in northwest England in 1957, and a 1961 accident at an experimental prototype reactor in Idaho which killed three servicemen. Both the Stationary Low-Power reactor (SL-1) involved in the Idaho accident and the Windscale reactor were of novel and inadequate design; in a sense they were accidents waiting to happen. For that reason the Western nuclear industry now - perhaps too hastily - discounts those two accidents as minimally relevant to nuclear safety in the 1980s. It could make a similar mistake about Chernobyl. The Windscale No. 1 pile was the first large-scale reactor built in Britain; a second was built beside it. Each was cooled by blowing air through the fuel channels in the graphite core and discharging the air directly back to the atmosphere through a tall stack. This primitive system was dictated by the political urgency of Britain's bomb program, but it made the responsible scientists and engineers acutely nervous. While Sir John Cockcroft, head of Britain's Harwell nuclear center, was on a visit to Oak Ridge National Laboratory in the late 1940s, the reactor malfunctioned, sending radioactivity up the stack to settle on the site. Cockcroft returned to Britain insisting that a way be found to ensure that fuel damage in a Windscale reactor would not release uncontrolled radioactivity into the surroundings. -
Richard Batten1 University of Exeter a Significant Moment in The
Richard Batten Ex Historia 79 Richard Batten 1 University of Exeter A Significant Moment in the Development of Nuclear Liability and Compensation: Dealing With the Consequences of the Windscale Fire 1957. Introduction The fire at the Windscale Nuclear plant in October 1957 transformed an installation which was once a grand symbol of technological pride into a ‘dirty relic of an early nuclear age’. 2 Nuclear power became associated with destruction, accidents and unimaginable apocalyptic images which reinforced human fallibility and the erratic nature of nuclear material. 3 However, Britain’s post- war society was oblivious to the threat of a nuclear reactor experiencing a meltdown. In fact, during the fifties, politicians, scientists and the general public hoped that Britain’s ambitious atomic energy programme would offer an escape from its dependence on coal for the country’s energy requirements and restore the nation’s industrial prestige. David Edgerton pointed out in Warfare State that techno-nationalism had become a powerful ideology within the realities of ‘austerity Britain’. 4 By investing in nuclear technology, Britain was not only creating the right conditions for the country’s scientific growth but was also supporting its engineering and power- generating development. Hence, nuclear power was a key facet of Britain’s post-war future.5 1 Richard Batten's ( [email protected] ) academic interests include the development of nuclear power in the United Kingdom, the experiences of British agriculture in the twentieth century, and the social history of Britain during the First World War. He holds a BA (Hons.) in English and History (2007) and an MA in History (2008). -
England's Atomic Age. Securing Its Architectural and Technological Legacy
77 England’s Atomic Age. Securing its Architectural and Technological Legacy Wayne D. Cocroft Introduction Wales where a pilot uranium isotope separation plant was constructed.3 The building has been listed by Cadw. This paper presents a brief overview of places in England For many reasons, including cost, the threat from aerial that have been associated with atomic research, including the bombing and concerns that vital resources would be drawn early nuclear weapons programme, and especially those plac- away from more pressing tasks British knowledge and sci- es that have been afforded statutory protection. It describes entists were transferred to the US atomic bomb project – the the infrastructure of the civil nuclear power industry and how Manhattan Project. But, after the passing of the McMahon this legacy is being remediated to release land for new us- Act in 1946 the UK was denied access to US atomic work es. It concludes with a discussion of how Historic England‘s and embarked on its own nuclear weapons programme. Dur- strategy for the documentation of post-war coal and oil-fired ing this period the weapons and civil research programmes power stations that might be applied to the nuclear sector. often worked closely together drawing on a relatively small pool of scientific experts. Early history The development of the British atomic bomb From the late 19th century scientists in the United King- dom were part of an international community of pioneers The early research facilities allocated to the project were working to understand the structure of the atom. Important modest and included a small section of the Royal Arsenal, centres included the physics building at the University of Woolwich, and a redundant 19th century fortification, Fort Manchester, built in1900, where Ernest Rutherford, a New Halstead, Kent. -
Meimei Li (ANL), Jonathan D
FY 2016 NEET R&D Award - Investigating Grain Dynamics in Irradiated Materials with High-Energy X-rays PIs: Meimei Li (ANL), Jonathan D. Almer (ANL), Donald W. Brown(ORNL) DOE-NE Cross-cut Coordination Meeting August 16, 2016 Motivation – In situ Multiscale Experiment of Nuclear Reactor Materials with High-Energy X-rays Interstitials, Dislocation Grains, Stress-strain vacancies, segments, twins, behavior solutes, loops, network, phases, SFT, voids, cells, inclusions, bubbles, subgrains, pores, etc. precipitates, etc. etc. LOM SEM TEM High-Energy X-rays 2 Combined In situ High-Energy X-ray Techniques (APS Beamline 1-ID) SAXS detector High-energy, high-brilliance X-rays: • • HR detector Deep penetration • Filters & stop − mm-sized specimens Lab-scale − Suite of sample environments mechanical test • In situ, real-time studies 6m 5.5m 4.5m Very far-field detectors • 3 HR detectors 1m • Trans-rotate for high q-coverage 0 Far-field detectors • Near field-HEDM • 4 GE 2x2k detectors detector • @1m: qmax~25 1/A • Tomography • Center-hole (SAXS) • Conical slit • Lasers 3 In situ Thermal-Mechanical Experiment of Neutron- Irradiated Materials 4 In situ Characterization using 2D X-ray Techniques: Grain-Average Behavior 1 in 1 Diffraction peak shifts revealed load partitioning among phases during deformation Diffraction peak broadening revealed dislocation evolution during deformation SAXS captured void formation and evolution during Voids necking 5 High-Energy Diffraction Microscopy (3D-XRD): Individual Grain Characteristics . Three-dimensional, grain-scale characterization: – Characterization of microstructural and micromechanical response of individual grains within the bulk of a polycrystalline specimen. Near-field (nf-) HEDM (similar to 3D-EBSD): – Sample-detector distance: mm – cm • Grain shape and – Not suitable for in situ study orientation map with complex environments • Detailed GB geometry .