The Lunar Craters Alpetragius and Thales

Total Page:16

File Type:pdf, Size:1020Kb

The Lunar Craters Alpetragius and Thales 7 309 7 8 Two Probably Variable Nebulae. By E. E. Barnard. Mr. Denning has called attention to a nebula which I would specially recommend he discovered November 7, 1890,and gives the following careful observations of this nebula because I have had an experience position 1890.0 a = 3h56" d = +69"29'. i. with another new nebula in which I had previously discovered this nebula on August 23, I am positive of a light change. 1889. It was so singuIarly like a comet that I repeatedIy On November 30, 1888, I dis- measured it that night in hopes of detecting motion. Four covered a small pretty bright nebula hours observation however failed to show any displacement. @ in Cetus and was surprised from I again examined it the next night, and have observed it 8 the brightness of the nebula, to find several times since, and on one occasion independently that is was not in any catalogue. swept it up. It does not seem to have changed since my I carefully measured its position with the micrometer, and first observation. examined it the next night for motion, suspecting it to be It is I' diameter, round, very gradually brighter in a comet. No motion being detected it was not observed the middle with no nucleus. Its appearance is very much further. I have a very distinct recollection of the object like that of a comet of class I (see A. J. 246). It lies a little and from my description I would estimate that it was following the line and nearly midway between a xoth mag. between the 9th and lothmagnitudes. In its center was a star and an 8.3 mag. star (BD.8T4, AOe. 9m, Mr. Denning very small stellar nucleus of ihe 13~~mag. gives it as about 7 mag.). Not having seen the nebula in my subsequent sweeps From its brightness it is not possible that it has in that neighborhood, I was led in 1891 to examine its been so conspicuous for any great length of time, or it position with the 12inch. The nebula was found with some would surely have been found by Swift and others. Swift difficulty. It was extremely faint, and was only identified has 3 nebula in this region NGC. 1485 which he calls by the aid of the comparison star of the previous obser- e F, p S, R. The fact that Mr. Denning and I independently vation. This was November 22, 1891. I estimated it to found it within a little over a year is another proof that be 131,'~ magnitude, in diameter, with perhaps a faint it must be brighter than in previous years. nucleus. I again examined it on Dec. 24, 1891 and could The nebula should be watched as it will probably see a very faint nucleus. The nebula was estimated to be show signs of variability. 13 magnitude, round, in diameter. In a note it is re- Following are the measures of this nebula made on corded that from recollection, the nebula at these last ob- August 23, 1889, with the micrometer of the 12 inch servations could not be as bright as on Nov. 30, 1888. (neb.- *) : Following are the observations of the nebula 1888 da = -om5?20 (15 obs.), Ad = -3' 12:'o (6 obs.) Nov. 30 (neb.-*) : Comp. star: AOe. 4374-75 the place of which was d~l= + Im44?13 (10 obs.), Ad = -5' 47?2 (3 obs.). 1889.0 a = 3h56m22T2~,6 = +69O33' 5010. The comparison star was W, oh594 the position of which for a = Hence the place of the nebula is 1888.0was = 0~36~11f58,d -8O42'19l3, and the position of the nebula 1889.0 ct = 3h56mr7101,d = +69O30'38:'0. L( = d = I have a sketch of it made on the night of Aug. 23, 1888:o oh37"55?71, -8O48'6:'5. 1889, which corresponds to its appearance at subsequent The observations of Nov. 22, 1891 gave (neb.-*): observations. AU = +1~43?88(6 obs.), Ad -= .-5' 491'0 (3 obs.). hit. Hamilton. 1802 March 27. E. E. Barnard The Lunar Craters Alpetragius and Thales. By E. E. Barnnrd. I have never made a careful study of the Moon's that the attention of those interested in such work may be surface, but have casually examined it for a great many directed to the subject through the following remarks. years. Within the past two years I have witnessed two 1889 Sept. 3. While observing the occultation of Jupi- phenomena that may possibly be suggestive. ter my attention was attracted by the appearance of a small So little is really known that has a positive bearing crater which I have identified on Webb's Map of the Moon on evidence for a lunar atmosphere that it seems only (issued with $Celestial objects for common telescopes x) as just to print any observation, of which the observer is No. 205, Alpetragius. I was struck by the general haziness positive, that may be of evidence for or against the pre- of the interior of this crater at sidereal time 18~30'".Foll- sence of vapor on the Moon. I therefore do not hesitate owing are my notes accompanying a sketch. to give the following observations, but withhold any comments >The shadow of the central peak is diffused and pale. because of an unfamiliarity with lunar work. I trust however The entire inside of the crater seems to be filled with haze-. 9 309 7 10 or smoke. The shadow of the west wall is, however, black object, which I have identified as Thales, No. 36 on Webb's and well defined and. extends but a slight distance on the chart, appeared to be filled with pale luminous haze, while floor, but the central peak, its shadow and all the floor its neighbor 35, Strabo, further from the terminator, was seems to be seen through haze. None of the other craters filled with perfectly black shadow. The small crater (36) show this appearance, they are all clear and their shadows which was just free of the terminator, was a striking ob- are black and well defined. Magnifying power = goo and ject from the haziness of its interior. The walls also seemed 150. Observation from sidereal 18~30"' to lgh.a to be hazy. A number of different eyepieces were tried on 1889 Oct. 2. Sidereal 19~15~-19~25"'. %The shadow it, but the appearance was the same with all. In this case in Alpetragius is black and its outlines are sharp and ragged. there was no possible source of illumination of the interior The details inside the crater are clear. No haziness what- from reflection by neighboring mountains. The telescope ever. Seeing = 4 (on scale of 5); magnifying power = 700.' was repeatedly turned to the moon and the crater examined 1889 Oct. 3. Sidereal 19~3om-1gh 45'". Seeing = 5. but no change occurred in its ap- BAlpetragius appears a little hazy inside but the shadow pearance while the terminator had of central cone is perfectly black except at its south foll- advanced considerably beyond it. owing edge where it appears to have a slight penumbra. Seeing was 4 on a scale of 5 for It is certainly blacker than when observed Sept. 3. The perfect steadiness. 0bserva tions shadow of the preceding wall is black and sharp in outline. from sidereal Sh to tlh30rn when There appears to be a very slight haze in the bottom of clouds cut off the view. the crater. Other craters near are clear and sharp inside.a As bad weather has set in 1889 Oct. 4. Sidereal 2oh, seeing = 4, power = loo. again, and no chance will occur >The shadow of cone in Alpetragius is only a very slight for examining the crater soon while penumbra, and the entire interior is hazy and foggy. It favorably placed, I have thought has the same appearance as on Sept. 3. The shadow of it best to forward the observations the preceding wall is not black. There is a suspicion of promptly so that those interested a faint warmth of color to the interior of the crater.a in lunar work may be able to I have never continued these observations for fear observe the object at the next of injury to the sensitiveness of my eyesight, and should lunation. not have brought the subject forwards at all, had not a I enclose a'rude sketch of still more singular observation occurred to recall the cir- the position and appearance of cumstance. the crater Thales, which must in In examining the moon on the evening of 1892 no wise be taken as an accurate March 31 I was struck with the appearance of a small representation, as it was made crater near the terminator in the north west quadrant. This very hastily. Mt. Hamilton. 1802 ADril I. E. B Barnard Beobachtungen von Planeten und Cometen angestellt am Refractor der Sternwarte Kremsmiinster von Prof. F. Sckwab. Datum I M.Z.Kr. I da I dd I Vgl. I a app. 1 Par. I d app. 1 Par. k.adl. app. 1 * 1891 Planet (6) Hebe 9". Febr. 9 I 3h 5 51n565 +0"38f I 2 I0 '5 45 35 I -0 21.45 1891 Comet 1891 I. April 6 16 2 18 1-0 43.24 - I 10.4 I 5 I I 21 25.98 9.606,, +36 29 4.7 I o.86r I--1.97 - 5.6 j 2 1891 Comet Tempel,-Swift 1891 V. N0.v. 6 8 11 17 I +I 17.66 - o 3.9 1 Iz I 21 39 24.11 I +of581 + 8 57 19.6 +201)21 +I 72 +14.6, 3 Sept.
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]
  • Proposed Miscellaneous Rule Revisions
    DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY MAINE LAND USE PLANNING COMMISSION PROPOSED MISCELLANEOUS RULE REVISIONS Comment Draft The following revisions propose amendments to Chapter 10, land Use Subdistricts and Standards for areas within the Jurisdiction of the Maine Land Use Planning Commission. This document only includes relevant sections of Chapter 10, indicates additions in underline, deletions as strikethroughs, and relocations as double underline and double strikethroughs. Generally, these revisions include the following data corrections for one or more listings: ‐ Lake identification numbers; ‐ Resource ratings, resource class, land use designations, or management classification; ‐ Alphabetical order; ‐ Columnar data shifts; ‐ Minor civil division and lake name changes; and ‐ Improve legibility by changing font and adding border; and ‐ Add a footnote for lakes with more than one management class ALPHABETICAL LIST OF LAKES SHOWING WILDLANDS LAKE ASSESSMENT FINDINGS IF&W SIZE RESOURCE RATINGS RESOURCE LAND USE MGNT PRINCIPAL LAKE NAME LAKE # TOWN NAME REG (AC) FSH WLD SC SH BOT CLT PHY CLASS ACCESS DEV CLASS ABBIE P 3360 BOWMANTOWN TWP D 12 S 2 AC DEV ABOL DEADWATER 2058 T02 R10 WELS F 150 O S S 1B AC UNDEV ACKLEY P 2200 MOUNT CHASE F 19 S 2 AC UNDEV ALDER L 1778 T11 R04 WELS G 160 3 AC UNDEV ALDER P 0120 T03 R05 BKP WKR D 108 3 INAC UNDEV ALDER P 2504 ALDER BROOK TWP E 37 S S S 2 AC UNDEV ALLAGASH L 9787 T08 R14 WELS E 4260 O O O O S O 1A AC UNDEV 2 ALLAGASH P 2970 T09 R15 WELS G 89 S S 2 AC UNDEV ALLEN P 4516 T35
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
    Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.
    [Show full text]
  • UN I TED STATES DEPARTMENT of the INTERIOR Center Of
    IN REPLY REFER TO: UN I TED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Center of Astrogeology 601 East Cedar Avenue Flagsta.ff, Arizona 86001 November 30, 1971 Memorar1dum To Noel Hinr~ers, Chairman, ad hoc Site Selection Group, A,p_ollo 17 From William R. Muehlberger, Principal Investigator, s~059 Apoll~ Field Geology Investigations Subject: Candidate Apollo 17 landing sites The attached memorandum presents a summary of the recommen_ded sites for Apoilo 17'by. the.photogeologic mappers of the U.S. Geol6gical Survey and my group of Co-investigator's. Please consider this as our basic input to.your ad hoc site selection. group. You will note thaf Alphousus is third on our list--actually it is on the list only because it had b~en a candidate site for Apollo 17 }' c during the Apollo 16 deliberations. None of our group voted for it as their first choice in the slate of three sites herein presented. Littrow highlands was a bare majority over Gassendi; we would be pleased with either side for the Apollo 17 landing site. if·there is further information that we can contribute to your deliberations, please let me know and I'll get it to you. c .. "' . November 30, 1971 ·'· o. APOLLO FIELD GEOLOGY INVESTIGATIONS (S-059) EXPERIMENT GROUP RECOMMENDATIONS FOR APOLLO 17 LANDING SITES R<~;tionale a11c1 Recommemdations ·, Rationale The Apollo 17 mi·ssion to the moon will be 'the culmination and must provide the optim~l realization of the first stage of.man's sci"entific exp-loration of the moon. Our knowle·dge of the maori derived from the preceding Apollo mi~sions has grown with sufficient order~iness and comprehensiveness to indicate unambiguously that the m.a'jor unexplored region.
    [Show full text]
  • 304 Index Index Index
    _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R.
    [Show full text]
  • What's Hot on the Moon Tonight?: the Ultimate Guide to Lunar Observing
    What’s Hot on the Moon Tonight: The Ultimate Guide to Lunar Observing Copyright © 2015 Andrew Planck All rights reserved. No part of this book may be reproduced in any written, electronic, recording, or photocopying without written permission of the publisher or author. The exception would be in the case of brief quotations embodied in the critical articles or reviews and pages where permission is specifically granted by the publisher or author. Although every precaution has been taken to verify the accuracy of the information contained herein, the publisher and author assume no responsibility for any errors or omissions. No liability is assumed for damages that may result from the use of information contained within. Books may be purchased by contacting the publisher or author through the website below: AndrewPlanck.com Cover and Interior Design: Nick Zelinger (NZ Graphics) Publisher: MoonScape Publishing, LLC Editor: John Maling (Editing By John) Manuscript Consultant: Judith Briles (The Book Shepherd) ISBN: 978-0-9908769-0-8 Library of Congress Catalog Number: 2014918951 1) Science 2) Astronomy 3) Moon Dedicated to my wife, Susan and to my two daughters, Sarah and Stefanie Contents Foreword Acknowledgments How to Use this Guide Map of Major Seas Nightly Guide to Lunar Features DAYS 1 & 2 (T=79°-68° E) DAY 3 (T=59° E) Day 4 (T=45° E) Day 5 (T=24° E.) Day 6 (T=10° E) Day 7 (T=0°) Day 8 (T=12° W) Day 9 (T=21° W) Day 10 (T= 28° W) Day 11 (T=39° W) Day 12 (T=54° W) Day 13 (T=67° W) Day 14 (T=81° W) Day 15 and beyond Day 16 (T=72°) Day 17 (T=60°) FINAL THOUGHTS GLOSSARY Appendix A: Historical Notes Appendix B: Pronunciation Guide About the Author Foreword Andrew Planck first came to my attention when he submitted to Lunar Photo of the Day an image of the lunar crater Pitatus and a photo of a pie he had made.
    [Show full text]