A Model of the Earthquake Cycle Along the San Andreas Fault System for the Past 1000 Years Bridget R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction San Andreas Fault: an Overview
Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest. -
New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement
Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, August 1994 New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement by Donald L. Wells and Kevin J. Coppersmith Abstract Source parameters for historical earthquakes worldwide are com piled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the ad ditional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the fol lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface dis placement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface dis placement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, show ing standard deviations of 0.25 to 0.35 magnitude units. -
Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault Eileen L
Masthead Logo Smith ScholarWorks Geosciences: Faculty Publications Geosciences 3-2012 Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault Eileen L. Evans Harvard University John P. Loveless Harvard University, [email protected] Brendan J. Meade Harvard University Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs Part of the Geology Commons Recommended Citation Evans, Eileen L.; Loveless, John P.; and Meade, Brendan J., "Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault" (2012). Geosciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/geo_facpubs/21 This Article has been accepted for inclusion in Geosciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B03410, doi:10.1029/2011JB008398, 2012 Geodetic constraints on San Francisco Bay Area fault slip rates and potential seismogenic asperities on the partially creeping Hayward fault Eileen L. Evans,1 John P. Loveless,1,2 and Brendan J. Meade1 Received 28 March 2011; revised 17 November 2011; accepted 31 January 2012; published 31 March 2012. [1] The Hayward fault in the San Francisco Bay Area (SFBA) is sometimes considered unusual among continental faults for exhibiting significant aseismic creep during the interseismic phase of the seismic cycle while also generating sufficient elastic strain to produce major earthquakes. Imaging the spatial variation in interseismic fault creep on the Hayward fault is complicated because of the interseismic strain accumulation associated with nearby faults in the SFBA, where the relative motion between the Pacific plate and the Sierra block is partitioned across closely spaced subparallel faults. -
JONATHAN DONALD BRAY Faculty Chair in Earthquake Engineering Excellence Professor of Geotechnical Engineering University of California at Berkeley
JONATHAN DONALD BRAY Faculty Chair in Earthquake Engineering Excellence Professor of Geotechnical Engineering University of California at Berkeley Office Address: Department of Civil and Environmental Engineering 453 Davis Hall, MC-1710 University of California Berkeley, CA 94720-1710 Office Phone: (510) 642-9843 Cell Phone: (925) 212-7842 E-Mail: [email protected] EDUCATION UNIVERSITY OF CALIFORNIA, Berkeley, California Ph.D. in Geotechnical Engineering, 1990 STANFORD UNIVERSITY, Palo Alto, California M.S. in Structural Engineering, 1981 UNITED STATES MILITARY ACADEMY, West Point, New York B.S., 1980 AWARDS AND HONORS National Academy of Engineering, elected in 2015. Mueser Rutledge Lecture, American Society of Civil Engineers Metropolitan Section, New York, 2014 Ralph B. Peck Award, American Society of Civil Engineers, 2013 Fulbright Award, U.S. Fulbright Scholarship to New Zealand, 2013 William B. Joyner Lecture Award, Seismological Society of America & Earthquake Engineering Research Institute, 2012 Erskine Fellow, University of Canterbury, Christchurch, New Zealand, 2012 Thomas A. Middlebrooks Award, American Society of Civil Engineers, 2010 Fellow, American Society of Civil Engineers, 2006 Shamsher Prakash Research Award, Shamsher Prakash Foundation, 1999 Walter L. Huber Civil Engineering Research Prize, American Society of Civil Engineers, 1997 American Society of Civil Engineers Technical Council on Forensic Engineering Outstanding Paper Award, 1995 North American Geosynthetics Society - State of the Practice Award of Excellence, 1995 North American Geosynthetics Society - Geotechnical Engineering Technology Award of Excellence, 1993 David and Lucile Packard Foundation Fellowship for Science and Engineering, 1992-1997 Presidential Young Investigator Award, National Science Foundation, 1991-1996 American Society of Civil Engineers Trent R. Dames and William W. -
Gregory C. Beroza Department of Geophysics, 397 Panama Mall, Stanford, CA, 94305-2215 Phone: (650)723-4958 Fax: (650)725-7344 E-Mail: [email protected]
Gregory C. Beroza Department of Geophysics, 397 Panama Mall, Stanford, CA, 94305-2215 Phone: (650)723-4958 Fax: (650)725-7344 E-Mail: [email protected] Positions • Wayne Loel Professor of Earth Sciences, Stanford University 2008-present • Professor of Geophysics, Stanford University 2003-present • Associate Professor of Geophysics, Stanford University 1994-2003 • Assistant Professor of Geophysics, Stanford University 1990-1994 • Postdoctoral Associate, Massachusetts Institute of Technology 1989-1990 Education Ph.D. Geophysics, Massachusetts Institute of Technology 1989 B.S. Earth Sciences, University of California at Santa Cruz 1982 Honors and Awards • Lawson Lecturer, University of California Berkeley 2015 • Beno Gutenberg Medal, European Geosciences Union 2014 • Citation, Geophysical Research Letters, 40th Anniversary Collection 2014 • IRIS/SSA Distinguished Lecturer 2012 • RIT Distinguished Lecturer 2011 • Wayne Loel Professor of Earth Sciences 2009 • Brinson Lecturer, Carnegie Institute of Washington 2008 • Fellow, American Geophysical Union 2008 • NSF Presidential Young Investigator Award 1991 • NSF Graduate Fellowship 1983 • ARCS Foundation Scholarship 1983 • UCSC Chancellor’s Award for Undergraduates 1983 • Outstanding Undergraduate in Earth Science 1983 • Highest Honors in the Major 1982 • Undergraduate Thesis Honors 1982 Recent Professional Activities • Associate Editor, Science Advances 2016-present • AGU Seismology Section President 2015-present • IRIS Industry Working Group 2015-present Gregory C. Beroza Page 2 • Co-Director, -
Region of the San Andreas Fault, Western Transverse Ranges, California
Thrust-Induced Collapse of Mountains— An Example from the “Big Bend” Region of the San Andreas Fault, Western Transverse Ranges, California By Karl S. Kellogg Scientific Investigations Report 2004–5206 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. iii Contents Abstract ……………………………………………………………………………………… 1 Introduction …………………………………………………………………………………… 1 Geology of the Mount Pinos and Frazier Mountain Region …………………………………… 3 Fracturing of Crystalline Rocks in the Hanging Wall of Thrusts ……………………………… 5 Worldwide Examples of Gravitational Collapse ……………………………………………… 6 A Spreading Model for Mount Pinos and Frazier Mountain ………………………………… 6 Conclusions …………………………………………………………………………………… 8 Acknowledgments …………………………………………………………………………… 8 References …………………………………………………………………………………… 8 Illustrations 1. Regional geologic map of the western Transverse Ranges of southern California …………………………………………………………………………… 2 2. Simplified geologic map of the Mount Pinos-Frazier Mountain region …………… 2 3. View looking southeast across the San Andreas rift valley toward Frazier Mountain …………………………………………………………………… 3 4. View to the northwest of Mount Pinos, the rift valley (Cuddy Valley) of the San Andreas fault, and the trace of the Lockwood Valley fault ……………… 3 5. -
I Final Technical Report United States Geological Survey National
Final Technical Report United States Geological Survey National Earthquake Hazards Reduction Program - External Research Grants Award Number 08HQGR0140 Third Conference on Earthquake Hazards in the Eastern San Francisco Bay Area: Science, Hazard, Engineering and Risk Conference Dates: October 22nd-26th, 2008 Location: California State University, East Bay Principal Investigator: Mitchell S. Craig Department of Earth and Environmental Sciences California State University, East Bay Submitted March 2010 Summary The Third Conference on Earthquake Hazards in the Eastern San Francisco Bay Area was held October 22nd-26th, 2008 at California State University, East Bay. The conference included three days of technical presentations attended by over 200 participants, a public forum, two days of field trips, and a one-day teacher training workshop. Over 100 technical presentations were given, including oral and poster presentations. A printed volume containing the conference program and abstracts of presentations (attached) was provided to attendees. Participants included research scientists, consultants, emergency response personnel, and lifeline agency engineers. The conference provided a rare opportunity for professionals from a wide variety of disciplines to meet and discuss common strategies to address region-specific seismic hazards. The conference provided participants with a comprehensive overview of the vast amount of new research that has been conducted and new methods that have been employed in the study of East Bay earthquake hazards since the last East Bay Earthquake Conference was held in 1992. Topics of presentations included seismic and geodetic monitoring of faults, trench-based fault studies, probabilistic seismic risk analysis, earthquake hazard mapping, and models of earthquake rupture, seismic wave propagation, and ground shaking. -
Nehrp Final Technical Report
NEHRP FINAL TECHNICAL REPORT Grant Number: G16AP00097 Term of Award: 9/2016-9/2017, extended to 12/2017 PI: Whitney Maria Behr1 Quaternary geologic slip rates along the Agua Blanca fault: implications for hazard to southern California and northern Baja California Abstract The Agua Blanca and San Miguel-Vallecitos Faults transfer ~14% of San Andreas-related Pacific-North American dextral plate motion across the Peninsular Ranges of Baja California. The Late Quaternary slip histories for the these faults are integral to mapping how strain is transferred by the southern San Andreas fault system from the Gulf of California to the western edge of the plate boundary, but have remained inadequately constrained. We present the first quantitative geologic slip rates for the Agua Blanca Fault, which of the two fault is characterized by the most prominent tectonic geomorphologic evidence of significant Late Quaternary dextral slip. Four slip rates from three sites measured using new airborne lidar and both cosmogenic 10Be exposure and optically stimulated luminescence geochronology suggest a steady along-strike rate of ~3 mm/a over 4 time frames. Specifically, the most probable Late Quaternary slip rates for the Agua Blanca Fault are 2.8 +0.8/-0.6 mm/a since ~65.1 ka, 3.0 +1.4/-0.8 mm/a since ~21.8 ka, 3.4 +0.8/-0.6 mm/a since ~11.8 ka, and 3.0 +3.0/-1.5 mm/a since ~1.6 ka, with all uncertainties reported at 95% confidence. These rates suggest that the Agua Blanca Fault accommodates at least half of plate boundary slip across northern Baja California. -
Preliminary 2021 National Seismic Hazard Model for Hawaii
Preliminary 2021 National Seismic Hazard Model for Hawaii M. Petersen, A. Shumway, P. Powers, M. Moschetti, A. Llenos, A. Michael, C. Mueller, D. McNamara, A. Frankel, P. Okubo, Y. Zeng, S. Rezaeian, K. Jaiswal, J. Altekruse, S. Ahdi, and K. Rukstales USGS Update of the Hawaii Seismic Hazard Model Workshop #2 Virtual Workshop (Microsoft Teams) – November 18, 2020 U.S. Department of the Interior These data are preliminary or provisional and are subject to revision. They are being provided to meet the need for U.S. Geological Survey timely best science. The data have not received final approval by the U.S. Geological Survey (USGS) and are provided Geologic Hazard Science Center (Golden, CO) on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the data ■ USGS https://earthquake.usgs.gov/hazards/ sciencefor a changingworld Microsoft Teams Control Bar • When not speaking, please mute your microphone (or please do not be offended if the moderator does it for you!) • When not speaking, please turn off your camera. This also helps save bandwidth, which can help with picture and audio quality issues. • If you have a question, please "raise your hand" or type your question or comment into the meeting chat. Click on the hand when you are done to "unraise your hand". ■ • Troubleshooting: Try leaving and re-entering the meeting. Share your screen Web App Desktop App 00 - co L.....J8 r;ni_,J ••• ■ ◄ ~I [_+Jt ,_ leave v See participants ~USGS USGS Update -
A Pattern of Seismicity in Southern California: the Possibility of Earthquakes Triggered by Lunar and Solar Gravitational Tides
A Pattern of Seismicity in Southern California: The Possibility of Earthquakes Triggered by Lunar and Solar Gravitational Tides David Nabhan Helen Keller wrote that the heresy of one age is the orthodoxy of the next, giving ample proof that although sightless, she possessed extraordinary vision. Moreover, it has been said that every new fact must pass through a crucible by which first it is ignored or ridiculed, then vigorously attacked, and finally accepted as though the truth had been apparent from the beginning. Earthquake prediction is no exception but for the anomaly that the first two stages have endured far longer than what the immense populations on the U.S. West Coast might hope to expect regarding a matter so important to their safety and welfare. Residents of Southern California have been left with a bewildering set of claims and counter-claims regarding this issue for many decades. While scientific data Seismic Gap Probabilities. Author's collection. can be presented any number of ways to say any number of things, there is another arbiter that, weighed alongside the conflicting findings, may allow fair-minded observers to come to their own cogent conclusions: history. There exists a long and verifiable record of events on the Pacific Coast and elsewhere David Nabhan, SDSU alumnus, is the author of Earthquake Prediction: Answers in Plain Sight (2012) and two other books on the subject. He is directing a public opinion campaign to impel the governor of California to convene the California Earthquake Prediction Evaluation Council for the purposes of determining the viability or fallibility of a seismic safety plan. -
Geologic, Climatic, and Vegetation History of California
GEOLOGIC, CLIMATIC, AND VEGETATION HISTORY OF CALIFORNIA Constance I. Millar I ntroduction The dawning of the “Anthropocene,” the era of human-induced climate change, exposes what paleoscientists have documented for decades: earth’s environment—land, sea, air, and the organisms that inhabit these—is in a state of continual flux. Change is part of global reality, as is the relatively new and disruptive role humans superimpose on environmental and climatic flux. Historic dynamism is central to understanding how plant lineages exist in the present—their journey through time illuminates plant ecology and diversity, niche preferences, range distributions, and life-history characteristics, and is essential grounding for successful conservation planning. The editors of the current Manual recognize that the geologic, climatic, and vegetation history of California belong together as a single story, reflecting their interweaving nature. Advances in the sci- ences of geology, climatology, and paleobotany have shaken earlier interpretations of earth’s history and promoted integrated understanding of the origins of land, climate, and biota of western North America. In unraveling mysteries about the “what, where, and when” of California history, the respec- tive sciences have also clarified the “how” of processes responsible for geologic, climatic, and vegeta- tion change. This narrative of California’s prehistory emphasizes process and scale while also portraying pic- tures of the past. The goal is to foster a deeper understanding of landscape dynamics of California that will help toward preparing for changes coming in the future. This in turn will inform meaningful and effective conservation decisions to protect the remarkable diversity of rock, sky, and life that is our California heritage. -
1In His E-Mail Dated March 26, 1997, Supplementing His Petition, The
DD-97-23 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REACTOR REGULATION Samuel J. Collins, Director In the Matter of ) ) SOUTHERN CALIFORNIA EDISON COMPANY ) Docket Nos. 50-361 ) and 50-362 (San Onofre Nuclear Generating ) 10 CFR § 2.206 Station, Units 2 and 3 ) DIRECTOR’S DECISION UNDER 10 CFR § 2.206 I. INTRODUCTION By Petition dated September 22, 1996, Stephen Dwyer (Petitioner) requested that the Nuclear Regulatory Commission (NRC) take action with regard to San Onofre Nuclear Generating Station (SONGS). The Petitioner requested that the NRC shut down the SONGS facility “as soon as possible” pending a complete review of the “new seismic risk.”1 The Petitioner asserted as a basis for this request that a design criterion for the plant, which was “0.75 G’s acceleration,” is “fatally flawed” on the basis of new information gathered at the Landers and Northridge earthquakes. The Petitioner asserted (1) that the accelerations recorded at Northridge exceeded “1.8G’s and it was only a Richter 7+ quake,” (2) that there were horizontal offsets of up to 20 feet in the Landers quake, and (3) that the Northridge fault was a “Blind Thrust and not mapped or assessed.” On November 22, 1996, the NRC staff acknowledged receipt of the 1In his e-mail dated March 26, 1997, supplementing his Petition, the Petitioner also requested removal of "all spent fuel out of the southern California seismic zone." - 2 - Petition as a request pursuant to 10 CFR 2.206 and informed the Petitioner that there was insufficient evidence to conclude that the requested immediate action was warranted.