Physical and Chemical Controls on the Abundance and Composition of Stream Microbial Mats from the Mcmurdo Dry Valleys, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Physical and Chemical Controls on the Abundance and Composition of Stream Microbial Mats from the Mcmurdo Dry Valleys, Antarctica PHYSICAL AND CHEMICAL CONTROLS ON THE ABUNDANCE AND COMPOSITION OF STREAM MICROBIAL MATS FROM THE MCMURDO DRY VALLEYS, ANTARCTICA by TYLER JOE KOHLER B.S., Kansas State University, 2007 M.S., University of Nebraska, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Environmental Studies Program 2015 This thesis entitled: Physical and chemical controls on the abundance and composition of Dry Valley stream microbial mats written by Tyler Joe Kohler has been approved for the Environmental Studies Program Diane McKnight Patrick Kociolek Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Kohler, Tyler Joe (Ph.D., Environmental Studies) Physical and chemical controls on the abundance and composition of stream microbial mats from the McMurdo Dry Valleys, Antarctica Thesis directed by Professor Diane M. McKnight ABSTRACT The McMurdo Dry Valleys of Antarctica are a cold, dry desert, yet perennial microbial mats are abundant in the ephemeral glacial meltwater streams that flow during austral summers. Three types of mats are present (orange, black, and green), and are primarily comprised of filamentous cyanobacteria, Nostoc, and chlorophytes, respectively. Mat types furthermore occupy distinct habitats within streams, utilizing the benthos, hyporheic zone, and water column, which expose them to different environmental conditions. Due to a lack of lateral inflows, allochthonous organic inputs, and negligible grazing activity, these streams are ideal for the controlled ecological study of microbial mats. Here, I investigated how mats will respond to physical disturbance, alterations in the hydrologic regime, and nutrient liberation from permafrost melt in the future. Specifically, I: 1) quantified and characterized the regrowth of mat biomass, community structure, and elemental stoichiometry after a scouring disturbance, 2) investigated how geomorphology and taxonomic identity influences the response of mat biomass to hydrologic regime in transects monitored over two decades, and 3) evaluated relationships between water chemistry and the elemental and isotopic composition of mat types over longitudinal and valley-wide gradients in Taylor Valley. I found that mats recovered ~20-50% of their biomass over the course of an austral summer following scour. Algal communities were significantly different in composition between disturbed and control treatments, but all samples naturally varied in species and elemental stoichiometry over the study period. When the long- term record of mat biomass was compared with hydrologic variables, stream channel mats (orange and green) had the greatest correlations, while marginal mats (black) showed weaker relationships with flow regime. Relationships also differed as a function of stream geomorphology, indicating the importance of substrata and gradient in conjunction with discharge. Lastly, mats showed unique elemental and isotopic compositions. Green and orange mats within the stream channel most reflected water column nutrient concentrations, while black mats showed significant nitrogen fixation. These results highlight the importance of taxonomic identity and habitat to modeling primary production here and elsewhere, and provide insight to how stream microbial mat communities are formed, maintained, and ultimately persist in an isolated polar desert. iii ACKNOWLEDGEMENTS There is no way to adequately thank all the people that have helped with these projects over the last five years, and it is similarly problematic to make a comprehensive list of everyone that I am indebted to. Please forgive me, for I have certainly left a lot of people out. For the rest, here is your “green dot.” First and foremost, I would like to thank my advisor, Diane McKnight. Not only did she support me even when doing things that made entirely no sense, but she can also make a spectacular strawberry-rhubarb pie. I would also like to thank my committee members, Pat Kociolek, Dan Liptzin, Jeb Barrett, and Sarah Spaulding for all their intellectual and emotional support over the last five years. Last but not least, thanks to my unofficial advisor Lee Stanish, for all of the emergency meetings and for leaving me a solid phycological path to follow. There is a special comradery between Dry Valley castaways with nothing to do on a weather day but play Settlers of Catan and Wizards. I would therefore like to give a shout out to my Antarctic family: Adrian Howkins, Jenny Erwin, Adam Lost-house-key, Emily Bernzott, Dave Van Horn, Alia Khan, Jon Denner, Garret Rue and his stupid trophy, Devin Castendyk, Aneliya Sakaeva, and Steven “Stinky Cheese” Crisp. A very special green dot goes to the big brother I never had, Chris Jaros, for teaching me all the stuff I probably should have already known. Thanks Chris. Green dots also go to honorary Asgard Rangers Kathi (and best office mate ever!) Hell, Kathy Welch, Thomas (Taco) Nylen, Amy Chiuchiolo, and Hilary Dugan. The Lake Hoare camp staff, Rae Spain and Kathy Schroeder, made sure I was well fed, clean, and on time for helicopters (93% success rate – good enough for a green dot). Thanks also to the McMurdo carpenters, PHI helicopter pilots, Crary Laboratory staff, and the awesome people of MacTown that made all the field campaigns successful. While this dissertation deals with algae in Antarctica, the bulk of the last half-decade was not spent there. In fact, it was spent in Boulder, Colorado, sometimes even away from INSTAAR, with some of the greatest people on Earth. That said, a very special thanks to John Berggren for being an incredible roommate, despite operating under what many would call challenging conditions. RIP Sev. Same goes for Bobby Moelter, and without his direction and encouragement, I would not have my own mug at the Walnut, nor would I be able to consistently out-fish John. To all the other Edge folks – Jessie, Katie, Matt, Theo, Tristan, Sarah, Mike, Megan, Alex, Margi – you guys are the best, thanks for being friends. For help with sample analyses, I would like to thank both the Kiowa Lab at the University of Colorado (Holly Hughes, Hanna Ding, Holly Shuss, Michael Brunetti) and Stefania Mambelli at the University of California Berkeley Center for Stable Isotope Biogeochemistry, both of whom rocked it. Thanks also to Samantha Weintraub and Tim Seastedt for allowing me to use their instruments, Eric Parrish for his help with maps, and Shelly Sommer for looking for papers that I promise exist. Steve Juggins and Dan Liptzin were indispensable in their statistical assistance. A very large, enthusiastic thank you goes to Chad Stoffel and Tara Hess for always fixing my computer and showing me how to make it stop sounding like a lawnmower (even if the solution was to stick a pencil in it), and to Penny Bates – sorry for all the migraines, and thanks for all you do for us. iv “Accurate” taxonomic identifications would not have been possible without opinions from Kateřina Kopalová, Jiři Komárek, Otakar Strunecký, Eci Jovanovska, Zlatko Levkov, Kalina Manoylov, Bart Van de Vijver, and Myriam de Haan. I would like to further thank the Distributed European School of Taxonomy, the Botanic Garden Meise, and Charles University in Prague for use of their facilities, and all the homies at Iowa Lakeside Laboratory for their invigorating discussions about algae and songs about Aphanizomenon. For nutrition during this hectic time, I would like to acknowledge King Soopers’ donuts (#2505), Big City Burrito, La Choza (at all locations), John and Theo’s home cooking, that Asian market on 28th street, The Walnut Brewery, Bumper Bars (but only the banana ones), Kate’s sack lunches, Swedish fish, and Bruce Vaughn for helping me achieve optimum daily caffeination with his coffee machine. I also owe Kate Kopalová and the Argentinians a big muchas gracias for introducing me to maté, which helped me back away somewhat from said coffee machine. Movement Climbing and Fitness chipped in with free hotdogs every July, and Tupac and Biggie provided the soundtrack. Financial support was provided as research assistantships by National Science Foundation Antarctic Organisms and Ecosystems Program (Award #0839020), the MCMLTER (OPP- 1115245), as well as numerous TA positions generously offered through Environmental Studies and under the supervision of Lisa Dilling (also an honorary committee member), Ryan Vachon, Max Boycoff, Dan Doak, and Jason Neff. Lastly, I would like to acknowledge waldeinsamkeit for keeping me off the streets, Brady Kohler for being an amazing brother and Yugioh opponent, Mom and Dad for having faith that one day I will have a real job (although I still don’t have a real job), and the mates back home that always have a PBR waiting. See ya Tuesday, -Tabasco Kid v CONTENTS CHAPTER I. ANTARCTIC STREAM ECOLOGY ......................................................1 Introduction .........................................................................................1 Arrangement of dissertation ..............................................................12 References .........................................................................................15 II. RECOVERY OF ANTARCTIC STREAM EPILITHON FROM SIMULATED SCOURING EVENTS ............................................................................22
Recommended publications
  • Bacterial Community Composition of Size-Fractioned Aggregates Within the Phycosphere of Cyanobacterial Blooms in a Eutrophic Freshwater Lake
    Bacterial Community Composition of Size-Fractioned Aggregates within the Phycosphere of Cyanobacterial Blooms in a Eutrophic Freshwater Lake Haiyuan Cai1, Helong Jiang1*, Lee R. Krumholz2, Zhen Yang1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China, 2 Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America Abstract Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (.100 mm), medium (10–100 mm) and small (0.2–10 mm) size aggregates. Species richness and library coverage indicated that pyrosequencing recovered a large bacterial diversity. The community of each size aggregate was highly organized, indicating highly specific conditions within the Microcystis phycosphere. While the communities of medium and small-size aggregates clustered together in August and September samples, large- and medium-size aggregate communities in the October sample were grouped together and distinct from small-size aggregate community. Pronounced changes in the absolute and relative percentages of the dominant genus from the two most important phyla Proteobacteria and Bacteroidetes were observed among the various size aggregates. Bacterial species on large and small-size aggregates likely have the ability to degrade high and low molecular weight compounds, respectively. Thus, there exists a spatial differentiation of bacterial taxa within the phycosphere, possibly operating in sequence and synergy to catalyze the turnover of complex organic matters.
    [Show full text]
  • ~©L%~Bulletin No
    The International Council for Science ~©L%~bulletin No. 150 July 2003 Measures, Decisions and Resolutions adopted at the Twenty-fifth Antarctic Treaty Consultative Meeting Warsaw, Poland, 10-20 September 2002 p 1 = Published by the SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom THE INTERNATIONAL COUNCIL FOR SCIENCE SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH SCAR BULLETIN No 150, July 2003 Twenty-fifth Antarctic Treaty Consultative Meeting Warsaw, Poland, 10-20 September 2002 Decisions, Resolutions and Measures MEASURE 1 (2002) Antarctic Protected Area System: Management Plans Antarctic Specially Protected Area No 124, Cape for Antarctic Specially Protected Areas Crozier, Ross Island; The Representatives, Antarctic Specially Protected Area No 126, Byers Recalling Resolution 1 (1998) allocating responsibility Peninsula, Livingston Island; among Consultative Parties for the revision of Management Antarctic Specially Protected Area No 130, "Tram­ Plans for Protected areas; way Ridge", Mount Erebus, Ross Island; Noting that the draft Management Plans appended to this • Antarctic Specially Protected Area No 137, North­ Measure have been endorsed by the Committee for west White Island, McMurdo Sound; Environmentqal Protection and the Scientific Committee • Antarctic Specially Protected Area No 147, Abla­ on Antarctic Research (SCAR); tion Point - Ganymede Heights; Recognizing that these Areas support outstanding natural Antarctic Specially Protected Area No 148, Mount features and biota of scientific interest; Flora, Hope Bay; Recommend to their Governments the following Measure Antarctic Specially Protected Area No 157, Back­ for approval in accordance with paragraph 1 of Article 6 of door Bay, Cape Royds, Ross Island. Annex V to the Protocol on Environmental Protection to and which are annexed to this Measure, be adopted.
    [Show full text]
  • Zooming in on the Phycosphere: the Ecological Interface for Phytoplankton–Bacteria Relationships Justin R
    REVIEW ARTICLE PUBLISHED: 30 MAY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17065 Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships Justin R. Seymour1*, Shady A. Amin2,3, Jean-Baptiste Raina1 and Roman Stocker4 By controlling nutrient cycling and biomass production at the base of the food web, interactions between phytoplankton and bacteria represent a fundamental ecological relationship in aquatic environments. Although typically studied over large spa- tiotemporal scales, emerging evidence indicates that this relationship is often governed by microscale interactions played out within the region immediately surrounding individual phytoplankton cells. This microenvironment, known as the phycosphere, is the planktonic analogue of the rhizosphere in plants. The exchange of metabolites and infochemicals at this interface governs phytoplankton–bacteria relationships, which span mutualism, commensalism, antagonism, parasitism and competition. The importance of the phycosphere has been postulated for four decades, yet only recently have new technological and conceptual frameworks made it possible to start teasing apart the complex nature of this unique microbial habitat. It has subsequently become apparent that the chemical exchanges and ecological interactions between phytoplankton and bacteria are far more sophisticated than previously thought and often require close proximity of the two partners, which is facilitated by bacterial col- onization of the phycosphere. It is also becoming increasingly clear that while interactions taking place within the phycosphere occur at the scale of individual microorganisms, they exert an ecosystem-scale influence on fundamental processes including nutrient provision and regeneration, primary production, toxin biosynthesis and biogeochemical cycling. Here we review the fundamental physical, chemical and ecological features of the phycosphere, with the goal of delivering a fresh perspective on the nature and importance of phytoplankton–bacteria interactions in aquatic ecosystems.
    [Show full text]
  • Molecular Mechanisms Involved in Prokaryotic Cycling of Labile Dissolved Organic Matter in the Sea
    Molecular mechanisms involved in prokaryotic cycling of labile dissolved organic matter in the sea Linnaeus University Dissertations No 412/2021 MOLECULAR MECHANISMS INVOLVED IN PROKARYOTIC CYCLING OF LABILE DISSOLVED ORGANIC MATTER IN THE SEA BENJAMIN PONTILLER LINNAEUS UNIVERSITY PRESS Molecular mechanisms involved in prokaryotic cycling of labile dissolved organic matter in the sea Doctoral Dissertation, Department of Biology and Environmental Science, Linnaeus University, Kalmar, 2021 ISBN: 978-91-89283-65-7 (print), 978-91-89283-66-4 (pdf) Published by: Linnaeus University Press, 351 95 Växjö Printed by: Holmbergs, 2021 Abstract Pontiller, Benjamin (2021). Molecular mechanisms involved in prokaryotic cycling of labile dissolved organic matter in the sea, Linnaeus University Dissertations No 412/2021, ISBN: 978-91-89283-65-7 (print), 978-91-89283-66-4 (pdf) . Roughly half of the global primary production originates from microscopic phytoplankton in marine ecosystems, converting carbon dioxide into organic matter. This organic matter pool consists of a myriad of compounds that fuel heterotrophic bacterioplankton. However, knowledge of the molecular mechanisms – particularly the metabolic pathways involved in the degradation and utilization of dissolved organic matter (DOM) – and transcriptional dynamics over spatiotemporal gradients are still scarce. Therefore, we studied the molecular mechanisms of bacterioplankton communities, including archaea, involved in the cycling of DOM, over different spatiotemporal scales in experiments and through field observations. In seawater experiments, we found a divergence of bacterioplankton transcriptional responses to different organic matter compound classes (carbohydrates, nucleic acids, and proteins) and condensation states (monomers or polymers). These responses were associated with distinct bacterial taxa, suggesting pronounced functional partitioning of these compounds in the Sea.
    [Show full text]
  • Draft ASMA Plan for Dry Valleys
    Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation.
    [Show full text]
  • Terrestrial Biology
    Terrestrial biology Impacts of ultraviolet-B radiation and regional warming on antarctic vascular plants THOMAS A. DAY, CHRISTOPHER T. R UHLAND, and FUSHENG XIONG, Department of Plant Biology, Arizona State University, Tempe, Arizona 85287-1601 he Antarctic Peninsula provides a unique opportunity to tion. Additionally, key enzymes in the photosynthetic Calvin T examine the influence of climate change on plants. Cycle of these species appear sensitive to higher temperatures Stratospheric ozone depletion events over the continent dur- and further depress photosynthetic rates. ing spring and early summer lead to well-documented Because of the sensitivity of the photosynthetic apparatus enhanced levels of ultraviolet-B (UV-B) radiation [280-320 to higher temperatures in these species, continued regional nanometers (nm); UV-B] levels (Booth et al. 1994; Madronich warming might prove detrimental to their performance on the et al. 1995). In addition, mean summer air temperatures along peninsula, but an assessment of their performance under ris- the peninsula have risen more than 1°C in the last 45 years ing temperatures also depends on (Smith 1994; Smith, Stammerjohn, and Baker 1996). • their ability to acclimate photosynthetically to warmer The 1996–1997 field season (November to March) was the growing temperatures as well as second year of our main field experiment on Stepping Stones • how well photosynthetic rates predict plant growth rates Island, near Palmer Station, Antarctic Peninsula. We are using and overall performance. filters to manipulate UV levels and temperatures around natu- With respect to acclimation, when we grew both species rally growing plants of Deschampsia antarctica (antarctic hair under contrasting temperature regimes (ranging from 7 to 20°) grass) and Colobanthus quitensis (antarctic pearlwort), the in growth chambers at Arizona State University, their photo- only vascular plant species native to Antarctica.
    [Show full text]
  • The Antarctic Sun, January 16, 2005
    Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program January 16, 2005 Bye plane Russians retrieve their plane By Kristan Hutchison Sun staff Russia sent a big plane to pick up the little one this week. Artur Chilingarov, Deputy chairman of the Russian State Duma, returned to Antarctica to retrieve the biplane he had left there three years ago. He came with a group of mechanics and media on an Ilyushin 76 cargo plane, under the auspices of the Russian polar program. “We were sorry we couldn’t return the same year,” Chilingarov said through an interpreter. Chilingarov had been aboard the Antonov 3T biplane when it originally flew from Patriot Hills to South Pole in January 2002. After landing at the Pole, the biplane had a problem when the pilot tried to restart it and had to be left behind. Chilingarov was waiting at Pegasus ice runway when the biplane landed Tuesday after its 6 1/2 hour flight from the Pole. A strong tailwind helped the plane during the flight, allowing it to complete the journey without refueling. The Antonov 3T biplane landed at McMurdo the same way it originally had at the South Pole, show- ing off first by circling the runway and tipping its wings Photo by Kristan Hutchison / The Antarctic Sun at the small cluster of watchers below. Politician and polar explorer Artur Chilingarov, center, welcomes the pilot of the After celebratory hugs and photos, the Russian Antonov 3T biplane after its flight from South Pole to McMurdo Station while Michael See Biplane on page 10 Orkin, from the independent Russian station NTV, films the moment.
    [Show full text]
  • United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
    160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main
    [Show full text]
  • Authors' Response to Reviews Dear Editors, We Appreciate the Two
    Authors’ Response to Reviews Dear editors, We appreciate the two reviewers’ thoughtful comments and detailed assessment of the archive. We have provided our detailed responses to the both reviewers’ questions in red, as well as the revised manuscript with associated tracked changes, below. Warwick Vincent I could not find the supplementary material (Table S1) that is referred to. Thank you for bringing this to our attention, we have uploaded the supplementary material (Table S1) with the revised manuscript. Concerning data quality: the data set is accessible via the given identifier, and is complete as a first collection that can now be updated. The data quality is variable – some images are only poorly resolved and have many imperfections (e.g. dust on the slide lens or scanner, poor color rendition), and the metadata are not always complete be-cause the exact date is unknown. The authors might note this by saying that the quality and resolution are variable, but an inclusive approach was taken to maximize the scope of the database. We agree that it is important to note the variable quality of the data and metadata and have added an explanation to the revised manuscript as suggested. Further points: The images are taken by many people and "copyright for each item re-mains with the respective contributor" – in that case, how would permission be obtained to reproduce any of these materials, for example in another publication? Unless otherwise stated, copyright for each item in the database remains with the respective contributor. If a reader wanted to gain permission to use the material in another venue, they would need to contact us or the copyright holder directly.
    [Show full text]
  • 2003-2004 Science Planning Summary
    2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Project Indexes Project websites List of projects by principal investigator List of projects by USAP program List of projects by institution List of projects by station List of projects by event number digits List of deploying team members Teachers Experiencing Antarctica Scouting In Antarctica Technical Events Media Visitors 2003-2004 USAP Field Season USAP Station Schedules Click on the station name below to retrieve a list of projects supported by that station. Austral Summer Season Austral Estimated Population Openings Winter Season Station Operational Science Opening Summer Winter 20 August 01 September 890 (weekly 23 February 187 McMurdo 2003 2003 average) 2004 (winter total) (WinFly*) (mainbody) 2,900 (total) 232 (weekly South 24 October 30 October 15 February 72 average) Pole 2003 2003 2004 (winter total) 650 (total) 27- 34-44 (weekly 17 October 40 Palmer September- 8 April 2004 average) 2003 (winter total) 2003 75 (total) Year-round operations RV/IB NBP RV LMG Research 39 science & 32 science & staff Vessels Vessel schedules on the Internet: staff 25 crew http://www.polar.org/science/marine. 25 crew Field Camps Air Support * A limited number of science projects deploy at WinFly. 2003-2004 USAP Field Season Technical Events Every field season, the USAP sponsors a variety of technical events that are not scientific research projects but support one or more science projects.
    [Show full text]
  • Meteorological Connectivity from Regions of High Biodiversity Within the Mcmurdo Dry Valleys of Antarctica
    NOVEMBER 2019 K A T U R J I E T A L . 2437 Meteorological Connectivity from Regions of High Biodiversity within the McMurdo Dry Valleys of Antarctica a,e b c a d a M. KATURJI, B. KHAN, M. SPRENGER, R. DATTA, K. JOY, P. ZAWAR-REZA, d AND I. HAWES a Department of Geography, Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand b Institute of Meteorology and Climate Research–Atmospheric Environmental Research (IMK-IFU), Karlsruher Institut fur̈ Technologie, Garmisch-Partenkirchen, Germany c Institute for Atmospheric and Climate Science, ETH Zurich,€ Zurich, Switzerland d School of Biological Science, University of Waikato, Hamilton, New Zealand (Manuscript received 10 January 2019, in final form 26 August 2019) ABSTRACT Meteorological connectivity between biological hot spots of the McMurdo Dry Valleys (MDVs) of Antarctica is thought to play a role in species distribution and abundance through the aeolian transport of bioaerosols. Understanding the potential role of such meteorological connectivity requires an understanding of near-surface wind flow within and between valley airsheds. To address this, we applied Lagrangian wind trajectory modeling to mesoscale (spatial resolution of ;1 km) weather model output to predict connectivity pathways, focusing on regions of high biodiversity. Our models produce maps of a likelihood metric of wind connectivity that demonstrate the synoptic and mesoscale dependence of connections between local, near- local, and nonlocal areas on wind transport, modulated by synoptic weather and topographic forcing. These connectivity areas can have spatial trends modulated by the synoptic weather patterns and locally induced topographically forced winds. This method is transferrable to other regions of Antarctica for broader ter- restrial, coastal, and offshore ecological connectivity research.
    [Show full text]
  • Lakes, Ponds and Streams of the Ross Sea Sector, Antarctica
    Biodiversity and Conservation 5, 1451-1471 (1996) Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica W.F. VINCENT* D~partement de biologie et Centre d'(tudes nordiques, Universit~ Laval, Sainte Foy G IK 7P4, Canada M.R. JAMES National Institute of Water and Atmospheric Research Ltd, Christchurch, New Zealand Received 19 June 1995; accepted 16 August 1995 The Ross Sea Sector (RSS) of Antarctica lies between the lines of longitude 150°E and 150°W and contains diverse landscapes with a variety of lakes, ponds and streams. Neither insects nor crustacean species have been recorded in these ecosystems but most contain planktonic and/or benthic communities that are composed exclusively of microscopic organisms. Microbial biodiversity is low with a small number of species (e.g. filamentous cyanobacteria of the family Oscillatoriaceae) occurring under a broad range of environmental conditions throughout the region. There is no evidence to date of microbial endemism in the RSS; however, there is a need to apply molecular and cellular techniques to compare biodiversity and genetic characteristics with assemblages elsewhere in Antarctica and with comparable communities in the north polar zone. A series of hypotheses are advanced to help guide further work. These derive from the conclusion that environmental extremes plus biogeographical isolation control the biodiversity of RSS communities, and that biological interactions (competition, grazing, predation, parasitism) are weak and play a minor
    [Show full text]