Management Plan for Antarctic Specially Managed Area No. 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osl Dating of High-Elevation Alluvial Sediments: Mcmurdo Dry
OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Meridith Ann Ramsey In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Program: Environmental and Conservation Science November 2014 Fargo, North Dakota North Dakota State University Graduate School Title OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA By Meridith Ann Ramsey The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Kenneth Lepper Chair Adam Lewis Lisa Montplaisir Approved: 04/16/2015 Eakalak Khan Date Department Chair ABSTRACT High-elevation alluvial fans in the McMurdo Dry Valleys are a record of short-term, occasional melting events along the margins of the East Antarctic Ice Sheet. Sediment samples were dated from five fans using Optically Stimulated Luminescence (OSL) dating. OSL dates the time since quartz grains were last exposed to sunlight; all sample preparation takes place in a dark room. Thirteen samples were dated for this thesis, the ages were stratigraphically consistent and ranged from 1.1 ka to 105.9 ka. Clusters of fan activity occurred between 1.1 and 3.1 ka and 8.1 and 11.1 ka. The melting events appear to be linked to insolation, with periods of fan activity occurring usually at times of increased mean annual insolation. The alluvial fans show promise as a possible archive for climate proxies in this region of Antarctica. -
A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I. -
Microbial Dispersal Limitation to Isolated Soil Habitats in the Mcmurdo Dry Valleys
bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial dispersal limitation to isolated soil habitats in the McMurdo Dry Valleys 2 of Antarctica 3 4 Stephen D.J. Archer1,2, Kevin C. Lee2, Tancredi Caruso3, Teruya Maki4, Charles K. Lee5, 5 Don A. Cowan6, Fernando T. Maestre7, Stephen B. Pointing1,8 6 7 1 Yale-NUS College, National University of Singapore, Singapore 138527 8 2 Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland 9 1142, New Zealand 10 3 School of Biological Sciences and Global Institute for Food Security, Queen's University 11 Belfast, Belfast BT9 7BL, Northern Ireland, UK 12 4 Department of Chemical Engineering, Kanazawa University, Kanazawa 920-1192, Japan 13 5 International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton 14 3240, New Zealand 15 6 Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0002, South 16 Africa 17 7 Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de 18 Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 19 Móstoles, Spain 20 8 Department of Biological Sciences, National University of Singapore, Singapore 117558 21 1 bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
(Bio)Chemical Complexity in Icy Satellites, with a Focus on Europa
Searching for (bio)chemical complexity in icy satellites, with a focus on Europa Contact Scientist: Olga Prieto-Ballesteros ([email protected]) Centro de Astrobiología (CSIC-INTA) Ctra. De Ajalvir km. 4, 28850 Torrejón de Ardoz. Madrid. Spain VOYAGE 2050. Searching for (bio)chemical complexity in icy satellites, with a focus on Europa TABLE OF CONTENTS TABLE OF CONTENTS 1 1. EXECUTIVE SUMMARY 2 2. THE SCIENCE QUESTION 3 2.1 BASIS OF THE STRATEGY TO SEARCH FOR LIFE IN THE SOLAR SYSTEM 3 2.2 THE SEARCH FOR COMPLEXITY 5 3. THE SPACE MISSION STRATEGY 7 3.1 MISSION DESTINATION: EUROPA 7 3.1.1 Main elements of the mission 8 3.1.2 Exploration of the plumes 10 3.2 THE MISSION IN A WORLDWIDE CONTEXT 11 4. TECHNOLOGICAL CHALLENGES 12 4.1 Europa orbiter 12 4.2 Europa lander 12 4.3 Europa ocean explorer 13 4.4 Europa jumper 14 4.5 Key Instrumentation 14 5. MEMBERS OF THE PROPOSER TEAM 16 6. REFERENCES 18 1 VOYAGE 2050. Searching for (bio)chemical complexity in icy satellites, with a focus on Europa SEARCHING FOR (BIO)CHEMICAL COMPLEXITY IN ICY SATELLITES, WITH A FOCUS ON EUROPA 1. EXECUTIVE SUMMARY Organic chemistry is ubiquitous in the Solar System. A significant repertoire of organic molecules has been detected in bodies outside the Earth (e.g., in meteorites, in cometary nuclei, on Mars or on icy moons), but none of the detected organic mixtures has enough complexity to indicate Life. There are a number of potentially habitable bodies in the solar system where water, chemical gradients and energy coexist, in particular Mars and the icy moons of the giant planets. -
Mcmurdo Dry Valleys, Southern Victoria Land
Measure 1 (2004) Annex Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas. -
Microclimate and Weathering Processes in the Area of Darwin
relationship between the folds reported by Burgess (in Findlay, R. H. 1978. Provisional report on the geology of the region press) and those described here cannot be determined from between the Renegar and Blue Glaciers, Antarctica. New Zealand present evidence. Antarctic Record, 1, 39-44. Skinner (1964, 1965) named the rocks at Mt. Madison the Grindley, G. W., McGregor, V. R., and Walcott, R. I. 1964. Outline Selborne Marble and distinguished them from the Shack- of the geology of the Nimrod-Beardmore-Axel Heiberg Glaciers region, Ross dependency. In Adie (Ed.), leton Limestone due to their higher metamorphic grade. He R. J. Antarctic geology. Amsterdam: North-Holland Publishing. suggested that they may be Precambrian in age, correlative with the Nimrod Group in the Miller Range (Grindley, Skinner, D. N. B. 1964, A summary of the geology of the region McGregor, and Walcott 1964). If this is the case, deforma- between Byrd and Starshot glaciers, south Victoria Land, In Adie (Ed.), Antarctic geology. Amsterdam: North-Holland tion at Mt. Madison is probably not related to the Shackle- R. J. Publishing. ton Limestone south of Byrd Glacier. Skinner, D. N. B. 1965. Petrographic criteria of the rock units To me, lithologies at Mt. Madison appear similar to those between the Byrd and Starshot Glaciers, south Victoria Land, of the Shackleton Limestone and pelitic Dick Formation Antarctica. New Zealand Journal of Geology and Geophysics, 8, (Skinner 1965), and I would suggest that the Selborne Mar- 292-303. ble is a metamorphosed equivalent of those two formations. Skinner, D. N. B. In press. Stratigraphy and structure of lower The metamorphic grade suggests an adjacent granitic pluton grade metasediments of Skelton Group, McMurdo Sound—Does north of Mt. -
The Antarctic Treaty
The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents. -
Spatiotemporal Impact of Snow on Underwater Photosynthetically Active Radiation in Taylor Valley, East Antarctica Madeline E
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School June 2019 Spatiotemporal Impact of Snow on Underwater Photosynthetically Active Radiation in Taylor Valley, East Antarctica Madeline E. Myers Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Myers, Madeline E., "Spatiotemporal Impact of Snow on Underwater Photosynthetically Active Radiation in Taylor Valley, East Antarctica" (2019). LSU Master's Theses. 4965. https://digitalcommons.lsu.edu/gradschool_theses/4965 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SPATIOTEMPORAL IMPACT OF SNOW ON UNDERWATER PHOTOSYNTHETICALLY ACTIVE RADIATION IN TAYLOR VALLEY, EAST ANTARCTICA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Madeline Elizabeth Myers B.A., Louisiana State University, 2016 August 2019 TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................................. -
U.S. Advance Exchange of Operational Information, 2005-2006
Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo. -
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC). -
Physiological Characteristics of Fungi Associated With
PHYSIOLOGICAL CHARACTERISTICS OF FUNGI ASSOCIATED WITH ANTARCTIC ENVIRONMENTS by Priyanka Sushil Kudalkar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Resources and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2016 ©COPYRIGHT by Priyanka Sushil Kudalkar 2016 All Rights Reserved ii DEDICATION To my dearest Manjiri, Mumma and Pappa, for always believing in me and letting me follow my dreams. iii ACKNOWLEDGEMENTS First and foremost, I would like to thank my academic advisor Dr. John Priscu, for accepting me as a graduate student and guiding me through research and thesis work. Without his valuable guidance, feedback, and unending patience, this project would not have been possible. I would also like to convey my deepest thanks to my committee members, Dr. Cathy Cripps and Dr. Gary Strobel for serving on my committee and for providing me with their valuable inputs. They both have been instrumental in amplifying my interest in Science since my undergraduate research and have always strived to make research a wonderful learning experience for all their students. I am grateful to Dr. Lillian Lin and Christopher Barbour from the Statistical Consulting and Research Service for providing statistical advice and R code. Thanks to Edward Barge for generously helping me with the initial DNA sequencing of my samples. I would like to thank my labmates for all their help, friendship and advice. My sincere appreciation to Dr. Cathy Cripps and Trista Vick- Majors for providing valuable feedback during earlier iterations of this thesis. I would also like to thank all my friends from India and Bozeman who have played such an important role in making sure that I was not alone during this process.