Materials Science and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Materials Science and Engineering FALL 2019 MATERIALS SCIENCE AND ENGINEERING ‘TROJAN HORSE’ ANTICANCER DRUG DISGUISES ITSELF AS FAT Promising system delivers chemo drug straight into tumors with fewer side effects stealthy new drug-delivery system developed by Professor ANathan Gianneschi disguises chemotherapeutics as fat in order to outsmart, penetrate, and destroy tumors. Thinking the drugs are tasty fats, tumors invite the drug inside. Once there, the targeted drug activates, immediately suppressing tumor growth. The drug also is A modified chemotherapy drug hitches a ride through the bloodstream on human serum albumin. lower in toxicity than current chemotherapy drugs, leading to fewer side effects. (HSA), which carries molecules, including In the study, the researchers used the “It’s like a Trojan horse. It looks like a nice fats, throughout the body. drug delivery system to carry a common, little fatty acid, so the tumor’s receptors The body’s cellular receptors recognize FDA-approved chemotherapy drug, see it and invite it in. Then the drug starts the fats and proteins supplied by the HSA paclitaxel, into tumors in a small animal getting metabolized and kills the tumor and allow them inside. Quick-growing and model. Disguised as fat, the drug entered cells,” said Gianneschi, Jacob and Rosalind hungry, cancer cells consume the nutrients and completely eliminated the tumors in Cohn Professor of Chemistry, Materials much faster than normal cells. When three types of cancer: bone, pancreatic, Science and Engineering, and Biomedical the cancer cells metabolize the hidden and colon. Engineering. drug, they die. Even better: the researchers found they To develop the targeting system, “It’s like the fatty acid has a hand on could deliver 20 times the dose of paclitaxel Gianneschi and his team engineered a both ends: one can grab onto the drug and with their system, compared to two other long-chain fatty acid with two binding sites one can grab onto proteins,” Gianneschi paclitaxel-based drugs. But even at such — able to attach to drugs — on each end. said. “The idea is to disguise drugs as fats a high quantity, the drug in Gianneschi’s The fatty acid and its hitchhiking drugs are so that they get into cells and the body is system was still 17 times safer. then hidden inside human serum albumin happy to transport them around.” FROM THE CHAIR spaces, Professors Vinayak Dravid their commitment to scholarship and Rosaline Cohn Professor of Dear Friends, and John Rogers have moved and inspirational mentorship. We Chemistry, Materials Science their research groups to newly are grateful to the many former and Engineering, and Biomedical ummer always ends too constructed labs in an “in-fill” students and colleagues who Engineering, who moved to quickly, but as the fall quarter space between the A and B wings traveled to Evanston to share their Northwestern in 2017. Sapproaches at Northwestern, in the northwest corner of the heartfelt remembrances of this If you will be visiting campus for we’re looking forward to welcoming Technological Institute. On the remarkable couple. We continue to Northwestern’s Homecoming on new students and new spaces. Chicago campus, the Simpson be inspired by their example. Friday, October 26th, please stop Construction is proceeding Querry Institute, directed by As you’ll read in this issue, by the department office in the rapidly on renovations to the Professor Sam Stupp, will expand research efforts continue apace in afternoon to see the new space and Department of Materials Science into the new Simpson Querry a wide range of materials-related visit with old friends. and Engineering’s (MSE) teaching Biomedical Research Center, the areas, including biomedicine, Lastly, thank you to all who so lab, and we anticipate completion largest biomedical academic computational materials, and generously contributed funds to in time for fall classes. Relocated research building in the US. materials for computing, energy, the department, the Fine Lecture, to the main Cook Hall corridor, Professor Rogers, Professor Mark colloids, coatings, and more. These Jerome Cohen Professorship, and the renovated space will increase Hersam, and Professor Nathan efforts have been recognized with the Weertman Graduate Fellowship. MSE visibility to passersby. Gianneschi are among the MSE significant awards. MSE faculty The main teaching space is faculty part of this effort. led two teams that earned two designed to better facilitate active While we look forward to the Department of Energy Ten at Ten learning and small group work, innovations emerging from these Awards celebrating a decade of the with experimental stations new spaces, we have also taken Energy Frontier Research Center around the perimeter of the main time to honor the department’s program. In addition, faculty are room and two adjacent support legacy. Sadly, we lost both Hans and pursuing research in emerging rooms for materials processing, Julia Weertman within months of areas. Professor Hersam and synthesis, and characterization. each other in 2018. The Weertman Professor James Rondinelli, for The space is bright, modern, and Symposium, held last November, example, have received support to will enhance the MSE learning highlighted the breadth and depth explore quantum computing. experience at all levels. of their work in materials and The cover story introduces Erik Luijten In addition to new teaching geological sciences, as well as Professor Gianneschi, the Jacob Department Chair Northwestern Awarded $3.6 Million to Study Quantum Computing US Department of Energy calls field ‘next frontier’ in the Information Age group of Northwestern Mark Hersam, Walter P. Murphy University engineers and Professor of Materials Science and Quantum Information Science uses chemists have been awarded Engineering, and James Rondinelli, Morris the next generation of computing and $3.6 million from the US E. Fine Junior Professor in Materials and information processing. ADepartment of Energy to support their Manufacturing, are co-investigators on the work of creating better qubits, the Basic Energy Sciences grant project. of uses in the fields of medicine, science, smallest unit of a quantum computer. Possible long-term QIS applications and national security. Additionally, The grant is one of 85 research awards, include quantum computers capable of quantum computing is expected to totaling $218 million, focused on the solving large, extremely complex problems revolutionize the field of encryption, emerging field of Quantum Information that are beyond the capacity of today’s which is key to cybersecurity. Science (QIS), which is expected to lay most powerful supercomputers. Quantum The awards were made in conjunction the foundation for the next generation of systems also could be used to create with the White House Summit on computing and information processing. extremely sensitive sensors, with a variety Advancing American Leadership in QIS. 2 Northwestern University • McCormick School of Engineering SENSORS ARE FIRST TO MONITOR BABIES IN THE NICU WITHOUT WIRES Soft, flexible sensors provide clinical-grade measurements, allow physical bonding between baby and parent n interdisciplinary Northwestern University team led by Professor John Rogers has developed a pair of soft, flexible wireless Asensors that replace the tangle of wire- based sensors that currently monitor babies in hospitals’ neonatal intensive care units and pose a barrier to parent-baby cuddling and physical bonding. The team completed a series of first human studies on 70 premature babies at Prentice Women’s Hospital and Ann & Robert H. Lurie Children’s Hospital of Chicago. The researchers concluded that the wireless sensors provided data as precise and accurate as that from traditional monitoring systems. The Above: Professor John Rogers outside his lab on the Evanston campus. Left: By placing a sensor wireless patches also are gentler on a on the baby’s foot, doctors can measure core newborn’s fragile skin and allow for more and body temperature. skin-to-skin contact with the parent. Existing sensors must be attached with scientists, engineers, dermatologists, adhesives that can scar and blister and pediatricians. premature newborns’ skin. Rogers estimates that his wireless “We were able to reproduce all of the sensors will appear in American hospitals functionality that current wire-based within the next two to three years. sensors provide with clinical-grade With support from two major nonprofit precision,” said Rogers, the Louis organizations, Rogers’s team expects Simpson and Kimberly Querrey Professor to send sensors to tens of thousands of of Materials Science and Engineering, families in developing countries over the Biomedical Engineering and Neurological the other sensor wraps around a foot. next year as part of an international effort. Surgery. “Our wireless, battery-free, (The chest sensor measures 5 centimeters skin-like devices give up nothing in terms by 2.5 centimeters; the foot sensor is of range of measurement, accuracy, 2.5 centimeters by 2 centimeters. Each and precision — and they even provide sensor weighs about the same as a “WE WERE ABLE TO advanced measurements that are clinically raindrop.) This strategy allows physicians REPRODUCE ALL OF important but not commonly collected.” to gather an infant’s core temperature THE FUNCTIONALITY The benefits of the new technology as well as body temperature from a reach beyond its lack of wires — peripheral region. THAT CURRENT measuring more than what’s possible “Differences in temperature between WIRE-BASED SENSORS with today’s clinical standards. the foot and the chest have great clinical PROVIDE WITH The dual wireless sensors monitor importance in determining blood flow CLINICAL-GRADE babies’ vital signs — heart rate, respiration and cardiac function. That’s something rate, and body temperature — from that’s not commonly done today,” said PRECISION.” opposite ends of the body. One sensor Rogers, who co-led the study published JOHN ROGERS lays across the baby’s chest or back, while in the journal Science with materials Materials Science and Engineering • Fall 2019 3 PROFESSOR EMERITUS JOHANNES WEERTMAN PASSES AWAY Weertman was an expert ohannes Weertman, Walter P.
Recommended publications
  • Nathan P. Guisinger Education and Training: Northwestern University Materials Sci. and Eng. Ph.D. 2005 University of Illinois
    Nathan P. Guisinger Education and Training: Northwestern University Materials Sci. and Eng. Ph.D. 2005 University of Illinois Electrical Engineering B.S. 1999 Career Goals: Sustain and grow a research program that explores the big questions at the cutting edge of materials science and discovery, leads the field and sets scientific direction, and provides an environment of leadership, risk-taking, innovation, results and thoughtful advising in which to mold and develop the next generation of scientists. Research and Professional Experience: (The referencing relates to the following 10 publications) 2007-Present Scientist (ANL) - Staff scientist at the Center for Nanoscale Materials who has developed a leading effort towards materials discovery, synthesis, characterization, and processing. We are leading the discovery on new materials,1 the exploration of novel synthesis and characterization,2-7 and tailoring material properties.8,9 Ten Highlight Publications: (2 Science, 4 Nature Journals, and over 1500 citations combined for these 10) 1. A. J. Mannix, X.- F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, “Synthesis of borophenes, anisotropic, two-dimensional boron polymorphs.” Science 350, 1513 (2015). 2. R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M . McElhinny, G. J. Brady, R. R. Delgado, S. S. Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, M. S. Arnold, “Direct oriented growth of armchair graphene nanoribbons on germanium.” Nat.
    [Show full text]
  • Low Frequency Electronic Noise in Single-Layer Mos2 Transistors
    Low Frequency Electronic Noise in Single-Layer MoS2 Transistors Vinod K. Sangwan,1|| Heather N. Arnold,1|| Deep Jariwala,1 Tobin J. Marks,1,2 Lincoln J. Lauhon,1 and Mark C. Hersam1,2,* 1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA. 2Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA. *e-mail: [email protected] KEYWORDS: molybdenum disulfide, transition metal dichalcogenide, 1/f noise, generation- recombination noise, Hooge parameter, nanoelectronics ABSTRACT: Ubiquitous low frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (< 10-5 Torr). The field-effect 1 mobility decreased and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 K to 6.5 K. TEXT: Recently, ultrathin films of transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique electrical and optical properties.1-4 In particular, single- 5-7 8, 9 layer MoS2 is being heavily explored for low-power digital electronics, light detection and emission,10 valley-polarization,4 and chemical sensing applications.11 However, inherent low frequency electronic noise (i.e., 1/f noise or flicker noise) could limit the ultimate performance of MoS2 for these applications.
    [Show full text]
  • Nano2 Study Arlington, Virginia December 6, 2010
    Nanotechnology Long-term Impacts and Research Directions: 2000 – 2020 Overview of the Nano2 Study Arlington, Virginia December 6, 2010 Mark C. Hersam and Chad A. Mirkin Department of Materials Science and Engineering Department of Chemistry Northwestern University http://www.hersam-group.northwestern.edu/ http://chemgroups.northwestern.edu/mirkingroup/ Panel Members Mike Roco Chad Mirkin, Co-Chair Mark Hersam, Co-Chair (NSF) (Northwestern) (Northwestern) Dawn C. Jeffrey Evelyn Mark André Jeffrey Bonnell Brinker Hu Lundstrom Nel Welser (Penn) (Sandia) (Harvard) (Purdue) (UCLA) (IBM) Additional Committee Members Mark Tuominen, University of Massachusetts Amherst (Synthesis, Assembly, and Processing) Mamadou Diallo, California Institute of Technology (Sustainability of Environment and Industry) Jim Murday, University of Southern California (Needs for R&D and Education; Sustainability) Stuart Wolf, University of Virginia (Nanoelectronics and Nanosystems) Introduction to the Nano2 Study History (Advent of the NNI) • International Study, Nano1 (Siegel, Hu, Roco, 1999) • Research Agenda Workshop (Roco, Williams, Alivisatos, 2000) • Helped formulate and justify the NNI Other Recent Studies (Reviewing the NNI) • National Academies, PCAST • Assessment of the NNI, primarily focused on USA Goals of the Nano2 Study • International assessment of nanoscale science, engineering, and education • Vision and opportunities for the future (5-10 years) • Report speaks to many audiences on a global scale (e.g., policy makers, investors, researchers, students,
    [Show full text]
  • Metallic and Semiconducting Single-Walled Carbon Nanotubes and Graphene
    1 The world’s leading supplier of electronically pure Metallic and Semiconducting Single-Walled Carbon Nanotubes and Graphene Up to 99% Purity 2 Products Single-Walled Carbon Nanotubes (SWNTs) IsoNanotubes-S™ 1.2 Semiconducting SWNTs 1.0 Diameter Range: 1.2 nm­1.7 nm 0.8 Length Range: 300 nm to 4 microns IsoNanotubes­S 99% Metal Catlyst Impurity: <1% 0.6 Unsorted CNTs Amorphous Carbon Impurity: 1­5% 0.4 Semiconducting SWNT Enrichment: 90%, 95%, 98%, or 99% Form: Solution or surfactant eliminated powder 0.2 Solution Color: Pink 0.1 Izui Photography, Inc. 400 600 800 1000 1200 IsoNanotubes-M™ 1.0 Metallic SWNTs 0.9 0.8 Diameter Range: 1.2 nm­1.7 nm 0.7 (a.u) Length Range: 300 nm to 4 microns 0.6 IsoNanotubes­M 95% Metal Catlyst Impurity: <1% 0.5 Unsorted CNTs Amorphous Carbon Impurity: 1­5% 0.4 Metallic SWNT Enrichment: 70%, 95%, 98% or 99% 0.3 Form: Solution or surfactant eliminated powder Absorbance 0.2 Solution Color: Green 0.1 Izui Photography, Inc. 400 600 800 1000 1200 PureTubes™ 0.6 Ultra Pure unsorted SWNTs 0.5 Diameter Range: 1.2 nm­1.7 nm Length Range: 300 nm to 4 microns PureTubes 0.4 Metal Catlyst Impurity: <1% Unsorted CNTs Amorphous Carbon Impurity: 1­5% Form: Solution or surfactant eliminated powder 0.3 Solution Color: Gray 0.1 Izui Photography, Inc. 400 600 800 1000 1200 Wavelength (nm) Graphene Nanomaterials PureSheets™ - Research Grade Graphene Nanoplatelets 0.30 0.25 Median Thickness: 1.4 nm 0.20 Research Grade Concentration: 2 mg/mL 0.15 Industrial Grade Form: Aqueous Solution 0.10 Frequency Solution Color: Gray 0.05 0.00 1.0 2.0 3.0 Izui Photography, Inc.
    [Show full text]
  • Controlled Assembly and Electronic Transport Studies of Solution Processed Carbon Nanotube Devices
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Controlled Assembly And Electronic Transport Studies Of Solution Processed Carbon Nanotube Devices Paul Stokes University of Central Florida Part of the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Stokes, Paul, "Controlled Assembly And Electronic Transport Studies Of Solution Processed Carbon Nanotube Devices" (2010). Electronic Theses and Dissertations, 2004-2019. 1545. https://stars.library.ucf.edu/etd/1545 CONTROLLED ASSEMBLY AND ELECTRONIC TRANSPORT STUDIES OF SOLUTION PROCESSED CARBON NANOTUBE DEVICES by PAUL STOKES B.S. West Virginia University, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Spring Term 2010 Major Professor: Saiful I. Khondaker © 2010 Paul Stokes ii ABSTRACT Developing techniques for the parallel fabrication of Complementary Metal Oxide Semiconductor (CMOS) compatible single walled carbon nanotube (SWNT) electronic devices is of great importance for nanoelectronic applications. In this thesis, solution processed SWNTs in combination with AC dielectrophoresis (DEP) were utilized to fabricate CMOS compatible SWNT field effect transistors (FETs) and single electron transistors (SETs) with high yield and their detailed electronic transport properties were studied.
    [Show full text]
  • Researchnewsletter
    NORTHWESTERN UNIVERSITY RESEARCHNEWSLETTER June 2015 Volume 7, Number 9 Partnership with MSI Takes Close Look at What Matters Features Partnership with MSI Takes Close Look at What Matters 1 Research Note 3 Origins: Exploring the Journey of Discovery 4 People ISEN Booster Funding Spurs Innovation 3 International Societies Honor Chemistry Thought Leader 5 Radway, Carroll to Pursue Book Projects as National Humanities Fellows 7 Honors 10 Cancer Researcher Backman Awarded Ver Steeg Fellowship 11 Photos by Kathleen Stair The Materials Science exhibit at Chicago’s Museum of Science and Industry offers News visitors the chance to explore the breakthroughs in materials science that have Garage Opens Door to Innovation 5 shaped our world. The exhibit runs through January 31. New Center Expands Precision Medicine Beyond Genome 6 HIV’s Sweet Tooth May Prove Its Downfall 6 The curved edge of a glass vial once represented the pinnacle of manmade innovation. In the lab of Mark Hersam, materials LED Microscopy Initiative Making White Light ‘Green’ 6 science and engineering, the now ubiquitous vessels contain 7 IIN Receives $8.5M Grant to Develop Nano Printing a graphene-based ink that epitomizes the frontiers of materials Northwestern Hosting Young African Leaders 7 research today. Buffett Institute Marks Two Decades of Global Scholarship 8 Laced with flakes of ultra-thin carbon that maintain exceptional strength and conductivity, the ink holds the potential to create bendable Nature Inspires First Artificial Molecular Pump 8 transistors that could make widespread wearable electronics a reality. Stipends Raised for PhD, MFA Students 8 The Great Hazardous Waste Clean-up 9 On a flat-screen TV inside Chicago’s Museum of Science and Industry (MSI), the nanoparticles are magnified 100 million times for visitors to see.
    [Show full text]
  • Materials Science and Engineering
    FALL 2018 MATERIALS SCIENCE AND ENGINEERING DAVID SEIDMAN MSE 60th Anniversary Reunion ELECTED TO The Department celebrated 60 years of materials science at Northwestern with a two-day celebration in May for alumni, NATIONAL ACADEMY faculty, staff, and friends. Read more about the event on page 6. OF ENGINEERING Seidman’s research aims to understand Seidman honored for his contributions to physical phenomena in a wide range of material systems on an atomic scale. His understanding materials on the atomic scale research group uses highly sophisticated microscopy and spectroscopy instru- orthwestern Engineering’s David mentation to study interfaces on a N. Seidman, whose work has led subnanoscale level. He uses these tools to Nto an improved understanding of develop high-temperature cobalt-based materials on the atomic scale, was one alloys for use as turbine blades in aircrafts of 83 new members and 16 new foreign and for producing electricity. members elected to the National Academy Seidman has received several awards, of Engineering (NAE) in February. including being selected twice as a Among the highest professional John Simon Guggenheim Memorial distinctions accorded to an engineer, Foundation Fellow and receiving an Seidman was cited by NAE for Alexander von Humboldt Stiftung Prize. “contributions to understanding of He also has received an IBM Faculty materials at the atomic scale, leading to Seidman Research Award, the Materials Research advanced materials and processes.” Society’s David Turnbull Lecture Award, Seidman is a Walter P. Murphy Professor how those properties have temporally ASM International’s Albert Sauveur of Materials Science and Engineering and evolved. This information can be used to Achievement Award and its Gold Medal, the founding director of the Northwestern improve various materials’ properties, and the Max Planck Research Award from University Center for Atom-Probe such as making them lighter and stronger.
    [Show full text]
  • Materials Science and Engineering
    FALL 2017 MATERIALS SCIENCE AND ENGINEERING BREAKING THE PROTEIN-DNA BOND Study finds that free-floating proteins break up protein-DNA bonds at the single-binding site he verdict is in: too many processes in living cells by binding and unbinding to DNA. single, flirty proteins In the experiment, Marko and his team can break up a strong developed a concentration of TF proteins relationship. bound to DNA mixed with unbound TF proteins, which competed with the bound Published in the Proceedings of the T proteins for their binding sites. They National Academy of Sciences, a new observed that unbound proteins caused Olvera de la Cruz interdisciplinary Northwestern University the bound proteins to dissociate from the study reports that the important protein- DNA. The unbound proteins then stole the DNA bond can be broken by unbound newly available single-binding sites. proteins floating around in the cell. This Monica Olvera de la Cruz, the Lawyer MONICA OLVERA DE discovery sheds light on how molecules Taylor Professor of Materials Science self-organize and how gene expression is LA CRUZ RECEIVED and Engineering, led the development dynamically controlled. THE 2017 POLYMER of a theoretical model and performed “The way proteins interact with DNA molecular dynamics simulations to show PHYSICS PRIZE FROM determines the biological activity of all the prevalence of the protein-DNA break THE AMERICAN living organisms,” said John F. Marko, up at the single-binding site due to the professor of molecular biosciences, PHYSICAL SOCIETY competitor proteins. This disproves physics, and astronomy. FOR “OUTSTANDING former beliefs that protein-DNA bonds To understand this vital relationship, were unaffected by unbound proteins and CONTRIBUTIONS TO Marko led a study examining the sites instead resulted from more “cooperative” THE THEORETICAL where a single protein binds to DNA.
    [Show full text]
  • Fall 2011 Issue of Centerpiece
    CenterPiece Research Scholarship, Collaboration, and Outreach at Northwestern University FALL 2011 IN THIS ISSUE Too late to regulate? Do you know nano? Leaping from lab to marketplace Journal experience for undergrads Overcoming (organ) rejection The media circus comes to town hey call us “Nano U.” No wonder when close to 200 faculty members are involved in the Tstudy of nanotechnology in some way. Northwestern researchers have been pushing forward the frontiers of nano-knowledge since before the turn of the 21st century. In this issue of CenterPiece, we’ve collected articles about a number of these research pioneers and the new knowledge they’re creating in "elds including biomedicine, materials research, and business. And to reassure you that there’s a lot more to Northwestern research than nanotechnology, we’ve also covered exciting historical and medical research projects in this issue. Creating New Knowledge™ O!ce for Research Jay Walsh, Vice President for Research Address all correspondence to: Meg A. McDonald, Senior Executive Director Joan T. Naper Joan T. Naper, Director of Research Communications Director of Research Communications Kathleen P. Mandell, Senior Editor Northwestern University Amanda B. Morris, Publications Editor O!ce for Research, 633 Clark Street Evanston, Illinois 60208 Writers: Joan T. Naper, Amanda B. Morris Designer: Kathleen P. Mandell This publication is available online at: www.research. Photographers: Andrew Campbell, Mary Hanlon northwestern.edu/orpfc/publications/centerpiece. ©2011 Northwestern University.
    [Show full text]
  • Registration Form
    Registration Form understanding of the fundamental science underlying field. The solution to this problem has important L8: Model building: 2. Multilayer structures for U.S. professors, postdocs, and graduate students molecular structures and its applications to artificial implications in micro/nano fluidic devices for multifunctionality: from OLEDs to catalysts to bioactive (See other side for NSF Fellowships). manipulation of molecules in order to achieve specific bioengineering and medical applications. By using unique films (Dr. Ellis) Name: _____________________________ functions with high efficiency. Upon the completion of multiscale simulation tools, the handling of various nano- L9: Model building: 3. Design of a robust solid oxide Title: ______________________________ such functional materials at the molecular level, the /bio- materials is mainly discussed with future prospects. electrolyte (Dr. Ellis) Address: ___________________________ interface from nanoscale to micro- and macro- scale should The interface between nanomaterials and micro- or macro- ___________________________________ be provided to lead the novel nanomaterials to a real scale devices requires intermediate nanostructures as a Tue 1:00-4:00 City: ________________State: _________ marketplace. platform, which is achieved by nanomanufacturing steps. L10: Modeling: Electrokinetic assembly and manipulation Zip Code: ________Country: __________ Nanoscale fabrication methods will be discussed by (Dr. Liu) E-mail: ___________________________ This short course will cover topics from atomic-level Professor Jae-Hyun Chung. Top-down methods in L11: Application to biomaterials (Dr. Liu) Affiliation (will be printed on your name tag) handling to molecular level manufacturing and, ultimately nanoscale science are reviewed with recently developed L12: Application to cell dynamics (Dr. Liu) ___________________________________ to final applications. Major research and development in nanomanufacturing methods.
    [Show full text]
  • 2016 Product Catalog
    2016 Product Catalog In October 2006, Professor Mark Hersam’s research group at Northwestern University published a ground breaking paper in Nature Nanotechnology describing a process to sort CNTs by electronic structure. Flooded with sample requests from around the world, NanoIntegris was founded in January 2007 and established in Skokie, Illinois. Raymor, a high-value added materials supplier, acquired NanoIntegris in 2012 to expand its client base and its expertise in nanotube processing. Over the past 10 years, Raymor Industries has developed its plasma processing capability which led to the marketing of two outstanding products: plasma-grown single- wall carbon nanotubes (SWCNT) and plasma-atomized spherical titanium powder. Raymor and NanoIntegris offer a wide variety of premium nanomaterials to companies and academic institutions developing next-generation electronics, energy, and biomedical technologies. We pride ourselves on our thorough, accurate, and honest material characterization. Our nanotube powders, inks for printed electronics, and dispersions are among the purest in the industry. What is more, our strict quality control standards and procedures enable us to guarantee the reliability and consistency of our products. If you have further questions, please don’t hesitate to contact us. NanoIntegris Technologies, Inc. c/o Raymor Industries 3765 La Verendrye Boisbriand, Québec, Canada J7H 1R8 www.nanointegris.com Telephone: 1-450-434-6266 Toll free: 1-866-650-0482 Toll free fax: 1-866-650-0482 Fax: 1-450-434-9800 [email protected] [email protected] NanoIntegris, a Raymor Company T: 1-866-650-0482 | F: 1-514-434-9800 www.nanointegris.com | www.raymor.com | [email protected] 1 2016 Product Catalog Distributors Sigma-Aldrich Co, LLC Prime Machine Tools Website: www.sigmaaldrich.com Website: www.primemachines.com Tel: 1-800-325-3010 Tel: +91-79-22901789 Email: [email protected] MKnano Chinwoo Tech.
    [Show full text]
  • Single Walled Carbon Nanotubes
    Satellite Symposia for the Fifteenth International Conference on the Science and Applications of Nanotubes June 1st and 7th 2014 University of Southern California Los Angeles, California, USA Satellite Symposia Program CCTN14 MSIN14 CNTFA14 GSS14 Location EEB 132 SLH 100 SLH 102 SLH 100 Time June 1 June 1 June 1 June 7 9:00 K1: J. Lau 9:15 I1: Jerry Tersoff K1: J Kono K1: Mark Hersam 9:30 9:45 I1: K. Tsugakoshi I1: A. Balandin I1: Yuan Chen 10:00 I2: Jerry Bernholc 10:15 CT1: Subbaiyan CT1: Bilu Liu CT1: Artyukhov 10:30 (Coffee) Break (Coffee) Break (Coffee) Break (Coffee) Break 10:45 11:00 CT1: Vasilii Artyukhov I2: Stefan Strauf I2: Jie Liu I2: Wenjuan Zhu 11:15 11:30 CT2: A. Ishii CT2: M. Neupane CT2: Andrew T. Koch I3: Fei Wei 11:45 CT3: P. Finnie CT3: N. Perea 12:00 CT3: Zhen Zhu I3: R. Bruce Weisman I4: Andrea Ferrari I3: A. Balandin 12:15 12:30 CT4: J. Campo CT2: A Sekiguchi CT4: H-B. Li CT4: Jie Guan 12:45 CT5: T. Uda CT3: M Maeda CT5: Vijayaraghavan 13:00 13:15 Lunch Lunch Lunch Lunch 13:30 13:45 14:00 I4: H. Wang I5: Ali Javey 14:15 I3: Young-Woo Son K2: J. Hone 14:30 CT6: Yomogida I6: Lianmao Peng 14:45 CT7: Yoshida I4: F. Withers 15:00 I4: Igor Bondarev I5: S. Maruyama I7: T Takenobu 15:15 CT6: AbdelGhany 15:30 (Coffee) Break (Coffee) Break (Coffee) Break (Coffee) Break 15:45 16:00 CT8: A.
    [Show full text]