Nanopatterning Synergistic Research Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae Mercouri G
CURRICULUM VITAE MERCOURI G. KANATZIDIS Department of Chemistry, Northwestern University, Evanston, IL 60208 Phone 847-467-1541; Fax 847-491-5937; Website: http://chemgroups.northwestern.edu/kanatzidis/ Birth Date: 1957; Citizenship: US EXPERIENCE 8/06-Present: Professor of Chemistry, Northwestern University and Senior Scientist , Argonne National Laboratory, Materials Science Division, Argonne, IL 7/93-8/06: Professor of Chemistry, Michigan State University 7/91-6/93: Associate Professor, Michigan State University 7/87-6/91: Assistant Professor, Michigan State University EDUCATION Postdoctoral Fellow, 1987, Northwestern University Postdoctoral Associate, 1985, University of Michigan Ph.D. Inorganic Chemistry, 1984, University of Iowa B.S. Chemistry, November 1979, Aristotle University of Thessaloniki AWARDS • Presidential Young Investigator Award, National Science Foundation, 1989-1994 • ACS Inorganic Chemistry Division Award, EXXON Faculty Fellowship in Solid State Chemistry, 1990 • Beckman Young Investigator , 1992-1994 • Alfred P. Sloan Fellow, 1991-1993 • Camille and Henry Dreyfus Teacher Scholar, 1993-1998 • Michigan State University Distinguished Faculty Award, 1998 • Sigma Xi 2000 Senior Meritorious Faculty Award • University Distinguished Professor MSU, 2001 • John Simon Guggenheim Foundation Fellow, 2002 • Alexander von Humboldt Prize, 2003 • Morley Medal, American Chemical Society, Cleveland Section, 2003 • Charles E. and Emma H. Morrison Professor, Northwestern University, 2006 • MRS Fellow, Materials Research Society, 2010 • AAAS Fellow, American Association for the Advancment of Science, 2012 • Chetham Lecturer Award, University of California Santa Barbara, 2013 • Einstein Professor, Chinese Academy of Sciences, 2014 • International Thermoelectric Society Outstanding Achievement Award 2014 • MRS Medal 2014 • Royal Chemical Society DeGennes Prize 2015 • Elected Fellow of the Royal Chemical Society 2015 • ENI Award for the "Renewable Energy Prize" category • ACS Award in Inorganic Chemistry 2016 • American Physical Society 2016 James C. -
Counterclaim Defendant, Case No
UNITED STATES DISTRICT COURT EASTERN DISTRICT OF MISSOURI EASTERN DIVISION NESTLÉ PURINA PETCARE COMPANY, Plaintiff/ Counterclaim Defendant, Case No. 4:14-cv-859-RWS v. BLUE BUFFALO COMPANY LTD., Defendant/ Counterclaim Plaintiff. DECLARATION OF VINAYAK P. DRAVID, PH.D. I have been retained by Blue Buffalo Company Ltd. (“Blue Buffalo”) and have been asked to provide a preliminary opinion about the scientific adequacy and reliability of the conclusions set forth in the Expert Report of James V. Makowski dated July 23, 2014 (PUR_000207-52), (“Makowski Report”). In his Report, Dr. Makowski, purports to reach definitive quantitative conclusions about the compositions of various Blue Buffalo products based solely on visual observations of the products using rudimentary optical microscopy. Briefly, Dr. Makowski obtained various product samples directly from Nestlé Purina. Dr. Makowski then examined the processed samples under a low-power light microscope, with very limited capabilities. Dr. Makowski purported to identify ingredients based solely on a subjective, visual comparison of what he observed to “a reference library of known ingredients” – though his Report fails to identify the reference library and validate its utility. Dr. Makowski made no effort to document what features he saw that led to a particular identification (save for four low quality, scale-less photographs, three of which were from a single sample). In other words, he apparently made these identifications based on 7271442v.1 gut feeling. Similarly, Dr. Makowski purported to quantify the amount of ingredients he identified through a “visual estimate,” though his Report and supporting laboratory notebook fail to set forth any methodology for arriving at such numbers. -
The 2019 Materials by Design Roadmap
Journal of Physics D: Applied Physics TOPICAL REVIEW • OPEN ACCESS The 2019 materials by design roadmap To cite this article: Kirstin Alberi et al 2019 J. Phys. D: Appl. Phys. 52 013001 View the article online for updates and enhancements. This content was downloaded from IP address 141.14.139.44 on 14/12/2018 at 12:25 IOP Journal of Physics D: Applied Physics Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. J. Phys. D: Appl. Phys. 52 (2019) 013001 (48pp) https://doi.org/10.1088/1361-6463/aad926 52 Topical Review 2019 The 2019 materials by design roadmap © 2018 IOP Publishing Ltd Kirstin Alberi1 , Marco Buongiorno Nardelli2, Andriy Zakutayev1 , JPAPBE Lubos Mitas3, Stefano Curtarolo4,5, Anubhav Jain6, Marco Fornari7 , Nicola Marzari8, Ichiro Takeuchi9, Martin L Green10, Mercouri Kanatzidis11, 12 13 14 1 013001 Mike F Toney , Sergiy Butenko , Bryce Meredig , Stephan Lany , Ursula Kattner15, Albert Davydov15, Eric S Toberer16, Vladan Stevanovic16, Aron Walsh17,18 , Nam-Gyu Park19, Alán Aspuru-Guzik20,21 , K Alberi et al Daniel P Tabor20 , Jenny Nelson22, James Murphy23, Anant Setlur23, John Gregoire24, Hong Li25, Ruijuan Xiao25, Alfred Ludwig26 , Lane W Martin27,28 , Andrew M Rappe29, Su-Huai Wei30 and John Perkins1 1 National Renewable Energy Laboratory, Golden, CO 80401, United States of America Printed in the UK 2 University of North Texas, Denton, TX, United States of America 3 North Carolina State University, Raleigh, NC, United States of America 4 Duke University, Durham, NC, United States of America JPD 5 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 6 Energy Storage and Distributed Resources Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America 10.1088/1361-6463/aad926 7 Department of Physics, Central Michigan University, Mt. -
Researchers Demonstrate First Stable Semiconductor Neutron Detector 15 January 2020
Researchers demonstrate first stable semiconductor neutron detector 15 January 2020 arrays of crystals. The study will be published in the Jan. 16 issue of the journal Nature. "People have imagined semiconductor neutron detectors for a long time," said Northwestern's Mercouri Kanatzidis, who led the research. "The idea was there, but no one had the right material to do it." Kanatzidis is the Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences. He has a joint appointment with Argonne. A prototype of a working, pocket-sized neutron detector made with a high lithium-containing material. Credit: Northwestern University/Argonne National Laboratory Homeland Security might soon have a new tool to add to its arsenal. Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors. With the ability to sense smuggled nuclear New material (lithium-indium-phosphorous-selenium) is materials, highly efficient neutron detectors are lithium-rich, making the semiconductor neutron detector critical for national security. Currently, there are possible. Credit: Northwestern University/Argonne two classes of detectors which either use helium National Laboratory gas or flashes of light. These detectors are very large—sometimes the size of a wall. Northwestern and Argonne's material introduces a When heavy elements, such as uranium and third class: a semiconductor that can absorb plutonium, decay, their atoms eject neutrons from neutrons and generate electrical signals that can their nuclei. Most neutron detectors are so-called be easily measured. The semiconductor-based scintillators that work by sensing ejected neutrons detector is also highly efficient and stable. -
Published Version
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Perspective www.acsmaterialsletters.org Efficient Lone-Pair-Driven Luminescence: Structure−Property Relationships in Emissive 5s2 Metal Halides Kyle M. McCall, Viktoriia Morad, Bogdan M. Benin, and Maksym V. Kovalenko* Cite This: ACS Materials Lett. 2020, 2, 1218−1232 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Low-dimensional metal halides have been the focus of intense investigations in recent years following the success of hybrid lead halide perovskites as optoelectronic materials. In particular, the light emission of low-dimensional halides based on the 5s2 cations Sn2+ and Sb3+ has found utility in a variety of applications complementary to those of the three- dimensional halide perovskites because of its unusual properties such as broadband character and highly temperature-dependent lifetime. These properties derive from the exceptional chemistry of the 5s2 lone pair, but the terminology and explanations given for such emission vary widely, hampering efforts to build a cohesive understanding of these materials that would lead to the development of efficient optoelectronic devices. In this Perspective, we provide a structural overview of these materials with a focus on the dynamics driven by the stereoactivity of the 5s2 lone pair to identify the structural features that enable strong emission. We unite the different theoretical models that have been able to explain the success of these bright 5s2 emission centers into a cohesive framework, which is then applied to the array of compounds recently developed by our group and other researchers, demonstrating its utility and generating a holistic picture of the field from the point of view of a materials chemist. -
Nathan P. Guisinger Education and Training: Northwestern University Materials Sci. and Eng. Ph.D. 2005 University of Illinois
Nathan P. Guisinger Education and Training: Northwestern University Materials Sci. and Eng. Ph.D. 2005 University of Illinois Electrical Engineering B.S. 1999 Career Goals: Sustain and grow a research program that explores the big questions at the cutting edge of materials science and discovery, leads the field and sets scientific direction, and provides an environment of leadership, risk-taking, innovation, results and thoughtful advising in which to mold and develop the next generation of scientists. Research and Professional Experience: (The referencing relates to the following 10 publications) 2007-Present Scientist (ANL) - Staff scientist at the Center for Nanoscale Materials who has developed a leading effort towards materials discovery, synthesis, characterization, and processing. We are leading the discovery on new materials,1 the exploration of novel synthesis and characterization,2-7 and tailoring material properties.8,9 Ten Highlight Publications: (2 Science, 4 Nature Journals, and over 1500 citations combined for these 10) 1. A. J. Mannix, X.- F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, “Synthesis of borophenes, anisotropic, two-dimensional boron polymorphs.” Science 350, 1513 (2015). 2. R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M . McElhinny, G. J. Brady, R. R. Delgado, S. S. Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, M. S. Arnold, “Direct oriented growth of armchair graphene nanoribbons on germanium.” Nat. -
Low Frequency Electronic Noise in Single-Layer Mos2 Transistors
Low Frequency Electronic Noise in Single-Layer MoS2 Transistors Vinod K. Sangwan,1|| Heather N. Arnold,1|| Deep Jariwala,1 Tobin J. Marks,1,2 Lincoln J. Lauhon,1 and Mark C. Hersam1,2,* 1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA. 2Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA. *e-mail: [email protected] KEYWORDS: molybdenum disulfide, transition metal dichalcogenide, 1/f noise, generation- recombination noise, Hooge parameter, nanoelectronics ABSTRACT: Ubiquitous low frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (< 10-5 Torr). The field-effect 1 mobility decreased and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 K to 6.5 K. TEXT: Recently, ultrathin films of transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique electrical and optical properties.1-4 In particular, single- 5-7 8, 9 layer MoS2 is being heavily explored for low-power digital electronics, light detection and emission,10 valley-polarization,4 and chemical sensing applications.11 However, inherent low frequency electronic noise (i.e., 1/f noise or flicker noise) could limit the ultimate performance of MoS2 for these applications. -
Nano2 Study Arlington, Virginia December 6, 2010
Nanotechnology Long-term Impacts and Research Directions: 2000 – 2020 Overview of the Nano2 Study Arlington, Virginia December 6, 2010 Mark C. Hersam and Chad A. Mirkin Department of Materials Science and Engineering Department of Chemistry Northwestern University http://www.hersam-group.northwestern.edu/ http://chemgroups.northwestern.edu/mirkingroup/ Panel Members Mike Roco Chad Mirkin, Co-Chair Mark Hersam, Co-Chair (NSF) (Northwestern) (Northwestern) Dawn C. Jeffrey Evelyn Mark André Jeffrey Bonnell Brinker Hu Lundstrom Nel Welser (Penn) (Sandia) (Harvard) (Purdue) (UCLA) (IBM) Additional Committee Members Mark Tuominen, University of Massachusetts Amherst (Synthesis, Assembly, and Processing) Mamadou Diallo, California Institute of Technology (Sustainability of Environment and Industry) Jim Murday, University of Southern California (Needs for R&D and Education; Sustainability) Stuart Wolf, University of Virginia (Nanoelectronics and Nanosystems) Introduction to the Nano2 Study History (Advent of the NNI) • International Study, Nano1 (Siegel, Hu, Roco, 1999) • Research Agenda Workshop (Roco, Williams, Alivisatos, 2000) • Helped formulate and justify the NNI Other Recent Studies (Reviewing the NNI) • National Academies, PCAST • Assessment of the NNI, primarily focused on USA Goals of the Nano2 Study • International assessment of nanoscale science, engineering, and education • Vision and opportunities for the future (5-10 years) • Report speaks to many audiences on a global scale (e.g., policy makers, investors, researchers, students, -
Metallic and Semiconducting Single-Walled Carbon Nanotubes and Graphene
1 The world’s leading supplier of electronically pure Metallic and Semiconducting Single-Walled Carbon Nanotubes and Graphene Up to 99% Purity 2 Products Single-Walled Carbon Nanotubes (SWNTs) IsoNanotubes-S™ 1.2 Semiconducting SWNTs 1.0 Diameter Range: 1.2 nm1.7 nm 0.8 Length Range: 300 nm to 4 microns IsoNanotubesS 99% Metal Catlyst Impurity: <1% 0.6 Unsorted CNTs Amorphous Carbon Impurity: 15% 0.4 Semiconducting SWNT Enrichment: 90%, 95%, 98%, or 99% Form: Solution or surfactant eliminated powder 0.2 Solution Color: Pink 0.1 Izui Photography, Inc. 400 600 800 1000 1200 IsoNanotubes-M™ 1.0 Metallic SWNTs 0.9 0.8 Diameter Range: 1.2 nm1.7 nm 0.7 (a.u) Length Range: 300 nm to 4 microns 0.6 IsoNanotubesM 95% Metal Catlyst Impurity: <1% 0.5 Unsorted CNTs Amorphous Carbon Impurity: 15% 0.4 Metallic SWNT Enrichment: 70%, 95%, 98% or 99% 0.3 Form: Solution or surfactant eliminated powder Absorbance 0.2 Solution Color: Green 0.1 Izui Photography, Inc. 400 600 800 1000 1200 PureTubes™ 0.6 Ultra Pure unsorted SWNTs 0.5 Diameter Range: 1.2 nm1.7 nm Length Range: 300 nm to 4 microns PureTubes 0.4 Metal Catlyst Impurity: <1% Unsorted CNTs Amorphous Carbon Impurity: 15% Form: Solution or surfactant eliminated powder 0.3 Solution Color: Gray 0.1 Izui Photography, Inc. 400 600 800 1000 1200 Wavelength (nm) Graphene Nanomaterials PureSheets™ - Research Grade Graphene Nanoplatelets 0.30 0.25 Median Thickness: 1.4 nm 0.20 Research Grade Concentration: 2 mg/mL 0.15 Industrial Grade Form: Aqueous Solution 0.10 Frequency Solution Color: Gray 0.05 0.00 1.0 2.0 3.0 Izui Photography, Inc. -
Controlled Assembly and Electronic Transport Studies of Solution Processed Carbon Nanotube Devices
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Controlled Assembly And Electronic Transport Studies Of Solution Processed Carbon Nanotube Devices Paul Stokes University of Central Florida Part of the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Stokes, Paul, "Controlled Assembly And Electronic Transport Studies Of Solution Processed Carbon Nanotube Devices" (2010). Electronic Theses and Dissertations, 2004-2019. 1545. https://stars.library.ucf.edu/etd/1545 CONTROLLED ASSEMBLY AND ELECTRONIC TRANSPORT STUDIES OF SOLUTION PROCESSED CARBON NANOTUBE DEVICES by PAUL STOKES B.S. West Virginia University, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Spring Term 2010 Major Professor: Saiful I. Khondaker © 2010 Paul Stokes ii ABSTRACT Developing techniques for the parallel fabrication of Complementary Metal Oxide Semiconductor (CMOS) compatible single walled carbon nanotube (SWNT) electronic devices is of great importance for nanoelectronic applications. In this thesis, solution processed SWNTs in combination with AC dielectrophoresis (DEP) were utilized to fabricate CMOS compatible SWNT field effect transistors (FETs) and single electron transistors (SETs) with high yield and their detailed electronic transport properties were studied. -
Researchnewsletter
NORTHWESTERN UNIVERSITY RESEARCHNEWSLETTER June 2015 Volume 7, Number 9 Partnership with MSI Takes Close Look at What Matters Features Partnership with MSI Takes Close Look at What Matters 1 Research Note 3 Origins: Exploring the Journey of Discovery 4 People ISEN Booster Funding Spurs Innovation 3 International Societies Honor Chemistry Thought Leader 5 Radway, Carroll to Pursue Book Projects as National Humanities Fellows 7 Honors 10 Cancer Researcher Backman Awarded Ver Steeg Fellowship 11 Photos by Kathleen Stair The Materials Science exhibit at Chicago’s Museum of Science and Industry offers News visitors the chance to explore the breakthroughs in materials science that have Garage Opens Door to Innovation 5 shaped our world. The exhibit runs through January 31. New Center Expands Precision Medicine Beyond Genome 6 HIV’s Sweet Tooth May Prove Its Downfall 6 The curved edge of a glass vial once represented the pinnacle of manmade innovation. In the lab of Mark Hersam, materials LED Microscopy Initiative Making White Light ‘Green’ 6 science and engineering, the now ubiquitous vessels contain 7 IIN Receives $8.5M Grant to Develop Nano Printing a graphene-based ink that epitomizes the frontiers of materials Northwestern Hosting Young African Leaders 7 research today. Buffett Institute Marks Two Decades of Global Scholarship 8 Laced with flakes of ultra-thin carbon that maintain exceptional strength and conductivity, the ink holds the potential to create bendable Nature Inspires First Artificial Molecular Pump 8 transistors that could make widespread wearable electronics a reality. Stipends Raised for PhD, MFA Students 8 The Great Hazardous Waste Clean-up 9 On a flat-screen TV inside Chicago’s Museum of Science and Industry (MSI), the nanoparticles are magnified 100 million times for visitors to see. -
Materials Science and Engineering
FALL 2018 MATERIALS SCIENCE AND ENGINEERING DAVID SEIDMAN MSE 60th Anniversary Reunion ELECTED TO The Department celebrated 60 years of materials science at Northwestern with a two-day celebration in May for alumni, NATIONAL ACADEMY faculty, staff, and friends. Read more about the event on page 6. OF ENGINEERING Seidman’s research aims to understand Seidman honored for his contributions to physical phenomena in a wide range of material systems on an atomic scale. His understanding materials on the atomic scale research group uses highly sophisticated microscopy and spectroscopy instru- orthwestern Engineering’s David mentation to study interfaces on a N. Seidman, whose work has led subnanoscale level. He uses these tools to Nto an improved understanding of develop high-temperature cobalt-based materials on the atomic scale, was one alloys for use as turbine blades in aircrafts of 83 new members and 16 new foreign and for producing electricity. members elected to the National Academy Seidman has received several awards, of Engineering (NAE) in February. including being selected twice as a Among the highest professional John Simon Guggenheim Memorial distinctions accorded to an engineer, Foundation Fellow and receiving an Seidman was cited by NAE for Alexander von Humboldt Stiftung Prize. “contributions to understanding of He also has received an IBM Faculty materials at the atomic scale, leading to Seidman Research Award, the Materials Research advanced materials and processes.” Society’s David Turnbull Lecture Award, Seidman is a Walter P. Murphy Professor how those properties have temporally ASM International’s Albert Sauveur of Materials Science and Engineering and evolved. This information can be used to Achievement Award and its Gold Medal, the founding director of the Northwestern improve various materials’ properties, and the Max Planck Research Award from University Center for Atom-Probe such as making them lighter and stronger.