Cannabis Sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC

Total Page:16

File Type:pdf, Size:1020Kb

Cannabis Sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC biomedicines Review Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC Jackson M. J. Oultram 1, Joseph L. Pegler 1 , Timothy A. Bowser 2 , Luke J. Ney 3, Andrew L. Eamens 1 and Christopher P. L. Grof 1,2,* 1 Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; [email protected] (J.M.J.O.); [email protected] (J.L.P.); [email protected] (A.L.E.) 2 CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia; tim@cannapacific.com.au 3 School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia; [email protected] * Correspondence: [email protected]; Tel.: +612-4921-5858 Abstract: Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to pro- duce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic Citation: Oultram, J.M.J.; Pegler, J.L.; biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, Bowser, T.A.; Ney, L.J.; Eamens, A.L.; Grof, C.P.L. Cannabis sativa: we go on to highlight the parallels to previous research conducted in another medically relevant and Interdisciplinary Strategies and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction Avenues for Medical and Commercial of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research Progression Outside of CBD and outside of the medical biology aspects of its well-characterised constituents and explores additional THC. Biomedicines 2021, 9, 234. avenues for the potential improvement of the medical potential of the Cannabis plant. https://doi.org/10.3390/ biomedicines9030234 Keywords: Cannabis sativa (Cannabis); cannabinoids; tetrahydrocannabinol (THC); cannabidiol (CBD); cannabinoid receptors (CB1 and CB2); Papaver somniferum (opium poppy); secondary metabolites Academic Editors: Pavel B. Drašar and Raffaele Capasso Received: 1 February 2021 1. Introduction Accepted: 23 February 2021 Published: 26 February 2021 Cannabis sativa (Cannabis) is arguably one of the world’s most versatile crops. While the genetic origin and evolution of Cannabis is a long-standing and heavily debated topic [1–4], Publisher’s Note: MDPI stays neutral in broad terms, today, Cannabis can be separated into two distinct categories, specifically with regard to jurisdictional claims in ‘hemp’ and ‘marijuana’. Much like other agricultural crop commodities, Cannabis has been published maps and institutional affil- domesticated and bred for thousands of years to produce phenotypic and/or chemotypic iations. traits of value to humans [2–5]. The chemotypic distinction between hemp and marijuana predominantly stems from the abundance of the principal psychoactive cannabinoid, D9- tetrahydrocannabinol (THC), present in the plant as the acidic form, D9-tetrahydrocannabinolic acid (THCA) [6]. To be considered hemp, Cannabis must possess a low percentage of THC relative to the total dry weight of flowers, with this low THC percentage varying from coun- Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. try to country. In order to be legally cultivated as hemp, the cultivated plants must possess This article is an open access article less than 0.3% THC (w/w) in Canada [4,7] and China [8], whereas since 2001, the European distributed under the terms and Union determined that the THC content (w/w) of hemp must be below 0.2% [6]. conditions of the Creative Commons Hemp has traditionally been bred as a source for textile products due to the strong, Attribution (CC BY) license (https:// elongated bast fibres present in the phloem of the stem. More recently, the elevated cel- creativecommons.org/licenses/by/ lulosic content of hemp cell walls has garnered interest in the plant as a source for the 4.0/). Biomedicines 2021, 9, 234. https://doi.org/10.3390/biomedicines9030234 https://www.mdpi.com/journal/biomedicines Biomedicines 2021, 9, 234 2 of 42 development of sustainable biofuel production [6]. Hempseed, and hempseed oil, have his- torically been utilised as a food source, with more contemporary research revealing their unique dietary value. In particular, the essential polyunsaturated fatty acids (PUFAs), linoleic acid (LA) and linolenic acid (LNA), comprise 50–70% and 15–25% of the total fatty acid content of hempseed, respectively; a 3:1 ratio promoted as nutritionally optimal [9–13]. PUFAs found in hempseed oil are incorporated into phospholipid bilayers and are integral to membrane fluidity and the maintenance of its permeability [14]. Moreover, the two pro- teins, edestin and albumin found in hempseed, contain rich amino acid profiles comparable to that of high-quality soybean and egg white [15]. Given the functions and importance of both fatty and amino acids, hempseed and hempseed oil may have some potential, albeit minor, for reducing the incidence of certain diseases, while in parallel conferring a range of health benefits [15–17]. Alternatively, marijuana has traditionally been bred for its recreational intoxication properties derived from the THCA-containing resin produced on the protruding secretory hair-like structures known as trichomes which are predom- inantly located on female reproductive parts of the Cannabis plant [18,19]. The sticky resin produced from these specialised epidermal glands is a rich mix of cannabinoid and non-cannabinoid constituents, numbering at least 104 and 441, respectively [20,21]. Most recently, two novel cannabinoids, namely D9-tetrahydrocannabiphorol (D9-THCP) and cannabidiphorol (CBDP), near identical in structure to THC and cannabidiol (CBD), respectively, were identified [22]. Notably, D9-THCP was demonstrated to possess higher cannabimimetic activity than THC, and its recent discovery is therefore postulated as a potential candidate cannabinoid responsible for variation in pharmacological properties ob- served in uncharacterised Cannabis varieties. This also identifies the likelihood of secondary metabolites present in Cannabis resin that remain to be discovered. In addition to possessing a range of phenotypic and chemotypic traits of interest to the textile, medicinal, food and energy industries as an agricultural crop, Cannabis is extremely versatile and hardy, hence the application of the colloquial term for this species, ‘weed’. The phenotypic flexibility of Cannabis provides it with the capacity to adapt and survive a range of abiotic and biotic insults, such as drought [23], heavy metal stress [24], high temperature [25], poor soil nutrient content [3], high plant density [26], and stem damage from the larva of Ostrinia nubilalis, the European corn borer [27]. Tolerance to a range of abiotic stress conditions is exemplified by the tap root of Cannabis which is able to adapt to highly variable edaphic conditions, either penetrating deep (greater than 2 metres) into dry soil, or developing an extensive lateral root network in response to its growth in soil that has a high moisture content [26]. Further, the widespread legalisation of medicinal application and recreational use of Cannabis is driving the growth of diverse research programs encompassing the broad scope, from plant breeding to clinical trials. In the United States of America (USA), for example, to date, 33 states have approved the medicinal use of Cannabis, while 14 states and territories have legalised the recreational use of marijuana by adults. At the federal level in the USA, however, Cannabis remains a ‘Schedule I Substance’. In direct contrast to the heavy legislation of Cannabis in the USA, its direct neighbour, Canada, legalised the use of Cannabis across the country in 2018 under the ‘Cannabis Act’[28]. As the legislative approval of Cannabis use increases worldwide, there will be an increasing need for interdisciplinary research to characterise secondary metabolites of interest and to increase the production of Cannabis to meet the demand for medicinal and recreational products. Currently, there exists an extant literature on the medical potential for the best charac- terised cannabinoids, THC and CBD [29–34]. Significantly less attention in medical research has been paid to the potential for the minor phytocannabinoids to treat illnesses, and there is still the need for methods to produce these cannabinoids cost-effectively for commercial production. In particular, the medical Cannabis industry faces significant challenges in multiple aspects of product development. For instance, THC is associated with multiple side effects, and furthermore, pharmaceutical-standard THC and CBD are expensive to produce. Due to these hurdles, many companies around the world which have attempted Biomedicines 2021, 9, 234 3 of 42 to capitalise on the increasing legality of Cannabis have been unsuccessful [35]. Therefore, here we review the current
Recommended publications
  • The Seed of Industrial Hemp (Cannabis Sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition
    nutrients Review The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition Barbara Farinon * , Romina Molinari , Lara Costantini and Nicolò Merendino * Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; [email protected] (R.M.); [email protected] (L.C.) * Correspondence: [email protected] (B.F.); [email protected] (N.M.) Received: 25 May 2020; Accepted: 23 June 2020; Published: 29 June 2020 Abstract: Hempseeds, the edible fruits of the Cannabis sativa L. plant, were initially considered a by-product of the hemp technical fibre industry. Nowadays, following the restorationing of the cultivation of C. sativa L. plants containing an amount of delta-9-tetrahydrocannabinol (THC) <0.3% or 0.2% (industrial hemp) there is a growing interest for the hempseeds production due to their high nutritional value and functional features. The goal of this review is to examine the scientific literature concerning the nutritional and functional properties of hempseeds. Furthermore, we revised the scientific literature regarding the potential use of hempseeds and their derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic-degenerative diseases on animal models and humans too. In the first part of the work, we provide information regarding the genetic, biochemical, and legislative aspects of this plant that are, in our opinion essential to understand the difference between “industrial” and “drug-type” hemp. In the final part of the review, the employment of hempseeds by the food industry as livestock feed supplement and as ingredient to enrich or fortify daily foods has also revised.
    [Show full text]
  • Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
    University of Bath PHD The extraction and chemistry of the metabolites of Mimosa tenuiflora and Papaver somniferum Ninan, Aleyamma Award date: 1990 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 THE EXTRACTION AND CHEMISTRY OF THE METABOLITES OF MIMOSA TENUIFLORA AND PAP AVER SOMNIFERUM. submitted by ALEYAMMA NINAN for the degree of Doctor of Philosophy of the University of Bath 1990 Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author.
    [Show full text]
  • The Mammalian TRPC Cation Channels
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1742 (2004) 21–36 http://www.elsevier.com/locate/bba Review The mammalian TRPC cation channels Guillermo Vazquez, Barbara J. Wedel, Omar Aziz, Mohamed Trebak, James W. Putney Jr.* The Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC 27709, United States Received 3 August 2004; received in revised form 27 August 2004; accepted 28 August 2004 Available online 11 September 2004 Abstract Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca2+- permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels. Published by Elsevier B.V. Keywords: Ion channel; Calcium channel; Non-selective cation channel; TRP channel; TRPC channel; Capacitative calcium entry; Store-operated channel; Second messenger-operated channel; Inositol trisphosphate receptor; Diacylglycerol; Phospholipase C 1. Origin, classification and nomenclature of TRPCs member, the vanilloid receptor; and the TRPM family, with eight members (TRPM1–8), named after the original The recognition that the protein product derived from member, melastatin (Fig.
    [Show full text]
  • Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System
    International Journal of Molecular Sciences Review Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System Shenglong Zou and Ujendra Kumar * Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-3660; Fax: +1-604-822-3035 Received: 9 February 2018; Accepted: 11 March 2018; Published: 13 March 2018 Abstract: The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids. Keywords: cannabinoid; endocannabinoid; receptor; signaling; central nervous system 1. Introduction The plant Cannabis sativa, better known as marijuana, has long been used for medical purpose throughout human history.
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • A Polyketoacyl-Coa Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones
    ARTICLES https://doi.org/10.1038/s41929-020-0471-8 A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones Zaigao Tan1,3, James M. Clomburg1,2, Seokjung Cheong1, Shuai Qian1 and Ramon Gonzalez 1,2 ✉ Polyketides found in nature originate from backbones synthesized through iterative decarboxylative Claisen condensations catalysed by polyketide synthases (PKSs). However, PKSs suffer from complicated architecture, energy inefficiencies, complex regulation, and competition with essential metabolic pathways for extender unit malonyl-CoA, all combining to limit the flux of polyketide biosynthesis. Here we show that certain thiolases, which we term polyketoacyl-CoA thiolases (PKTs), catalyse polyketide backbone formation via iterative non-decarboxylative Claisen condensations, hence offering a synthetic and effi- cient alternative to PKSs. We show that PKTs can synthesize polyketide backbones for representative lactone, alkylresorcinolic acid, alkylresorcinol, hydroxybenzoic acid and alkylphenol polyketide families, and elucidate the basic catalytic mechanism and structural features enabling this previously unknown activity. PKT-catalysed reactions offer a route to polyketide formation that leverages the simple architecture of thiolases to achieve higher ATP efficiencies and reduced competition with essential metabolic pathways, all of which circumvent intrinsic inefficiencies of PKSs for polyketide product synthesis. olyketides represent a large class of secondary metabolites that Here we show that enzymes other
    [Show full text]
  • N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
    Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A.
    [Show full text]
  • Introduced by Wayne, 13
    LB617 LB617 2017 2017 LEGISLATURE OF NEBRASKA ONE HUNDRED FIFTH LEGISLATURE FIRST SESSION LEGISLATIVE BILL 617 Introduced by Wayne, 13. Read first time January 18, 2017 Committee: Agriculture 1 A BILL FOR AN ACT relating to agricultural promotion; to amend section 2 28-401, Reissue Revised Statutes of Nebraska, and section 2-5701, 3 Revised Statutes Cumulative Supplement, 2016; to adopt the 4 Industrial Hemp Act; to provide an exemption as prescribed; to 5 provide an operative date; and to repeal the original sections. 6 Be it enacted by the people of the State of Nebraska, -1- LB617 LB617 2017 2017 1 Section 1. Sections 1 to 14 of this act shall be known and may be 2 cited as the Industrial Hemp Act. 3 Sec. 2. (1) The purpose of the Industrial Hemp Act is to assist the 4 State of Nebraska in moving to the forefront of industrial hemp 5 production, development, and commercialization of hemp products in 6 agribusiness, alternative fuel production, and other business sectors, 7 both nationally and globally and to the greatest extent possible. These 8 purposes shall be accomplished, in part, through: 9 (a) The creation of the Industrial Hemp Commission; 10 (b) The industrial hemp research program overseen by the commission, 11 working in conjunction with the staff of selected Nebraska postsecondary 12 institution agricultural research programs, along with other research 13 partners. This research program shall include the planting, cultivation, 14 and analysis of industrial hemp demonstration plots by selected growers 15 that are licensed by the commission; and 16 (c) The pursuit of any federal permits or waivers necessary to allow 17 industrial hemp to be grown in Nebraska.
    [Show full text]
  • Cannabinoid As Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity
    Cannabinoid as Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity Sudipta Baroi1, Achintya Saha2, Ritesh Bachar3 and Sitesh C Bachar4 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka Dhaka-1000, Bangladesh 2Department of Chemical Technology, Pharmaceutical & Fine Chemical Technology Division University of Calcutta, India 3Department of Pharmacy, School of Science and Engineering, University of Information Technology and Sciences (UITS), Dhaka-1212, Bangladesh 4Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh (Received: April 15, 2020; Accepted: June 2, 2020; Published (web): June 28, 2020) ABSTRACT: Inhibition of aromatase (CYTP450), a key enzyme in the estrogen biosynthesis, could result in regression of estrogen-dependent tumors and even prevent the promotion of breast cancer. The present research has been designed for searching a potent chemical moiety from natural sources to inhibit aromatase enzyme, the over- functionality of which causes the breast cancer. Cannabis sativa contains a very much promising group of cannabinoids with more than 66 compounds with reported anticancer property and for the search of a target specific potent aromatase inhibitor, 61 cannabinoids from C. sativa were selected. The Structures Data File (SDF) of these ligand molecules were subjected to docking studies at the binding site of aromatase X-ray crystallographic structure based on lower resolution of the protein crystal structure and higher docking accuracy, predicted by calculating the correlation between experimental activities and Glide dock scores and compared with the standard aromatase ligand androstenedione and aromatase inhibitor fadrozole with existing drug for breast cancer treatment. The best docked pose of each ligand was selected on the basis of the highest dock score related to the binding free energies of the internal dataset compounds as compared to their observed activities.
    [Show full text]
  • N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation Via Nonhematopoietic TRPV1
    N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 This information is current as Samira K. Lawton, Fengyun Xu, Alphonso Tran, Erika of October 1, 2021. Wong, Arun Prakash, Mark Schumacher, Judith Hellman and Kevin Wilhelmsen J Immunol 2017; 199:1465-1475; Prepublished online 12 July 2017; doi: 10.4049/jimmunol.1602151 http://www.jimmunol.org/content/199/4/1465 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/07/12/jimmunol.160215 Material 1.DCSupplemental http://www.jimmunol.org/ References This article cites 69 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/199/4/1465.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 Samira K.
    [Show full text]
  • Phytocannabinoids: Origins and Biosynthesis
    Phytocannabinoids Origins and Biosynthesis Gülck, Thies; Møller, Birger Lindberg Published in: Trends in Plant Science DOI: 10.1016/j.tplants.2020.05.005 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Gülck, T., & Møller, B. L. (2020). Phytocannabinoids: Origins and Biosynthesis. Trends in Plant Science, 25(10), 985-1004. https://doi.org/10.1016/j.tplants.2020.05.005 Download date: 05. okt.. 2021 Trends in Plant Science Feature Review Phytocannabinoids: Origins and Biosynthesis Thies Gülck1,2,3,* and Birger Lindberg Møller1,2,3,* Phytocannabinoids are bioactive natural products found in some flowering Highlights plants, liverworts, and fungi that can be beneficial for the treatment of human Phytocannabinoids are bioactive terpe- ailments such as pain, anxiety, and cachexia. Targeted biosynthesis of cannabi- noids that were thought to be exclusive noids with desirable properties requires identification of the underlying genes to Cannabis sativa, but have now also been discovered in Rhododendron spe- and their expression in a suitable heterologous host. We provide an overview cies, some legumes, the liverwort genus of the structural classification of phytocannabinoids based on their decorated Radula,andsomefungi. resorcinol core and the bioactivities of naturally occurring cannabinoids, and we review current knowledge of phytocannabinoid biosynthesis in Cannabis, Many cannabinoids display promising non-hallucinogenic bioactivities that are Rhododendron,andRadula species. We also highlight the potential in planta determined by the variable nature of the roles of phytocannabinoids and the opportunity for synthetic biology approaches side chain and prenyl group defined by based on combinatorial biochemistry and protein engineering to produce canna- the enzymes involved in their synthesis.
    [Show full text]
  • Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’S Disease
    Molecular Neurobiology https://doi.org/10.1007/s12035-019-1637-8 Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease David Schubert1 & Devin Kepchia1 & Zhibin Liang1 & Richard Dargusch1 & Joshua Goldberg & Pamela Maher1 Received: 30 January 2019 /Accepted: 6 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Finding a therapy for Alzheimer’s disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates. Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain. This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuropro- tective effects that were greater than additive. Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support.
    [Show full text]