Review Chemistry and Biology of Natural and Designed Enediynes K

Total Page:16

File Type:pdf, Size:1020Kb

Review Chemistry and Biology of Natural and Designed Enediynes K Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5881-5888, July 1993 Review Chemistry and biology of natural and designed enediynes K. C. Nicolaou*, A. L. Smitht, and E. W. Yue Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037; and Department of Chemistry, University of California at San Diego, La Jolla, CA 92093 ABSTRACT Ever since the initial re- ports of the enediyne anticancer antibiot- ics in the late 1980s, researchers from a number of disciplines have been devoting increasing attention to their chemistry, biology, and potential medical applica- tions. Synthetic chemists and molecular designers have been engaged in attempts to synthesize these molecules and to model their unique architecture. Considerable efforts have been directed at understand- ing and mimicking the various processes involved in the targeting, activation, and DNA cleavage associated with these natu- ral products. This review summarizes the main contributions to the field, with par- ticular emphasis on work from our labo- ratories. Highlights include studies of the Bergman reaction, which is central to the mechanism of action of enediynes, the design and chemical synthesis ofa number of these systems, and biological studies with selected molecules. Finally, the total synthesis of calicheamicin yI, the most 8: kedarcidin chromophore 9: neocarzinostatin chromophore prominent member of this class of natu- rally occurring compounds, is discussed. FIG. 1. Naturally occurring enediyne anticancer antibiotics. omatization when heated to give the ben- nostatin chromophore (9, Fig. 1) (12-14) Nature continually serves to provide sci- zene ring 4 with the intermediacy of the has also been grouped with the enediyne entists with new ideas, often provoking highly reactive 1,4-benzenoid diradical antibiotics due to the similarity of its us to reexamine previous studies and structure and mode of action. leading us in new directions. An example species 2. Masamune and coworkers (3) of an instance which has and Wong and Sondheimer (4) also ob- such captured served the cycloaromatization of 10- Molecular Structures, Biological the imagination of many scientists, our- and Mechanisms of Action of selves included, came in 1987 with the membered ring enediynes. However, the Properties, unveiling of a new class of natural prod- full significance of these simple observa- Naturally Occurring Enediynes ucts, the so-called "enediyne anticancer tions became apparent only when the antibiotics" (Fig. 1), which possess po- structures of calicheamicin -y (5, Fig. 1) Calicheamicin y1 (5), the most prominent tent anticancer activity and a hitherto and esperamicin A1 (6, Fig. 1), the first member of the calicheamicins, was iso- unseen biological mode of action (for a representatives of the enediyne antibiot- lated from Micromonospora echinospora previous review, see ref. 1). The story ics, were reported (5-8). For at the very ssp. calichensis and is a remarkable piece began some 15 years earlier, however, heart of these molecules is contained the of engineering by Nature, which has per- for it was in the laboratories of Robert same enediyne unit; and therein lies the fectly constructed the molecule to endow Bergman that the intriguing chemical means by which these unprecedented it with its extraordinary chemical and processes which provide the key to un- molecules exert their remarkable biolog- biological properties (15). These include derstanding the remarkable activity of ical properties. Dynemicin A (7, Fig. 1) activity in the biochemical prophage in- these antibiotics were first studied (2). (9, 10) and kedarcidin chromophore (8, duction assay at concentrations < 1 pM, The findings of Bergman are summarized Fig. 1) (11), representing structurally dis- high antibacterial activity, and extreme in Scheme I, in which the enediyne sys- tinct classes of enediyne antibiotics, potency against murine tumors such as tem 1 was observed to undergo cycloar- were subsequently reported. Neocarzi- P388 and L1210 leukemias and solid neo- plasms such as colon 26 and B16 mela- noma with optimal doses of 0.15-5 ug/ DH kg. Calicheamicin -yl (5), along with the *To whom reprint requests should be ad- 2 4 dressed. tPresent address: Merck Sharp & Dohme Re- SCHEME I. Bergman's original design and observation regarding the thermal cycloaroma- search Laboratories, Terlings Park, Harlow, tization of enediynes. Essex CM20 2QR, U.K. 5881 Downloaded by guest on September 24, 2021 5882 Review: Nicolaou et al. Proc. Natl. Acad. Sci. USA 90 (1993) trigonal bridgehead position to a tetrag- onal center, causes a significant change in structural geometry which imposes a great deal of strain on the 10-membered ring. This strain is completely relieved by the enediyne undergoing the Bergman reaction, generating a highly reactive benzenoid diradical (12). The calicheam- icin diradical abstracts hydrogen atoms from duplex DNA at the C-5' position of the cytidine in 5'-TCCT-3' and the C-4' position ofthe nucleotide three base pairs removed on the 3' side of the comple- mentary strand (21, 22), leading to cleav- age of both strands of DNA. The mech- anism of action ofthe structurally similar esperamicins is thought to be essentially the same as that of the calicheamicins. Dynemicin A (7), the first member of FIG. 2. Computer-generated model of DNA-bound calicheamicin -yI (5) along a TCCT site. the dynemicin subclass of enediyne anti- [Reprinted with permission from ref. 1 (copyright VCH, Weinheim, FRG).] biotics to be reported (9, 10), was discov- other enediyne antibiotics, is believed to iodo substituent of the hexasubstituted ered in the fermentation broth of Mi- exert its biological activity by aromatic ring and the cromonospora chersina. It exhibits very damaging exocyclic amino potent activity against a variety ofcancer DNA. Indeed, it is a highly potent DNA- substituents of the two guanines in the cell lines and significantly prolongs the cleaving agent giving rise primarily to 3'-AGGA-5' tract. Experimental evidence lifespan of mice inoculated with P388 sequence-selective double-strand cuts from our own laboratories supports the leukemia and B16 melanoma cells. Fur- (16). idea of an important role for the iodine in thermore, it exhibits promising in vivo The calicheamicin yA molecule contains the binding affinity ofthis oligosaccharide antibacterial activity with low toxicity. two distinct structural regions. The larger to DNA (20). Like the calicheamicins and esperami- of the two consists of an extended sugar The second region of calicheamicin yi cins, the dynemicins include in their mo- residue comprising four monosaccharide is its aglycon, a rigid, highly functional- lecular structures a 10-membered ring units and., one hexasubstituted benzene ized bicyclic core termed calicheamici- with a 1,5-diyne-3-ene bridge. They are, ring which are joined together through a none, which acts as the "warhead" ofthe however, unique in combining the highly unusual series of glycosidic, molecule. The enediyne functionality of enediyne unit with the anthraquinone thioester, and hydroxylamine linkages. It the molecule is locked within a rigid chromophore of the anthracycline anti- is this aryloligosaccharide which serves to 10-membered bridged ring awaiting acti- cancer antibiotics. deliver the molecule to its target, binding vation to undergo the Bergman reaction. A mechanism for the antitumor activ- tightly in the minor groove of double- Also forming part of the aglycon is a ity of dynemicin A (7) has been proposed helical DNA and displaying high specific- trisulfide, which serves as the trigger. which combines elements of the mecha- ity for sequences such as 5'-TCCT-3' and Once the molecule is in the vicinity of nisms of action of the calicheamicin/ 5'-TTTT-3' (16, 17) through significant DNA (whether prior or subsequent to esperamicin, neocarzinostatin, and an- hydrophobic interactions and other forces binding is not known), a series of chem- thracycline classes of antibiotics and (Fig. 2). This binding is thought to be ical events unfold which ultimately leads which is supported by the observation facilitated by substantial preorganization to DNA cleavage (Scheme II) (5-8). A that DNA strand cleavage by dynemicin of the oligosaccharide into a rigid, ex- nucleophile (e.g., glutathione) attacks the A is enhanced by the presence of thiols. tended conformation (18). Molecular central sulfur atom of the trisulfide In this mechanism (Scheme Im) (10), the modeling calculations by Schreiber and group, causing the formation of a thiolate anthraquinone nucleus intercalates into coworkers (19) suggested that a signiflcant or a thiol (10) which adds intramolecu- the DNA and undergoes bioreduction portion of the sequence selectivity for larly to the adjacent a,,4unsaturated ke- (not necessarily in that order), facilitating 5'-TCCT-3' arises from a favorable inter- tone embedded within the framework of opening of the epoxide. This causes a action between the large and polarizable the aglycon. This reaction, converting a significant conformational change in the molecule and introduces considerable strain into the enediyne system which is relieved by the new system undergoing the Bergman reaction, thus generating the DNA-damaging diradical species 17 (10). Molecular Design, Chemical Synthesis, and Biological Actions of Enediynes The reports of the structures of the cali- cheamicins and esperamicins, and their fascinating mode of action, prompted several groups to undertake investigation
Recommended publications
  • C-1027, a Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells
    Research Article C-1027, A Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells Terry A. Beerman,1 Loretta S. Gawron,1 Seulkih Shin,1 Ben Shen,2 and Mary M. McHugh1 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York;and 2Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin Abstract identified primarily from studies with neocarzinostatin (NCS), a The hypoxic nature of cells within solid tumors limits the holo-form drug, consisting of an apoprotein carrier and an active efficacy of anticancer therapies such as ionizing radiation and chromophore, and was assumed to be representative of all agents conventional radiomimetics because their mechanisms re- in this class (11). The NCS chromophore contains a bicyclic quire oxygen to induce lethal DNA breaks. For example, the enediyne that damages DNA via a Myers-Saito cycloaromatization conventional radiomimetic enediyne neocarzinostatin is 4- reaction, resulting in a 2,6-indacene diradical structure capable of fold less cytotoxic to cells maintained in low oxygen (hypoxic) hydrogen abstractions from deoxyribose (12, 13). Subsequent to compared with normoxic conditions. By contrast, the ene- generation of a sugar radical, reaction with oxygen quickly and diyne C-1027 was nearly 3-fold more cytotoxic to hypoxic than efficiently leads to formation of hydroxyl radicals that induce to normoxic cells. Like other radiomimetics, C-1027 induced DSBs/SSBs at a 1:5 ratio. The more recently discovered holo-form DNA breaks to a lesser extent in cell-free, or cellular hypoxic, enediyne C-1027 (Fig.
    [Show full text]
  • Enediynes, Enyneallenes, Their Reactions, and Beyond
    Advanced Review Enediynes, enyne-allenes, their reactions, and beyond Elfi Kraka∗ and Dieter Cremer Enediynes undergo a Bergman cyclization reaction to form the labile 1,4-didehy- drobenzene (p-benzyne) biradical. The energetics of this reaction and the related Schreiner–Pascal reaction as well as that of the Myers–Saito and Schmittel reac- tions of enyne-allenes are discussed on the basis of a variety of quantum chemical and available experimental results. The computational investigation of enediynes has been beneficial for both experimentalists and theoreticians because it has led to new synthetic challenges and new computational methodologies. The accurate description of biradicals has been one of the results of this mutual fertilization. Other results have been the computer-assisted drug design of new antitumor antibiotics based on the biological activity of natural enediynes, the investigation of hetero- and metallo-enediynes, the use of enediynes in chemical synthesis and C materials science, or an understanding of catalyzed enediyne reactions. " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1174 INTRODUCTION symmetry-allowed pericyclic reactions, (ii) aromatic- ity as a driving force for chemical reactions, and (iii) review on the enediynes is necessarily an ac- the investigation of labile intermediates with biradical count of intense and successful interdisciplinary A character. The henceforth called Bergman cyclization interactions of very different fields in chemistry provided deeper insight into the electronic structure involving among others organic chemistry, matrix of biradical intermediates, the mechanism of organic isolation spectroscopy, quantum chemistry, biochem- reactions, and orbital symmetry rules.
    [Show full text]
  • Inotuzumab Ozogamicin Is an Investigational Agent and Has Not Been Approved for Marketing by Any Regulatory Agency at This Time
    Inotuzumab Ozogamicin is an investigational agent and has not been approved for marketing by any regulatory agency at this time. ABOUT INOTUZUMAB OZOGAMICIN Inotuzumab ozogamicin is an investigational antibody-drug conjugate (ADC) comprised of a monoclonal antibody (mAb) targeting CD22, a cell surface antigen found on cancer cells in almost all B-ALL patients, linked to a cytotoxic agent.1,2 When inotuzumab ozogamicin binds to the CD22 antigen on B-cells, it is internalized into the cell, where the cytotoxic agent calicheamicin is released to destroy the cell.3 ABOUT ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) Acute lymphoblastic leukemia (ALL) in adults is an aggressive leukemia that can be fatal within a matter of months if left untreated.4 While many potential treatments have been studied, only a limited number of medicines for relapsed or refractory adults with ALL have been approved by the FDA and other regulatory authorities in the past decade. The current standard treatment is intensive, lengthy chemotherapy with the goal of halting the signs and symptoms of ALL (called hematologic remission) and patients becoming eligible for a stem cell transplant.4 UNMET NEEDS IN ADULT ALL Statistics & Patient Characteristics Statistics & Patient Characteristics • In 2017, it is estimated that 5,970 cases of ALL • Approximately half of U.S. adults who learn they will be diagnosed in the United States, with about have ALL this year will not respond to commonly 4 in 10 cases occurring in adults.5 used chemotherapy agents (e.g., be refractory) or will eventually see their disease return (e.g., relapse).5 • While significant strides have been made in treating children with ALL, the opposite is true for adults with • The outlook for adults with relapsed or refractory the disease.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG.
    [Show full text]
  • Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin
    CCR FOCUS Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin Alejandro D. Ricart Abstract Antibody-drug conjugates (ADC) are an attractive approach for the treatment of acute myeloid leukemia and non-Hodgkin lymphomas, which in most cases, are inherently sensitive to cytotoxic agents. CD33 and CD22 are specific markers of myeloid leukemias and B-cell malignancies, respectively. These endocytic receptors are ideal for an ADC strategy because they can effectively carry the cytotoxic payload into the cell. Gemtuzumab ozogamicin (GO, Mylotarg) and inotuzumab ozogamicin consist of a derivative of calichea- micin (a potent DNA-binding cytotoxic antibiotic) linked to a humanized monoclonal IgG4 antibody directed against CD33 or CD22, respectively. Both of these ADCs have a target-mediated pharmacokinetic disposition. GO was the first drug to prove the ADC concept in the clinic, specifically in phase II studies that included substantial proportions of older patients with relapsed acute myeloid leukemia. In contrast, in phase III studies, it has thus far failed to show clinical benefit in first-line treatment in combination with standard chemotherapy. Inotuzumab ozogamicin has shown remarkable clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma, and it has started phase III evaluation. The safety profile of these ADCs includes reversible myelosuppression (especially neutropenia and thrombocyto- penia), elevated hepatic transaminases, and hyperbilirubinemia. There have been postmarketing reports of hepatotoxicity, especially veno-occlusive disease, associated with GO. The incidence is 2%, but patients who undergo hematopoietic stem cell transplantation have an increased risk. As we steadily move toward the goal of personalized medicine, these kinds of agents will provide a unique opportunity to treat selected patient subpopulations based on the expression of their specific tumor targets.
    [Show full text]
  • Design, Synthesis and Reactivity of Cyclopropenone
    DESIGN, SYNTHESIS AND REACTIVITY OF CYCLOPROPENONE- CONTAINING NINE MEMBERED CYCLIC ENEDIYNE AND ENYNE-ALLENE PRECURSORS AS PROTOTYPE PHOTOSWITCHABLE ANTITUMOR AGENTS by DINESH R. PANDITHAVIDANA (Under the Direction of Vladimir V. Popik) ABSTRACT The extreme cytotoxicity of natural enediyne antibiotics is attributed to the ability of the ( Z)-3-hexene-1,5-diyne (enediyne) and ( Z)-1,2,4-heptatrien-6-yne (enyne–allene) fragments incorporated into a 10- or 9-membered ring cyclic system to undergo cycloaromatization producing dDNA-damaging 1,4-diradicals. The rate of cyclization of enediynes to p-benzynes strongly depends on the distance between acetylenic termini, which in turn can be controlled by the ring size. Thus, 11-membered ring enediynes are stable, 10-membered ring analogs undergo slow cycloaromatization under ambient conditions or mild heating, 9- membered ring enediynes are virtually unknown and believed to undergo very fast spontaneous cyclization. Cyclic enyne-allenes have not been synthesized so far due to very facile Myers-Saito cyclization. We have developed thermally stable photo-precursors of 9-membered enediynes ( 2.22 , 2.26 ) and enyne-allene ( 2.44 ), in which one of the triple bonds is replaced by the cyclopropenone group. UV irradiation of 2.14 results in the efficient decarbonylation (Φ 254 = 0.34) and the formation of reactive enediyne 2.22. The latter undergoes clean cycloaromatization to 2,3-dihydro-1H- cyclopenta[b]naphthalen-1-ol ( 2.24 ) with a life-time of ca. 2 h in 2-propanol at 25 °C. The rate of this reaction depends linearly on the concentration of hydrogen donor and shows a primary kinetic isotope effect in 2-propanol-d8.
    [Show full text]
  • Molecular Biosystems
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Cloning and sequencing of the kedarcidin biosynthetic Cite this: Mol. BioSyst., 2013, gene cluster from Streptoalloteichus sp. ATCC 53650 9, 478 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics† Jeremy R. Lohman,a Sheng-Xiong Huang,a Geoffrey P. Horsman,b Paul E. Dilfer,a Tingting Huang,a Yihua Chen,b Evelyn Wendt-Pienkowskib and Ben Shenz*abcd Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-b-tyrosine and an iso- propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate Received 16th November 2012, formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible Accepted 20th January 2013 for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and DOI: 10.1039/c3mb25523a maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the www.rsc.org/molecularbiosystems (R)-2-aza-3-chloro-b-tyrosine and the 2-naphthonate moieties in KED biosynthesis.
    [Show full text]
  • Probing Interaction Motifs for Ligand Binding Prediction from Three
    PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemistry – Doctor of Philosophy 2015 ABSTRACT PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu The interactions between small molecules and diverse enzyme, membrane receptor and channel proteins are associated with important biological processes and diseases. This makes the study of binding motifs between proteins and ligands appealing to scientists. We use multiple computational techniques to unveil the protein-ligand interaction motifs from three perspectives. Firstly, from the perspective of proteins, by comparing the structure differences and common features of different binding sites for the same ligand, 3-dimensional motifs that represent the favorable interactions of the same ligands can be extracted. The goal is for such a motif to represent the shared features for binding a certain ligand in unrelated proteins, while discriminating from other ligands. The 3-dimensional motifs for cholesterol and cholate binding to non-homologous protein sites have been extracted, using SimSite3D alignment and analysis of the conserved interactions between these sites. The 3-dimensional protein motif for cholesterol binding can give about 80% accuracy of true positive sites with a low false positive rate. Furthermore, an online server CholMine was established so that the users can use this approach to predict cholesterol and cholate binding sites in proteins of interest.
    [Show full text]
  • The Novel Calicheamicin-Conjugated CD22 Antibody Inotuzumab Ozogamicin (CMC-544) Effectively Kills Primary Pediatric Acute Lymphoblastic Leukemia Cells
    Leukemia (2012) 26, 255–264 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu ORIGINAL ARTICLE The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells JF de Vries1, CM Zwaan2, M De Bie1, JSA Voerman1, ML den Boer2, JJM van Dongen1 and VHJ van der Velden1 1Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands and 2Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children’s Hospital, Rotterdam, The Netherlands We investigated whether the newly developed antibody (Ab) - One of these new approaches is antibody (Ab)-targeted targeted therapy inotuzumab ozogamicin (CMC-544), consisting chemotherapy, where the Ab-part of the compound is used to of a humanized CD22 Ab linked to calicheamicin, is effective in specifically deliver the cytostatic drug to the target cell, resulting pediatric primary B-cell precursor acute lymphoblastic leuke- mia (BCP-ALL) cells in vitro, and analyzed which parameters in less or no bystander cell death. One of the first examples of Ab- determine its efficacy. CMC-544 induced dose-dependent cell based delivery is gemtuzumab ozogamicin (GO, Mylotarg kill in the majority of BCP-ALL cells, although IC50 values varied or CMA-676), which consists of a humanized CD33 Ab substantially (median 4.8 ng/ml, range 0.1–1000 ng/ml at 48 h). covalently linked to a derivative of the potent DNA-damaging The efficacy of CMC-544 was highly dependent on calicheami- cytotoxic agent calicheamicin.7,8 Calicheamicin induces cell cin sensitivity and CD22/CMC-544 internalization capacity of BCP-ALL cells, but hardly on basal and renewed CD22 death in its target cells by interaction with double-helical DNA in expression.
    [Show full text]
  • Isolation and Identification of Cyclic Polyketides From
    ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY
    [Show full text]
  • Selective Proteolytic Activity of the Antitumor Agent Kedarcidin N
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8009-8012, September 1993 Biochemistry Selective proteolytic activity of the antitumor agent kedarcidin N. ZEIN*t, A. M. CASAZZA*, T. W. DOYLE*, J. E. LEETt, D. R. SCHROEDERt, W. SOLOMON*, AND S. G. NADLER§ *Cancer Drug Discovery, Molecular Drug Mechanism, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543-4000; tChemistry Division, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 5100, Wallingford, CT 06492-7660; and §Antitumor Immunology, Bristol-Myers Squibb Pharmaceutical Research Institute, 3005 1st Avenue, Seattle, WA 98121 Communicated by William P. Jencks, May 27, 1993 ABSTRACT Kedarcidin is a potent antitumor antibiotic there is substantial in vitro chemical and structural informa- chromoprotein, composed of an enediyne-containing chro- tion (4-21). Furthermore, it was proposed that the neocarzi- mophore embedded in a highly acidic single chain polypeptide. nostatin apoprotein stabilizes and regulates the availability of The chromophore was shown to cleave duplex DNA site- the labile chromophore (4-9). As previously shown for specifically in a single-stranded manner. Herein, we report that neocarzinostatin (4-9), DNA experiments with the isolated in vitro, the kedarcidin apoprotein, which lacks any detectable chromophore and the kedarcidin chromoprotein demon- chromophore, cleaves proteins selectively. Histones that are the strated that DNA cleavage was mostly due to the chro- most opposite in net charge to the apoprotein are cleaved most mophore (N.Z. and W.S., unpublished data). However, readily. Our findings imply that the potency of kedarcidin cytotoxicity assays using human colon cancer cell lines HCT results from the combination of a DNA damaging-chro- 116 showed the chromophore and the chromoprotein to mophore and a protease-like apoprotein.
    [Show full text]