Nucleic Acid Ligands Based on Carbohydrates

Total Page:16

File Type:pdf, Size:1020Kb

Nucleic Acid Ligands Based on Carbohydrates MEDIZINISCHE CHEMIE . MEDICINAL CHEMISTRY 248 C'HIMIA 50 (I 99() Nr. () (Jlllli) edizinisc edicinal Chemistry Chimia 50 (1996) 248-256 Watson-Crick pairing rules. Translation is © Neue Schweizerische Chemische Gesellschaft arrested by this complexation and the RNA ISSN 0009-4293 strand is then degraded by RNase H, an enzyme which recognizes DNA-RNA het- eroduplexes, leading to catalytic turnover Nucleic Acid Ligands Based on of the antisense agent. In a different ap- proach, single-stranded oligonucleotides Carbohydrates are designed such as to form a local triple- helical structure with the third strand asso- ciated in the major groove of double- Jiirg Hunziker* stranded DNA. In this case, the sequence specificity is derived from selective base Abstract. Sequence-specific nucleic acid ligands are important tools in chemistry and triplet formation on the Hoogsteen face of molecular biology and are thought to possess a considerable pharmaceutical potential. purine bases (Fig. 2). Since all such oligo- An overview of the structurally and mechanistically diverse approaches in the field with nucleotide analogs are linear polymers an emphasis on carbohydrates will be presented. their affinity and specificity can be altered Carbohydrates are just beginning to emerge as a novel class of nucleic acid binding at will by changing chain length and base compounds. The detailed study of the factors affecting the site-selectivity of some sequence. recently discovered antitumor antibiotics, e.g. calicheamicin, has shed a new light on Several clinical trials are currently un- the role thatoligosaccharides may play in nucleic acid recognition. Understanding these der way and although there have been factors may aid in the rational design of novel nucleic acid ligands and their therapeutic some promising results, difficulties have application. been encountered in getting antisense oli- gonucleotides to work the way they were intended to [le][2]. Selective delivery to 1. Introduction dance of the protein sequence and individ- the target tissue and potentially toxic side ual nucleotides. In addition, their bio- effects such as decreased blood clotting Nucleic acids are attractive targets for availability is low due to the relative ease and inreased blood pressure are the main the development of novel therapeutics. with which they are degraded and the slow obstacles. An improved understanding of The sequence specific, high affinity com- transport across cell membranes. And they the fate of antisense oligonucleotides in plexation of single-stranded messenger- are difficult and rather expensive to pro- vivo in conjunction with the development RNA or the corresponding double-strand- duce. Oligonucleotides or rather syntheti- of novel, more specific analogs will be ed genomic DNA can, in principle, pre- cally derived analogs, on the other hand, necessary to successfully generate thera- vent the production of illness related gene are obvious candidates for this task [I]. In peutics based on this concept. products at the stage of translation or tran- the antisense strategy, single-stranded oli- scription, respectively (Fig. 1). The inher- gonucleotides are designed to pair to an 1.2. Small DNA-Binding Molecules ent advantage of this approach lies in the RNA target (sense strand) by forming a In view of these difficulties, numerous low abundance of a certain gene or the local duplex structure according to the academic and industrial research groups resulting messenger-RNA within an af- fected cell. This theoretically requires a much lower dosage of a potential thera- RNA~.rget: inhibition of translation peutic agent. However, it also necessitates very high affinities and selectivities. Nu- cleic acid ligands based on this concept would act as direct antagonists to the cel- lular proteins that control translation and transcription. 1.1. Antisense Agents Proteins themselves are poor candi- =====~>s DNA-target: inhibition of transcription antisense- or dates for these purposes. There is no gen- antigene agent eral code for the recognition of nucleic ~ acids by proteins, a one to one correspon- *\ *Correspondence: Dr. J. Hunziker Institut fUr Organische Chemie Universitat Bern Fig. 1. Schematic representation of a generalized antigene-concept. By complex formation with Freieslrasse 3 messenger-RNA or the corresponding DNA anti gene agents can shut down production of illness- CH-30 12 Bern related proteins at the stage of translation or transcription, respectively. MEDIZINISCHE CHEMIE . MEDICINAL CHEMISTRY 249 C'HIMIA 50 (lqq6l N,.. 6 (Jllnil are joined in an effort to evaluate alterna- tives to oligonucleotides, compounds of major groove major groove different structural types, with respect to their anti gene properties. Studies of the binding modes of such molecules might lead to new strategies for the sequence- A T G c specific binding of nucleic acids. The vast pool of natural products pro- vides many small molecules that bind to nucleic acids, most of them of fungal or microbial origin. Unlike oligonucleotides, minor groove minor groove the majority of these small molecules in- teract with double-stranded nucleic acids Fig. 2. Substitution pattern of H-bonding donor and acceptor groups for adenine-thymine and via contacts within the minor groove. Two guanine-cytosine base pairs in the major and minor groove examples of such compounds are netropsin and distamycin (Fig. 3). These crescent- shaped polyamides composed of N-meth- ylpyrrole amino acids bind to stretches of double-stranded DNA consisting of ade- nine/thymine base pairs. The sequence selectivity derives from H-bonding be- tween the amide protons and the nitrogen and carbonyl oxygen of adenine and thy- mine on the floor of the minor groove. It was shown in NMR studies by Wemmer and coworkers that in the complex two distamycin molecules are aligned side by side in an anti parallel manner [3a]. Based on these findings, Dervan and coworkers Netropsin Distamycin Im-Py-Py"y-Py-Py-Py successfully altered the sequence specifi- city of these molecules to include guanine/ Fig. 3. Structures of the minor groove binding drugs netropsin and distamycin. By substituting N- cytosine base pairs by substitutingN-meth- methylimidazole for N-methylpyrrole carboxamides at selected positions of and covalently linking ylimidazole for N-methylpyrrole carbox- two individual molecules to a dimer Dervan and coworkers developed distamycin analogs, e.g .. Im- Py-Py-y-Py-Py-Py, with altered sequence specificity and higher affinity [3). amides at selected positions [3]. The affin- ity could be improved to subnanomolar levels by covalently linking the two indi- charged DNA and thus helps aligning the chromophore part then leads to double- vidual halfs of these dimers [3e] (Fig. 3). other parts of the molecu Ie. Alternati vel y, strand cleavage. In 1985, Nishida and co- certain DNA-ligands form dimeric (or workers reported the structure of the neo- higher order) complexes upon binding of carcinostatin chromophore (Fig. 4) which 2. DNA Ligands a metal and only these can then interact is responsible for the observed biological with their target. However, these mecha- activity [6b]. This chromophore consisted Quite a few natural products have the nisms alone cannot account for the se- of a highly unusual bicyclo[7.3.0]dode- capability not just to form complexes with quence specificity displayed by the re- cadienediyne scaffold. Just two years lat- DNA but to chemically modify it. Many spective DNA-binding drugs. These as er, the discovery of two compounds with compounds with antitumor activity be- well as compounds without an aromatic potent cytostatic activity and a similar long into this category. Figs. 4 and 5 show moiety or an apparent metal binding site core structure, calicheamicin YI' and espe- some examples of such naturally occur- often contain additional carbohydrate side ramicin A I (Fig. 4), has been reported ring compounds. Their mechanism of com- chains which have to be responsible for simultaneously by researchers at Lederle plexation with nucleic acids can be distin- site selectivity. Carbohydrates might there- Laboratories [7] and Bristol-Myers [8]. guished into four main categories, interca- fore be an interesting class of potential Their unusual structure containing a bicy- lation, binding via metal complexes, and DNA ligands [5]. In recent years, several clic enediyne and their impressive anti- binding mediated by a protein component research groups have tried to develop syn- cancer activity intrigued the chemical and or carbohydrate side chains. Intercalation. thetic DNA ligands based on the saccha- pharmaceutical community. Immediate- consists of aligning an extended aromatic ride units of known DNA binders. ly, a race aimed at the total synthesis of chromophore in between two base pairs of Certainly the most extensively studied calicheamicin set on, culminating in two the double helix (Fig. 6). Driving force of group of DNA binding small molecules in reported synthesis by the groups of Nico- this kind of interaction is n-stacking that recent years are the enediyne antibiotics, laou [9] and Danishefsky [10]. In 1989, a extends over both strands and leads to an among them calicheamicin, esperamicin, fourth structure ofthis type, dynemicin A, overall stabilization of the double helix. and neocarcinostatin. Neocarcinostatin, a has been reported, again by researchers at Many naturally occurring DNA ligands I:] complex of a protein and a chromo- Bristol-Myers [II], followed by the dis- contain metal binding subunits. By com- phore compound has first been isolated covery of the kedarcidin [12] and C-I 027 plexing a metal, a net positive charge 1965 [6a]. The protein is thought to medi- [13] chromophores (Fig. 4) adding to the results which provides an attractive elec- ate the sequence-specific recognition of arsenal of enediyne antibiotics. Of these trostatic force towards the negatively double-stranded DNA, activation of the latter compounds, the synthesis of dyne- MEDIZINISCHE CHEMIE . MEDICINAL CHEMISTRY 250 C1HMIA 50 (144h) I\r. h (luni) micin A has been reported by Myers and coworkers [14]. The mode of action of these enediyne antibiotics follows a similar pathway as shown in Scheme J for calicheamycin.
Recommended publications
  • C-1027, a Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells
    Research Article C-1027, A Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells Terry A. Beerman,1 Loretta S. Gawron,1 Seulkih Shin,1 Ben Shen,2 and Mary M. McHugh1 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York;and 2Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin Abstract identified primarily from studies with neocarzinostatin (NCS), a The hypoxic nature of cells within solid tumors limits the holo-form drug, consisting of an apoprotein carrier and an active efficacy of anticancer therapies such as ionizing radiation and chromophore, and was assumed to be representative of all agents conventional radiomimetics because their mechanisms re- in this class (11). The NCS chromophore contains a bicyclic quire oxygen to induce lethal DNA breaks. For example, the enediyne that damages DNA via a Myers-Saito cycloaromatization conventional radiomimetic enediyne neocarzinostatin is 4- reaction, resulting in a 2,6-indacene diradical structure capable of fold less cytotoxic to cells maintained in low oxygen (hypoxic) hydrogen abstractions from deoxyribose (12, 13). Subsequent to compared with normoxic conditions. By contrast, the ene- generation of a sugar radical, reaction with oxygen quickly and diyne C-1027 was nearly 3-fold more cytotoxic to hypoxic than efficiently leads to formation of hydroxyl radicals that induce to normoxic cells. Like other radiomimetics, C-1027 induced DSBs/SSBs at a 1:5 ratio. The more recently discovered holo-form DNA breaks to a lesser extent in cell-free, or cellular hypoxic, enediyne C-1027 (Fig.
    [Show full text]
  • Enediynes, Enyneallenes, Their Reactions, and Beyond
    Advanced Review Enediynes, enyne-allenes, their reactions, and beyond Elfi Kraka∗ and Dieter Cremer Enediynes undergo a Bergman cyclization reaction to form the labile 1,4-didehy- drobenzene (p-benzyne) biradical. The energetics of this reaction and the related Schreiner–Pascal reaction as well as that of the Myers–Saito and Schmittel reac- tions of enyne-allenes are discussed on the basis of a variety of quantum chemical and available experimental results. The computational investigation of enediynes has been beneficial for both experimentalists and theoreticians because it has led to new synthetic challenges and new computational methodologies. The accurate description of biradicals has been one of the results of this mutual fertilization. Other results have been the computer-assisted drug design of new antitumor antibiotics based on the biological activity of natural enediynes, the investigation of hetero- and metallo-enediynes, the use of enediynes in chemical synthesis and C materials science, or an understanding of catalyzed enediyne reactions. " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1174 INTRODUCTION symmetry-allowed pericyclic reactions, (ii) aromatic- ity as a driving force for chemical reactions, and (iii) review on the enediynes is necessarily an ac- the investigation of labile intermediates with biradical count of intense and successful interdisciplinary A character. The henceforth called Bergman cyclization interactions of very different fields in chemistry provided deeper insight into the electronic structure involving among others organic chemistry, matrix of biradical intermediates, the mechanism of organic isolation spectroscopy, quantum chemistry, biochem- reactions, and orbital symmetry rules.
    [Show full text]
  • WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG.
    [Show full text]
  • Molecular Biosystems
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Cloning and sequencing of the kedarcidin biosynthetic Cite this: Mol. BioSyst., 2013, gene cluster from Streptoalloteichus sp. ATCC 53650 9, 478 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics† Jeremy R. Lohman,a Sheng-Xiong Huang,a Geoffrey P. Horsman,b Paul E. Dilfer,a Tingting Huang,a Yihua Chen,b Evelyn Wendt-Pienkowskib and Ben Shenz*abcd Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-b-tyrosine and an iso- propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate Received 16th November 2012, formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible Accepted 20th January 2013 for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and DOI: 10.1039/c3mb25523a maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the www.rsc.org/molecularbiosystems (R)-2-aza-3-chloro-b-tyrosine and the 2-naphthonate moieties in KED biosynthesis.
    [Show full text]
  • Rapid PCR Amplification of Minimal Enediyne Polyketide Synthase Cassettes Leads to a Predictive Familial Classification Model
    Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model Wen Liu*, Joachim Ahlert*†, Qunjie Gao*†, Evelyn Wendt-Pienkowski*, Ben Shen*‡§, and Jon S. Thorson*†§ *Pharmaceutical Sciences Division, School of Pharmacy, †Laboratory for Biosynthetic Chemistry, and ‡Department of Chemistry, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705 Edited by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved August 13, 2003 (received for review July 9, 2003) A universal PCR method for the rapid amplification of minimal enediyne warheads may proceed via similar polyunsaturated enediyne polyketide synthase (PKS) genes and the application of polyketide intermediates and established a PKS paradigm for the this methodology to clone remaining prototypical genes from enediyne biosynthesis (18, 19) (the neocarzintostatin cluster was producers of structurally determined enediynes in both family cloned, sequenced, and characterized from Streptomyces carzi- types are presented. A phylogenetic analysis of the new pool nostaticus ATCC 15944 by W.L., E.W.-P., and B.S., unpublished of bona fide enediyne PKS genes, consisting of three from 9-mem- data). Guided by this information, recent high-throughput ge- bered producers (neocarzinostatin, C1027, and maduropeptin) and nome scanning also led to the surprising discovery of functional three from 10-membered producers (calicheamicin, dynemicin, and enediyne PKS genes in diverse organisms previously not known esperamicin),
    [Show full text]
  • Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin
    Chem. Rev. 2005, 105, 739−758 739 Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin Ute Galm,† Martin H. Hager,† Steven G. Van Lanen,† Jianhua Ju,† Jon S. Thorson,*,† and Ben Shen*,†,‡ Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705 Received July 19, 2004 Contents their clinical utilities and shortcomings, a comparison of resistance mechanisms within producing organ- 1. Introduction 739 isms to those predominant among tumor cells reveals 2. Bleomycin 739 remarkable potential for continued development of 2.1. Discovery and Biological Activities 739 these essential anticancer agents. 2.2. Clinical Resistance 740 2.2.1. Bleomycin Hydrolase 741 2. Bleomycin 2.2.2. Enhanced DNA Repair 742 2.2.3. Bleomycin Binding Protein 742 2.1. Discovery and Biological Activities 2.2.4. Other Mechanisms 743 The bleomycins (BLMs), such as bleomycinic acid 2.3. Resistance by the Producing Organisms 743 (1), BLM A2 (2), or BLM B2 (3), are a family of 2.3.1. Bleomycin N-Acetyltranferase (BlmB) 743 glycopeptide-derived antibiotics originally isolated 2.3.2. Bleomycin Binding Protein (BlmA) 743 from several Streptomyces species.2,3 Several struc- 2.3.3. Transport Proteins 744 ture variations of the naturally occurring BLMs have 3. EnediynessNine-Membered Enediyne Core 744 been identified from fermentation broths, primarily Subfamily differing at the C-terminus of the glycopeptide. The 3.1. Discovery and Biological Activities 745 BLM structure was revised in 19784 and confirmed 3.2. Resistance by the Producing Organisms 746 by total synthesis in 1982.5,6 Structurally and bio- 3.2.1.
    [Show full text]
  • Wo2019/135816
    ( (51) International Patent Classification: GOPADHYAY, Soumyashree Ashok [US/US]; c/o 75 A61K 48/00 (2006.01) Francis Street, Boston, Massachusetts 021 15 (US). (21) International Application Number: (74) Agent: RUTLEDGE, Rachel D. et al.; Johnson, Marcou & PCT/US20 18/057 182 Isaacs, LLC, P. O .Box 691, Floschton, Georgia 30548 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 23 October 2018 (23. 10.2018) kind of national protection av ailable) . AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (30) Priority Data: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 62/575,948 23 October 2017 (23. 10.2017) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/765,347 20 August 2018 (20.08.2018) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 415 Main Street, Cambridge, Massachusetts 02142 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. THE BRIGHAM AND WOMEN'S HOSPITAL, INC. (84) Designated States (unless otherwise indicated, for every [US/US]; 75 Francis Street, Boston, Massachusetts 021 15 kind of regional protection available) .
    [Show full text]
  • Toshio Otani Anticancer &Antimicrobial Research Laboratory, Taiho Pharmaceutical Co. Ltd., Kawauchi-Cho, Tokushima 771-01
    VOL. 46 NO. 5 THE JOURNAL OF ANTIBIOTICS 791 CONFORMATION STUDIES ON AND ASSESSMENT BY SPECTRAL ANALYSIS OF THE PROTEIN-CHROMOPHORE INTERACTION OF THE MACROMOLECULAR ANTITUMOR ANTIBIOTIC C-1027 Toshio Otani Anticancer & Antimicrobial Research Laboratory, Taiho Pharmaceutical Co. Ltd., Kawauchi-cho, Tokushima 771-01 , Japan (Received for publication December 21, 1992) Characterization of the secondary structure of the antitumor antibiotic C-1027 has been made from a comparison ofC- 1027 and its apoprotein by various analytical means. The results indicated the antibiotic to be abundant in /^-structure by measurements of Fourier-transform infrared (FT-IR) spectroscopy and the circular dichroism (CD) spectrum, and by a prediction of the secondary structure based on the amino acid sequence of the peptide. In comparison of the IR spectra of their proteins in D2O, the apoprotein exhibited a faster H-D exchange than C-1027, indicating an increase in the "non-motile parts" of the jS-sheets formed through the protein-chromophore interaction in holo-C-1027. The prediction of hydropathic index indicated the hydrophobic residues of the apoprotein to be predominantly located in the /?-sheet structures, suggesting hydrophobic interaction in the binding between chromophore and apoprotein. Further, the interaction between chromophore and apoprotein was detected by a fluorescence method. The result showedthe dissociation constant (Kd) to be 6.88 x 10"5 m. indicating that the chromophore is tightly bound to the protein moiety. The antitumor antibiotic C-1027 and its apoprotein, C-1027-AG, were isolated at the same time from a culture filtrate of Streptomyces globisporus C-1027. This antibiotic has been extensively char- acterized during recent years, and has been shown to be composed of an apoprotein and an associated non-protein chromophore1>2).Theapoprotein is an acidic single-chain polypeptide composedof 1 10 amino acid residues, M.W.ca.
    [Show full text]
  • Controlling the Reactivity of Bergman and Myers-Saito Cyclizations
    CONTROLLING THE REACTIVITY OF BERGMAN AND MYERS-SAITO CYCLIZATIONS Reported by Daniel A. Ryan November 4, 2002 INTRODUCTION Enediyne compounds have captured the imagination of chemists since the discovery of calicheamicin (1) and neocarsinostatin (2)—natural products three orders of magnitude more potent than other anti-cancer drugs.1 In following years, other powerful enediyne toxins such as dynemicin, kedarcidin, esperamicin, maduropeptin, and C-1027 were discovered.2 Preliminary studies focused on the total synthesis and elucidation of the biological mode of action of these natural products. HO Me S S S OH O O NHEt O AcHN MeO O O OMe O O O O O Me OH Me O OMe Me NH O O I O S O Me O NHMe O OMe OH OH OMe OH Me O HO MeO Calicheamycin Neocarsinostatin OH 1 2 Figure 1. Enediyne antitumor agents calicheamycin and neocarsinostatin. Although enediynes have stimulated considerable synthetic interest, their clinical use has been limited because of their modest selectivity for cancer cells.3 It was determined that the biological activity of these enediyne compounds is dependent on the Bergman cyclization, or in the case of Neocarsinostatin (2), the Myers-Saito cyclization (Scheme 1).2 To understand and modify the biological Scheme 1 activity of these toxins, factors that influence the reactivity of the Bergman and Myers-Saito ∆∆ CH2 C Me cyclizations have been explored. These new advances will be reported herein. Bergman Myers-Saito Biological Mode of Action The antitumor activity of enediyne natural products stems from their ability to cleave double- stranded DNA (dsDNA), which induces cell apoptosis.4 The biological mode of action occurs along one of two general pathways, depending on the type of enediyne structure (Scheme 2).
    [Show full text]
  • Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents
    Current Medicinal Chemistry, 2003, 10, 2317-2325 2317 Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents Ben Shen1,2*, Wen Liu1 and Koichi Nonaka1 1Division of Pharmaceutical Sciences and 2Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA Abstract: This review gives a brief account on the current status of enediyne biosynthesis and the prospective of applying combinatorial biosynthesis methods to the enediyne system for novel analog production. Methods for cloning enediyne biosynthetic gene clusters are first reviewed. A unified paradigm for enediyne biosynthesis, characterized with (a) the enediyne PKS, (b) the enediyne PKS accessory enzymes, and (c) tailoring enzymes, is then presented. Strategies and tools for novel enediyne analog production by combinatorial biosynthesis are finally discussed. The results set the stage to decipher the molecular mechanism for enediyne biosynthesis and lay the foundation to engineer novel enediynes by combinatorial biosynthesis for future endeavors. Keywords: Biosynthesis, C-1027, calicheamicin, combinatorial biosynthesis, enediyne, polyketide synthase. INTRODUCTION categories according to the enediyne core structures. Members of the 9-membered enediyne core sub-category are Neocarzinostatin (NCS), the first member of the enediyne chromoproteins consisting of an apo-protein and the family of antitumor antibiotics, was originally discovered as enediyne chromophore, with N1999A2 (5 ) from a macromolecular antitumor antibiotic from the culture Streptomyces sp. AJ9493 as the only exception that was filtrates of a Streptomyces carzinostaticus strain in 1965 [1]. isolated as a chromophore alone [15]. The apo-protein acts as Although it became clear shortly after its discovery that all a stabilizer and specific carrier for the otherwise unstable biological activities of NCS resided in a nonprotein chromophore and its transport and interaction with target chromophore, the NCS chromophore structure (1) was not DNA.
    [Show full text]
  • Kedarcidin Chromophore: an Enediyne That Cleaves DNA in a Sequence-Specific Manner N
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 2822-2826, April 1993 Biochemistry Kedarcidin chromophore: An enediyne that cleaves DNA in a sequence-specific manner N. ZEIN*t, K. L. COLSONt, J. E. LEET*, D. R. SCHROEDERt, W. SOLOMON*, T. W. DOYLEt, AND A. M. CASAZZA* *Cancer Drug Discovery, Molecular Drug Mechanism, Pharmaceutical Research Institute, Bristol-Myers Squibb, P.O. Box 4000, Princeton, NJ 08543-4000; and *Chemistry and Analytical Research Division, Bristol-Myers Squibb, P.O. Box 5100, Wallingord, CT 06492-7660 Communicated by Donald M. Crothers, December 24, 1992 (receivedfor review November 9, 1992) ABSTRACT Kedarcidin chromophore is a 9-membered ence of CaCl2 implicate the 2-hydroxynaphthoyl moiety of enediyne, recentiy isolated from an actinomycete strain. In vivo the kedarcidin chromophore in the binding to the DNA. studies show this molecule to be extremely active against P388 leukemia and B16 melanoma. Cytotoxicity assays on the MATERIALS AND METHODS HCT116 colon carcinoma cell line result in an IC50 value of 1 nM. In vitro experiments with 4X174, pM2 DNA, and 32p- Chemicals. Kedarcidin chromophore and esperamicin A1, end-labeled restriction fragments demonstrate that this chro- prepared as described (3, 7), were obtained from the Division mophore binds and cleaves duplex DNA with a remarkable of Chemistry, Bristol-Myers Squibb (Wallingford, CT). The sequence selectivity producing single-strand breaks. The cleav- DNA plasmids [¢X174 replicative form I (RFI), replicative age chemistry requires reducing agents and oxygen similar to form II (RFII), and + strand; pM2; pBR322; and pUC18], the the other naturally occurring enediynes. Certain cations (Ca2+ restriction enzymes, and the Klenow fragment of DNA and Mg2+) prevent strand cleavage.
    [Show full text]
  • Computer Design of Anticancer Drugs. a New Enediyne Warhead†
    J. Am. Chem. Soc. 2000, 122, 8245-8264 8245 Computer Design of Anticancer Drugs. A New Enediyne Warhead† Elfi Kraka* and Dieter Cremer Contribution from the Department of Theoretical Chemistry, Go¨teborg UniVersity, Reutersgatan 2, S-401320 Go¨teborg, Sweden ReceiVed March 22, 2000. ReVised Manuscript ReceiVed June 7, 2000 Abstract: Seven criteria are developed and discussed that lead to the design of a new enediyne anticancer drug, which should have low toxicity but high biological selectivity and activity when attacking the DNA of tumor cells. These criteria concern (among others) the thermodynamic and kinetic stability of the species involved in the reaction of an enediyne, the biradical character and H-abstraction ability of the intermediate biradical generated in a Bergman reaction of the enediyne, and the basicity of the enediyne and its associated biradical. Thirteen different heteroenediynes were investigated with the help of B3LYP/6-31G(d,p) calculations to find a suitable candidate for a new enediyne anticancer drug, which fulfills the seven criteria. These calculations included the determination of reaction profiles for Bergman and retro-Bergman reactions, the calculation of singlet-triplet splittings of biradicals formed from enediynes, and the prediction of pKa values. Results were tested by using a larger basis set (6-311+G(3df,3pd)), another functional (BLYP), and coupled cluster methods such as CCSD(T) and the Brueckner orbitals-based BD(T) method. The best candidate for a new enediyne anticancer drug is an N,C-dialkynyl aldimine incorporated into a cyclodecaene ring. 1. Introduction stabilization factors while all members of the third family pos- sess a nine-membered-ring enediyne core structure and require Microorganisms and human beings have one thing in com- a specific associated protein for chromophore stabilization.
    [Show full text]