Total Synthesis of Calicheamicin Type Enediyne Natural Products

Total Page:16

File Type:pdf, Size:1020Kb

Total Synthesis of Calicheamicin Type Enediyne Natural Products Total Synthesis of Calicheamicin Type Enediyne Natural Products 17/09/02 Yuki Fujimoto 1 Contents 2 Enediyne Natural Products SSS Me O OMe NHCO 2Me MeO O O H OH HO O N O O O OMe S O OH HO I OH O OMe O NHEt I calicheamicin 1 (calicheamicin type) OMe O O O O CO 2H OH O HN O O OMe OH O O MeH N HO OH O OH O OH dynemicin A (dynemicin type) neocarzinostatin chromophore (chromoprotein type) 3 Bergman Cyclization Jones, R. R.; Bergman, R. G . J. Am. Chem. Soc. 1972 , 94 , 660. 4 Distance of Diyne a) Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988 , 110 , 4866. 5 b) Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed. Engl. 1991 , 30 , 1387. Calicheamicin Type Action Mechanism Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed. Engl. 1991 , 30 , 1387 6 Contents 7 Introduction of Calicheamicin SSS Me O OMe NHCO 2Me MeO O O H OH HO O N O O O OMe S O OH HO I OH O OMe NHEt I O calicheamicin 1 SSS Me Isolation O 1) NHCO 2Me bacterial strain Micromonospora echinospora ssp calichensis I Total synthesis of calicheamicin 1 HO OH Nicolaou, K. C. (1992, enantiomeric) 2) Danishefsky (1994, enantiomeric) 3) Total synthesis of calicheamicinone Danishefsky, S. J. (1990, racemic) 4) Nicolaou, K. C. (1993, enantiomeric) 5) calicheamicinone Clive, D. L. J. (1996, racemic) 6) (calicheamicin aglycon) Magnus, P. (1998, racemic) 7) 1) Borders, D. B . et al J. Am. Chem. Soc. 1987 , 109 , 3464. 2) Nicolaou, K. C . et al J. Am. Chem. Soc . 1992 , 114 , 10082. 3) Danishefsky, S. J .; et al Angew. Chem. Int. Ed. Engl . 1994 , 33 , 858. 4) Danishefsky, S. J. et al J. Am. Chem. Soc. 1990 , 112 , 3253. 5) Nicolaou, K. C . et al J. Am. Chem. Soc . 1993 , 115 , 7612. 6) Clive, D. L. J. et al J. Am. Chem. Soc . 1996 , 118 , 4904. 8 7) Magnus, P. et al J. Am. Chem. Soc. 1998 , 120 , 3518. Strategy of Calicheamicin Synthesis 9 Danishefsky’s Approach 10 Danishefsky’s Approach 2 1) Harpp. D. N.; Ash, D. K. Int. J. Sulfur Chem., Part A 1971 , 1, 57. 11 Clive’s Approach 12 Clive’s Approach 2 13 Summary of Calicheamicinone Synthesis 14 Contents 15 Introduction of Shishijimicin OH SSS Me O NHCO Me 2 N N H O HO OO O HO R1 OMe O NHR 2 shishijimicin A (R 1 = SMe, R2 = i- Pr) shishijimicin B (R1 = H, R2 = i-Pr) shishijimicin C (R 1 = SMe, R2 = Et) Isolation Total synthesis of shishijimicin A 2) lipophilic extract of the thin encrusting orange 1) Nicolaou K. C. (2015, enantiomeric) ascidian Didemnum proliferum (2003) Biological activity antitumor (IC50 = 0.47 nM against P388 leukemia cells) Structural features calicheamicinone aminosugar and thiosugar -carbolinyl 1) Oku, N.; Matsunaga, S.; Fusetani, N. J. Am. Chem. Soc . 2003 , 125 , 2044. 16 2) Nicolaou, K. C.; Lu, Z.; Li, R.; Woods, J. R.; Sohn, T. J. Am. Chem. Soc . 2015 , 137 , 8716 Retrosynthesis 17 1st Route toward Calicheamicin 1 18 1st Route toward Calicheamicin 2 19 1st Route toward Calicheamicin 3 O O O O O CO 2Me O CO 2Me NPhth NPhth NPhth MsCl, pyridine KN(TMS) 2 OH DMAP OMs TESO O TESO TESO toluene, -90 °C CH 2Cl 2 OMe 48 % enediyne addition O pyridine SiO 2 benzene 90 % (2 steps) OBz O O O NHCO 2Me O NPhth 3 steps I 5 steps calicheamicin 1 TESO OH TESO O O 20 Isoxazoline Synthesis 21 Introduction of Enediyne Unit O O O O O O TMSCl N N N TIPS NaI O O O AcO MeCN AcO O LiN(TMS) 2 H LaCl 3 2LiCl H H OMEM THF, -78 °C; OMEM OH Ac 2O 90 % TIPS TIPS O O RLi H O (COCl) , DMSO MEMO 2 CH 2Cl 2, -78 °C; Et N N 3 O 85 % (2 steps) 1. K2CO 3 MeOH/THF 2. TBAF, THF O O O O (MeO) 2OP CO 2Me O O 0 °C N N N O 3. TESOTf O LiN(TMS) 2 O TESO 2,6-lutidine AcO THF AcO CH 2Cl 2 -78 °C to rt 94 % (3 steps) 96 % O CO 2Me CO 2Me TIPS TIPS 22 Synthesis of Shishijimicin Core O O O O O CO 2Me O NPhth NR2 N LaCl 3 2LiCl O LiN(TMS) O Fe, NH 4Cl TESO 2 TESO TESO THF, -78 °C EtOH/H 2O O 60 °C, 83 % 85 % O CO 2Me reductive N-O bond cleavage PhthCl 1. MeNHNH 2 R2 = H,H pyridine benzene R2 = Phth MeNO 2 2. triphosgene 0 °C, 81 % pyridine CH 2Cl 2, 0 °C; MeOH 81 % (2 steps) SAc 1. PPh 3, DEAD OH 1. NaBH O Ac SH O 4 O O NHCO 2Me THF, 0 °C O NHCO 2Me CeCl 3 7H2O O NHCO 2Me 96 % (2 steps) MeOH, 92 % TESO OH 2. HF Py/THF TESO OTMS 2. TMSCN; TESO AcOH 0 °C, 99 % O THF/H 2O, 0 °C O 23 Inversion of Stereoselectivity 24 Total Synthesis of Shishijimicin OTBS SAc SAc O O NHCO 2Me O O NHCO 2Me N N TESO OH O H TESO OO OTBS BF 3 OEt 2 O CH Cl , MS A HO 2 2 4 SMe -78 to -40 °C OMe 26 % (based on sugar) NAlloc i-Pr NH O N N KOH, MeOH, -5 °C; H AcOH; O Cl 3C O O O 1) HO O SMe N SS Me OMe O NAlloc i-Pr 0 °C O OH 50 % OTBS SSS Me SSS Me O NHCO Me O NHCO Me 2 N O 2 N N 1. HF Py /THF, 80 % N O H O H HO OO TES O OO HO O 2. Pd(PPh 3)4 (50 mol%) HO O SMe morpholine SMe THF, 0 °C, 91 % OMe OMe O NHi-Pr 3. p-TsOH O NAlloc i-Pr THF/acetone/H 2O shishijimicin A 73 % 1) Harpp. D. N.; Ash, D. K. Int. J. Sulfur Chem., Part A 1971 , 1, 57. 25 Summary TMS Cl OBz O O NHCO 2Me TMS epimerization was needed calicheamicin TESO OH O O O O N NPhth 21 steps 1.7 % yield O TESO O O H OMEM OMe SAc O O O NHCO 2Me shishijimicin TESO OH stereoselective addition TIPS 19 steps 21 % yield 26 appendix 27 DNA Cleavage Main Mechanism Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed. Engl. 1991 , 30 , 1387 28.
Recommended publications
  • C-1027, a Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells
    Research Article C-1027, A Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells Terry A. Beerman,1 Loretta S. Gawron,1 Seulkih Shin,1 Ben Shen,2 and Mary M. McHugh1 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York;and 2Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin Abstract identified primarily from studies with neocarzinostatin (NCS), a The hypoxic nature of cells within solid tumors limits the holo-form drug, consisting of an apoprotein carrier and an active efficacy of anticancer therapies such as ionizing radiation and chromophore, and was assumed to be representative of all agents conventional radiomimetics because their mechanisms re- in this class (11). The NCS chromophore contains a bicyclic quire oxygen to induce lethal DNA breaks. For example, the enediyne that damages DNA via a Myers-Saito cycloaromatization conventional radiomimetic enediyne neocarzinostatin is 4- reaction, resulting in a 2,6-indacene diradical structure capable of fold less cytotoxic to cells maintained in low oxygen (hypoxic) hydrogen abstractions from deoxyribose (12, 13). Subsequent to compared with normoxic conditions. By contrast, the ene- generation of a sugar radical, reaction with oxygen quickly and diyne C-1027 was nearly 3-fold more cytotoxic to hypoxic than efficiently leads to formation of hydroxyl radicals that induce to normoxic cells. Like other radiomimetics, C-1027 induced DSBs/SSBs at a 1:5 ratio. The more recently discovered holo-form DNA breaks to a lesser extent in cell-free, or cellular hypoxic, enediyne C-1027 (Fig.
    [Show full text]
  • Enediynes, Enyneallenes, Their Reactions, and Beyond
    Advanced Review Enediynes, enyne-allenes, their reactions, and beyond Elfi Kraka∗ and Dieter Cremer Enediynes undergo a Bergman cyclization reaction to form the labile 1,4-didehy- drobenzene (p-benzyne) biradical. The energetics of this reaction and the related Schreiner–Pascal reaction as well as that of the Myers–Saito and Schmittel reac- tions of enyne-allenes are discussed on the basis of a variety of quantum chemical and available experimental results. The computational investigation of enediynes has been beneficial for both experimentalists and theoreticians because it has led to new synthetic challenges and new computational methodologies. The accurate description of biradicals has been one of the results of this mutual fertilization. Other results have been the computer-assisted drug design of new antitumor antibiotics based on the biological activity of natural enediynes, the investigation of hetero- and metallo-enediynes, the use of enediynes in chemical synthesis and C materials science, or an understanding of catalyzed enediyne reactions. " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1174 INTRODUCTION symmetry-allowed pericyclic reactions, (ii) aromatic- ity as a driving force for chemical reactions, and (iii) review on the enediynes is necessarily an ac- the investigation of labile intermediates with biradical count of intense and successful interdisciplinary A character. The henceforth called Bergman cyclization interactions of very different fields in chemistry provided deeper insight into the electronic structure involving among others organic chemistry, matrix of biradical intermediates, the mechanism of organic isolation spectroscopy, quantum chemistry, biochem- reactions, and orbital symmetry rules.
    [Show full text]
  • Inotuzumab Ozogamicin Is an Investigational Agent and Has Not Been Approved for Marketing by Any Regulatory Agency at This Time
    Inotuzumab Ozogamicin is an investigational agent and has not been approved for marketing by any regulatory agency at this time. ABOUT INOTUZUMAB OZOGAMICIN Inotuzumab ozogamicin is an investigational antibody-drug conjugate (ADC) comprised of a monoclonal antibody (mAb) targeting CD22, a cell surface antigen found on cancer cells in almost all B-ALL patients, linked to a cytotoxic agent.1,2 When inotuzumab ozogamicin binds to the CD22 antigen on B-cells, it is internalized into the cell, where the cytotoxic agent calicheamicin is released to destroy the cell.3 ABOUT ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) Acute lymphoblastic leukemia (ALL) in adults is an aggressive leukemia that can be fatal within a matter of months if left untreated.4 While many potential treatments have been studied, only a limited number of medicines for relapsed or refractory adults with ALL have been approved by the FDA and other regulatory authorities in the past decade. The current standard treatment is intensive, lengthy chemotherapy with the goal of halting the signs and symptoms of ALL (called hematologic remission) and patients becoming eligible for a stem cell transplant.4 UNMET NEEDS IN ADULT ALL Statistics & Patient Characteristics Statistics & Patient Characteristics • In 2017, it is estimated that 5,970 cases of ALL • Approximately half of U.S. adults who learn they will be diagnosed in the United States, with about have ALL this year will not respond to commonly 4 in 10 cases occurring in adults.5 used chemotherapy agents (e.g., be refractory) or will eventually see their disease return (e.g., relapse).5 • While significant strides have been made in treating children with ALL, the opposite is true for adults with • The outlook for adults with relapsed or refractory the disease.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin
    CCR FOCUS Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin Alejandro D. Ricart Abstract Antibody-drug conjugates (ADC) are an attractive approach for the treatment of acute myeloid leukemia and non-Hodgkin lymphomas, which in most cases, are inherently sensitive to cytotoxic agents. CD33 and CD22 are specific markers of myeloid leukemias and B-cell malignancies, respectively. These endocytic receptors are ideal for an ADC strategy because they can effectively carry the cytotoxic payload into the cell. Gemtuzumab ozogamicin (GO, Mylotarg) and inotuzumab ozogamicin consist of a derivative of calichea- micin (a potent DNA-binding cytotoxic antibiotic) linked to a humanized monoclonal IgG4 antibody directed against CD33 or CD22, respectively. Both of these ADCs have a target-mediated pharmacokinetic disposition. GO was the first drug to prove the ADC concept in the clinic, specifically in phase II studies that included substantial proportions of older patients with relapsed acute myeloid leukemia. In contrast, in phase III studies, it has thus far failed to show clinical benefit in first-line treatment in combination with standard chemotherapy. Inotuzumab ozogamicin has shown remarkable clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma, and it has started phase III evaluation. The safety profile of these ADCs includes reversible myelosuppression (especially neutropenia and thrombocyto- penia), elevated hepatic transaminases, and hyperbilirubinemia. There have been postmarketing reports of hepatotoxicity, especially veno-occlusive disease, associated with GO. The incidence is 2%, but patients who undergo hematopoietic stem cell transplantation have an increased risk. As we steadily move toward the goal of personalized medicine, these kinds of agents will provide a unique opportunity to treat selected patient subpopulations based on the expression of their specific tumor targets.
    [Show full text]
  • Design, Synthesis and Reactivity of Cyclopropenone
    DESIGN, SYNTHESIS AND REACTIVITY OF CYCLOPROPENONE- CONTAINING NINE MEMBERED CYCLIC ENEDIYNE AND ENYNE-ALLENE PRECURSORS AS PROTOTYPE PHOTOSWITCHABLE ANTITUMOR AGENTS by DINESH R. PANDITHAVIDANA (Under the Direction of Vladimir V. Popik) ABSTRACT The extreme cytotoxicity of natural enediyne antibiotics is attributed to the ability of the ( Z)-3-hexene-1,5-diyne (enediyne) and ( Z)-1,2,4-heptatrien-6-yne (enyne–allene) fragments incorporated into a 10- or 9-membered ring cyclic system to undergo cycloaromatization producing dDNA-damaging 1,4-diradicals. The rate of cyclization of enediynes to p-benzynes strongly depends on the distance between acetylenic termini, which in turn can be controlled by the ring size. Thus, 11-membered ring enediynes are stable, 10-membered ring analogs undergo slow cycloaromatization under ambient conditions or mild heating, 9- membered ring enediynes are virtually unknown and believed to undergo very fast spontaneous cyclization. Cyclic enyne-allenes have not been synthesized so far due to very facile Myers-Saito cyclization. We have developed thermally stable photo-precursors of 9-membered enediynes ( 2.22 , 2.26 ) and enyne-allene ( 2.44 ), in which one of the triple bonds is replaced by the cyclopropenone group. UV irradiation of 2.14 results in the efficient decarbonylation (Φ 254 = 0.34) and the formation of reactive enediyne 2.22. The latter undergoes clean cycloaromatization to 2,3-dihydro-1H- cyclopenta[b]naphthalen-1-ol ( 2.24 ) with a life-time of ca. 2 h in 2-propanol at 25 °C. The rate of this reaction depends linearly on the concentration of hydrogen donor and shows a primary kinetic isotope effect in 2-propanol-d8.
    [Show full text]
  • Molecular Biosystems
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Cloning and sequencing of the kedarcidin biosynthetic Cite this: Mol. BioSyst., 2013, gene cluster from Streptoalloteichus sp. ATCC 53650 9, 478 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics† Jeremy R. Lohman,a Sheng-Xiong Huang,a Geoffrey P. Horsman,b Paul E. Dilfer,a Tingting Huang,a Yihua Chen,b Evelyn Wendt-Pienkowskib and Ben Shenz*abcd Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-b-tyrosine and an iso- propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate Received 16th November 2012, formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible Accepted 20th January 2013 for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and DOI: 10.1039/c3mb25523a maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the www.rsc.org/molecularbiosystems (R)-2-aza-3-chloro-b-tyrosine and the 2-naphthonate moieties in KED biosynthesis.
    [Show full text]
  • The Novel Calicheamicin-Conjugated CD22 Antibody Inotuzumab Ozogamicin (CMC-544) Effectively Kills Primary Pediatric Acute Lymphoblastic Leukemia Cells
    Leukemia (2012) 26, 255–264 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu ORIGINAL ARTICLE The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells JF de Vries1, CM Zwaan2, M De Bie1, JSA Voerman1, ML den Boer2, JJM van Dongen1 and VHJ van der Velden1 1Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands and 2Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children’s Hospital, Rotterdam, The Netherlands We investigated whether the newly developed antibody (Ab) - One of these new approaches is antibody (Ab)-targeted targeted therapy inotuzumab ozogamicin (CMC-544), consisting chemotherapy, where the Ab-part of the compound is used to of a humanized CD22 Ab linked to calicheamicin, is effective in specifically deliver the cytostatic drug to the target cell, resulting pediatric primary B-cell precursor acute lymphoblastic leuke- mia (BCP-ALL) cells in vitro, and analyzed which parameters in less or no bystander cell death. One of the first examples of Ab- determine its efficacy. CMC-544 induced dose-dependent cell based delivery is gemtuzumab ozogamicin (GO, Mylotarg kill in the majority of BCP-ALL cells, although IC50 values varied or CMA-676), which consists of a humanized CD33 Ab substantially (median 4.8 ng/ml, range 0.1–1000 ng/ml at 48 h). covalently linked to a derivative of the potent DNA-damaging The efficacy of CMC-544 was highly dependent on calicheami- cytotoxic agent calicheamicin.7,8 Calicheamicin induces cell cin sensitivity and CD22/CMC-544 internalization capacity of BCP-ALL cells, but hardly on basal and renewed CD22 death in its target cells by interaction with double-helical DNA in expression.
    [Show full text]
  • Isolation and Identification of Cyclic Polyketides From
    ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY
    [Show full text]
  • Selective Proteolytic Activity of the Antitumor Agent Kedarcidin N
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8009-8012, September 1993 Biochemistry Selective proteolytic activity of the antitumor agent kedarcidin N. ZEIN*t, A. M. CASAZZA*, T. W. DOYLE*, J. E. LEETt, D. R. SCHROEDERt, W. SOLOMON*, AND S. G. NADLER§ *Cancer Drug Discovery, Molecular Drug Mechanism, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543-4000; tChemistry Division, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 5100, Wallingford, CT 06492-7660; and §Antitumor Immunology, Bristol-Myers Squibb Pharmaceutical Research Institute, 3005 1st Avenue, Seattle, WA 98121 Communicated by William P. Jencks, May 27, 1993 ABSTRACT Kedarcidin is a potent antitumor antibiotic there is substantial in vitro chemical and structural informa- chromoprotein, composed of an enediyne-containing chro- tion (4-21). Furthermore, it was proposed that the neocarzi- mophore embedded in a highly acidic single chain polypeptide. nostatin apoprotein stabilizes and regulates the availability of The chromophore was shown to cleave duplex DNA site- the labile chromophore (4-9). As previously shown for specifically in a single-stranded manner. Herein, we report that neocarzinostatin (4-9), DNA experiments with the isolated in vitro, the kedarcidin apoprotein, which lacks any detectable chromophore and the kedarcidin chromoprotein demon- chromophore, cleaves proteins selectively. Histones that are the strated that DNA cleavage was mostly due to the chro- most opposite in net charge to the apoprotein are cleaved most mophore (N.Z. and W.S., unpublished data). However, readily. Our findings imply that the potency of kedarcidin cytotoxicity assays using human colon cancer cell lines HCT results from the combination of a DNA damaging-chro- 116 showed the chromophore and the chromoprotein to mophore and a protease-like apoprotein.
    [Show full text]
  • Rapid PCR Amplification of Minimal Enediyne Polyketide Synthase Cassettes Leads to a Predictive Familial Classification Model
    Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model Wen Liu*, Joachim Ahlert*†, Qunjie Gao*†, Evelyn Wendt-Pienkowski*, Ben Shen*‡§, and Jon S. Thorson*†§ *Pharmaceutical Sciences Division, School of Pharmacy, †Laboratory for Biosynthetic Chemistry, and ‡Department of Chemistry, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705 Edited by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved August 13, 2003 (received for review July 9, 2003) A universal PCR method for the rapid amplification of minimal enediyne warheads may proceed via similar polyunsaturated enediyne polyketide synthase (PKS) genes and the application of polyketide intermediates and established a PKS paradigm for the this methodology to clone remaining prototypical genes from enediyne biosynthesis (18, 19) (the neocarzintostatin cluster was producers of structurally determined enediynes in both family cloned, sequenced, and characterized from Streptomyces carzi- types are presented. A phylogenetic analysis of the new pool nostaticus ATCC 15944 by W.L., E.W.-P., and B.S., unpublished of bona fide enediyne PKS genes, consisting of three from 9-mem- data). Guided by this information, recent high-throughput ge- bered producers (neocarzinostatin, C1027, and maduropeptin) and nome scanning also led to the surprising discovery of functional three from 10-membered producers (calicheamicin, dynemicin, and enediyne PKS genes in diverse organisms previously not known esperamicin),
    [Show full text]
  • Functional and Structural Characterization of the Proteins from Early Steps of Calicheamicin Biosynthesis
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Functional and structural characterization of the proteins from early steps of calicheamicin biosynthesis Kong, Rong 2011 Kong, R. (2011). Functional and structural characterization of the proteins from early steps of calicheamicin biosynthesis. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/44806 https://doi.org/10.32657/10356/44806 Downloaded on 11 Oct 2021 03:39:08 SGT FUNCTIONAL AND STRUCTURAL CHARACTERIZATION OF THE PROTEINS FROM EARLY STEPS OF CALICHEAMICIN BIOSYNTHESIS KONG RONG SCHOOL OF BIOLOGICAL SCIENCES 2011 FUNCTIONAL AND STRUCTURAL CHARACTERIZATION OF THE PROTEINS FROM EARLY STEPS OF CALICHEAMICIN BIOSYNTHESIS KONG RONG SCHOOL OF BIOLOGICAL SCIENCES NANYANG TECHNOLOGICAL UNIVERSITY A thesis submitted to the Nanyang Technological University In partial fulfillment of the requirement for the degree of Doctor of Philosophy 2011 Acknowledgement I would like to express my gratitude to my supervisor, Asst. Prof. Liang Zhao-xun, for granting me the opportunity to be a part of such an intriguing project. Thank you for the invaluable guidance and inspiration throughout the project. I would like to show my greatest appreciation to Dr. Liang for taking his precious time to read through and give constructive comments on the writing of this thesis as well. Apart from my supervisor, I would also like to thank for the spontaneous help and support given by my current and former colleagues, Ela, Rao feng, Ya Ning, Ji Qiang, Dong Wei, Hui Hua, Swathi, Lawrence, Lan Pei, Qin Shi, Mary, Chong Wai, Sun Chi, Siew Lee, Chun Cheong, Thomas, Yee Wei and Xu Min.
    [Show full text]