<<

Diabetes Page 2 of 61

Carboxyl-ester Maturity-Onset Diabetes of the

Young is Associated with Development of Pancreatic

Cysts and Upregulated MAPK Signaling in -

stimulated duodenal fluid

Helge Ræder 1,2,3, Fiona E. McAllister4*, Erling Tjora2,3*, Shweta Bhatt1, Ingfrid

Haldorsen5,6, Jiang Hu1, Stefan M. Willems4, Mette Vesterhus7, Abdelfattah El Ouaamari1,

Manway Liu8, Maria B. Raeder3, Heike Immervoll9,10,11, Dag Hoem12, Georg Dimcevski7 ,

Pål R. Njolstad2,3, Anders Molven9,10, Steven P Gygi4, Rohit N. Kulkarni1

From the 1Section of Islet and Regenerative Medicine, Joslin Diabetes Center,

Harvard Medical School, Boston, MA, USA, 2Department of Pediatrics, Haukeland University

Hospital, Bergen, Norway; 3Department of Clinical Science, University of Bergen, Bergen,

Norway, 4Department of Cell Biology, Harvard Medical School, Boston, MA, USA,5Department

of Radiology, Haukeland University Hospital, Bergen, Norway; 6Section for Radiology,

Department of Clinical Medicine, University of Bergen, 7Department of Medicine, Haukeland

University Hospital, Bergen, Norway, 8Department of Biomedical Engineering, Boston

University, Boston, MA,USA , 9The Gade Laboratory for Pathology, Department of Clinical

Medicine, University of Bergen, Norway; 10Department of Pathology, Haukeland University

Hospital, Bergen, Norway, 11Department of Pathology, Ålesund Hospital, Ålesund, Norway;

12Department of Surgery, Haukeland University Hospital, Bergen, Norway, *,These authors

contributed equally.

Corresponding author: Helge Raeder, [email protected]

1

Diabetes Publish Ahead of Print, published online September 23, 2013 Page 3 of 61 Diabetes

Running title: PANCREATIC CYSTS AND MAPK SIGNALING IN CEL-MODY

Original article: Word count, abstract: 200, Word count, main text: 3161, Number of references:

33, Number of figures: 5, Number of tables: 2.

ABSTRACT

CELMODY is a monogenic form of diabetes and pancreatic exocrine dysfunction due to

mutations in the carboxylester lipase CEL. The pathogenic mechanism for diabetes

development is unknown. Since CEL is expressed mainly in pancreatic acinar cells, we asked

whether we could find structural pancreatic changes in CELMODY subjects during the course

of diabetes development. Furthermore, we hypotesized that the diseased releases

which are detectable in pancreatic fluid and potentially reflected activation or

inactivation of diseasespecific pathways. We therefore investigated nondiabetic and diabetic

CEL mutation carriers by pancreatic imaging studies and secretinstimulated duodenal juice

sampling. The secretinstimulated duodenal juice was studied using cytokine assays, triplestage

mass spectrometry (MS3) and multiplexed mass spectrometrybased measurement of kinase

activities. We identified multiple pancreatic cysts in all the eight diabetic mutation carriers but

not in any of the four nondiabetic mutation carriers or the six healthy controls. Furthermore, we

identified upregulated MAPK target proteins and MAPKdriven cytokines and increased MAPK

activity in the secretinstimulated duodenal juice. These findings show that subjects with CEL

MODY develop multiple pancreatic cysts by the time they develop diabetes and that upregulated

MAPK signaling in the pancreatic secretome may reflect the pathophysiological development of

pancreatic cysts and diabetes.

Keywords: MODY; Carboxylester lipase, pancreatic cysts, proteome profiling; MAPK signaling

2

Diabetes Page 4 of 61

INTRODUCTION

Studies of patients with Maturityonset Diabetes of the Young have provided important insight into disease mechanisms of pancreatic beta cell failure and diabetes development and also contributed to novel treatment strategies based on this insight (1; 2). We have previously reported two families with a human monogenic syndrome of diabetes and pancreatic exocrine dysfunction

(maturityonset diabetes of the young, type 8, MODY8; CELMODY;OMIM #609812) caused by mutations in the carboxyl-ester lipase (CEL) gene (3). Patients with CEL mutations develop pancreatic exocrine dysfunction in early childhood (as measured by low fecal levels), accumulate pancreatic fatty tissue, and develop diabetes and clinical malabsorption in their fourth decade of life (3; 4). The CEL gene is primarily expressed in pancreatic acinar cells and lactating mammary tissue, and encodes a digestive with a role in cholesterol ester (5).

Studies of animal models have not been able to explain the disease mechanism of diabetes development in CELMODY (6; 7), but cellular studies indicate that mutated CEL is misfolded (8). Hence, to gain further insight into the disease mechanism, we further studied human CEL mutation carriers using radiological methods and secretinstimulated duodenal juice to examine the pancreatic proteome (9). We hypotesized that the diseased pancreas releases proteins which are detectable in pancreatic fluid and potentially reflected activation or inactivation of diseasespecific pathways. To optimize the accuracy of the proteomics studies we applied triplestage mass spectrometry, MS3 (10), and complemented this approach with cytokine assays and MSbased multiplex kinase activity assays (11) to crossvalidate our findings.

3

Page 5 of 61 Diabetes

RESEARCH DESIGN AND METHODS

Patients. We have previously reported various clinical characteristics for the CEL mutation

carrying subjects (3). In this study the studied CEL mutation carrying subjects (CEL+) were

denoted with the prefix D if they had manifest diabetes (D1, D2, D3 and D4), with the prefix P if

they had not yet developed diabetes (P1 or P2), or with the prefix C for the patient with

pancreatic ductal adenocarcinoma (C1). The Supplemental Online Appendix contains the

corresponding pedigree information. The nonfamily controls were denoted with the prefix N

(N1, N2, N3, N4) for controls in the duodenal juice studies. We sampled duodenal juice from the

patients by endoscopy. To enrich for pancreatic factors, we administered intravenous secretin

((Secrelux® Sanofi, Germany. 1 cU/kg, max 70 cU) to the patients and sampled duodenal juice

from 30 to 45 minutes later since it has been shown that there is a peak from pancreas

in this time interval (12; 13). The controls for the secretinstimulated duodenal juice studies were

recruited from volunteers. The single specimen from a CEL mutation carrier

with PDAC was collected during a classical Whipple procedure. All studies were approved by

the Norwegian regional committee for research ethics and the IRB at the Joslin Diabetes Center

and performed according to the Helsinki Declaration. We obtained written informed consent

from subjects or their parents. Patients were of NorthEuropean descent and recruited from the

Norwegian MODY Registry.

Protocol for pancreatic imaging. MR imaging was performed on a 1.5 T Siemens Avanto

running Syngo MR B17 (Erlagen, Germany) using a 12channel body coil. For clinical and

anatomical evaluation of the pancreas a standard abdominal protocol was used: Axial TrueFISP

(true Fast Imaging with Steadystate Precision; TR (repetition time) = 2.79 ms, TE (echo time) =

1.17 ms, slice thickness = 4.0 mm, spacing = 0, alfa = 63 degrees, FOV (field of view) = 380 mm

x 380 mm, matrix = 156 x 192, acquisition time = 15 s) and axial saturated T2weighted

4

Diabetes Page 6 of 61

imaging (TR = 1000 ms, TE (echo time) = 90 ms, slice thickness = 5 mm, spacing = 0, alfa = 150 degrees, FOV (field of view) = 350 mm x 350 mm, matrix = 256 x 256, acquisition time = 24 s).

For evaluation of the pancreatic and biliary ducts magnetic resonance cholangiopancreaticography (MRCP) was performed: Coronal T2weigthed imaging (TR = 2000 ms, TE (echo time) = 691 ms, slice thickness = 1.1 mm, spacing = 0, alfa = 140 degrees, FOV

(field of view) = 280 mm x 280 mm, matrix = 320 x 320, acquisition time = 5.23 min) with maximum intensity projection (MIP) and multiplanar reformatting (MPR).

Cytokine assay. Fortytwo cytokines were measured in secretinstimulated duodenal juice samples (sample volume of 25 microliter), using the MILLIPLEX MAP Human

Cytokine/Chemokine Premixed 42 Plex from Millipore (Billerica, MA). This 42plex kit was used to measure the concentrations of EGF, Eotaxin, FGF2, Flt3 ligand, Fractalkine, G

CSF, GMCSF, GRO, IFNα2, IFNγ, IL10, IL12 (p40), IL12 (p70), IL13, IL15, IL17, IL

1Rα, IL1α, IL1β, IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IP10, MCP1, MCP3, MDC

(CCL22), MIP1α, MIP1β, PDGFAA, PDGFAB/BB, RANTES, TGFα, TNFα, TNFβ,

VEGF, sCD40L, sIL2Rα. All samples were analyzed with a Luminex 200 xMAP system, and

MILLIPLEX Analyst Software (VigeneTech, Carlisle, MA) was used to analyse the results.

Proteolytic degradation assay. A set of 45 synthetic substrates, each at 1 M, were incubated with 10 g pancreatic fluid and reaction buffer containing TrisCl (25 mM, pH 7.5),

MgCl2 (7.5 mM), EGTA (0.2 mM), βglycerophosphate (7.5 mM), Na3VO4 (0.1 mM) and DTT

(0.1 mM). The reaction was incubated at room temperature for 0, 15, 60 min, after which the reaction was quenched with 100 L of 1% trifluoroacetic (TFA). Twenty five pmol of internal standard stableisotope labeled substrate was spiked into the quenched reaction.

The solution was desalted using SepPak C18 50 mg cartridges (Waters) and dried using vacuum

5

Page 7 of 61 Diabetes

centrifugation. The desalted sample was then resuspended in 100 L of 5% formic acid of which

2 L was then subjected to analysis by mass spectrometry. Technical duplicates were performed

for each sample at each time point. The peptides from proteolytic degradation assays were

analysed by LCMS on a high resolution Exactive Orbitrap mass spectrometer (Thermo). Briefly,

a 45 minute gradient was used to separate the peptides from 1037% solvent B (0.125% formic

acid in acentonitrile) at a flow rate of 300 mL/min. LCMS data was collected from 3501500

m/z and the extracted ion chromatograms of the and heavy peptides were used to quantitate

the absolute kinase activity and the extent of peptide degradation respectively. Data analysis was

performed using Pinpoint (Thermo).

Quantitative proteomics of pancreatic juice using TMT labeling. Pancreatic juice (100 L)

from 6 subjects was purified using methanol/chloroform precipitation. The purified protein

pellets were each resuspended in 100 L of 50 mM HEPES, 4M Urea, pH 8.5. The protein

concentration was determined using Bradford protein assay (Pierce). The cysteine residues were

reduced and alkylated with DTT (5 mM) and iodoacetamide (15 mM) respectively prior to

digestion with LysC (Wako, Japan) in a 1:100 LysC:protein ratio. Following digestion

overnight, the digest was acidified with formic acid prior to desalting with C18 solidphase

extraction (SepPak, Waters, Milford, MA). The desalted peptides were then resuspended in 100

L of 50 mM HEPES, pH 8.5 and each sample was labeled with one of the 6plex tandem mass

tag (TMT) reagents (Thermo Scientific, Rockford, IL) for one hour at room temperature. The

TMT labeled peptides were purified, fractionated by strong cation exchange chromatography

(SCX) and 14 fractions were analysed by LCMS/MS on an LTQOrbitrap Velos mass

spectrometer. An MS3 method developed recently by the lab was used to overcome the

interference problem in acquisition of TMT data as described (14). Further experimental details

for the proteomics and immunoblotting experiments, kinase activity assay (15) and proteolytic

6

Diabetes Page 8 of 61

degardation assays are outlined in the Supplemental Online Appendix. Details for the database searches, filtering and quantification for the proteomics experiments are also outlined in the

Supplemental Online Appendix, but, briefly, two different types of searches (LysC and "no enzyme") were used when MS/MS spectra were searched against the human ipi database (v. 3.6) using the Sequent algorithm (v. 5) (16). The data was filtered to a false discovery rate of less than

1% based on the targetdecoy database approach (17). Further filtering of the list to include only

'pancreas specific' proteins was based on analyses of nine different mouse tissues (18). To test the hypothesis that secretinstimulated duodenal secretory proteins truly reflected , an investigator (F.M.) blinded to the sample status, performed unsupervised clustering analysis based on protein abundance (i.e. algoritmic classification procedure to group samples based on protein expression similarities and blinded to a knowledge of sample disease status).

Bioinformatics studies using Biobase. We performed a comprehensive investigation of all proteins in the secretinstimulated duodenal juice (not only pancreatic specific proteins) to avoid excluding proteins that are only expressed in the diseased state. We used the Biobase Explain 3.0 tool (19) to examine whether the proteins that were elevated in the secretinstimulated duodenal juice from CEL mutation carriers (log2 ratio>1 of protein expression) shared common upstream key nodes in pathways in physiological and pathophysiological processes, see http://explain30.biobaseinternational.com.ezpprod1.hul.harvard.edu/cgi bin/biobase/ExPlain_3.0/bin/start.cgi? for details.

Other statistical analysis. For the analyses of cytokine levels we used twotailed Student’s t tests of independent groups assuming unequal variance. We used linear regression to estimate R2 for the correlation of cyst number and the respective cytokines. We chose a significance level of

7

Page 9 of 61 Diabetes

5% and analysed all data using Stata 11.0 (Stata Statistical Software, Stata Corp., College

Station, Texas, USA).

RESULTS

Subjects with CEL-MODY Develop Multiple Pancreatic Cysts and diabetes in their forties.

We performed pancreatic imaging studies in a CELMODY family (Figure 1) and identified

multiple unilocular pancreatic cysts (Figure 2) in all CEL mutation carriers (n=8) who had also

developed diabetes (Table 1). None of the nondiabetic CEL mutation carriers (n=4) or the

healthy controls (n=6) had multiple pancreatic cysts, but two of these subjects (one nondiabetic

CEL mutation carrier and a healthy control) had a solitary cyst. Moreover, the number of cysts

correlated positively with age in the CEL mutation carriers (R2 = 0.46, P = 0.01).

Cytokine analysis of the secretin-stimulated duodenal juice identifies MAPK-driven

cytokines in CEL mutation carriers positively correlated with disease progression. Since

cytokine levels in secretinstimulated duodenal juice may reflect pancreatic disease (20), we first

assessed a panel of 42 cytokines in the secretinstimulated duodenal fluid samples of several

family members and controls (Suppl. Table 1). The MAPKdriven CXCR2 receptor targeting

cytokine growthrelated oncogene (GRO) was significantly increased in the carriers with a

tendency towards higher levels in subjects who had accumulated more clinical manifestations

(Table 1, and Fig. 3a; P<0.01). We also observed that GRO correlated significantly with the

number of cysts in the subjects (Fig. 3b; R2=0.56, P=0.005). Interestingly, the related MAPK

driven CXCR1 and 2targeting cytokine interleukin 8 (IL8), while not showing significantly

increased levels in CEL mutation carriers (Fig. 3c; P=0.15), revealed a significant correlation

with the number of cysts (Fig. 3d; R2=0.72, P<0.001; Suppl. Table 1). Hence, secretinstimulated

8

Diabetes Page 10 of 61

duodenal fluid of CEL mutation carriers contains cytokines whose increasing levels may potentially reflect increasing severity of a progressive pancreatic disease.

Proteomics-based identification of a distinct protein signature in secretin-stimulated duodenal juice of CEL mutation carriers. Since some protein markers (cytokines) displayed increasing levels with the progressive accumulation of clinical manifestations, we asked whether diabetic CEL mutation carriers displayed a unique proteomic signature in secretinstimulated duodenal juice. Anticipating some degree of protein degradation in duodenal juice we first assessed the extent of protein degradation by exploring a multiplexed mass spectrometry based degradation assay (Fig. 4a) and differences in silver staining for equal quantities of protein loaded onto gels (Fig. 4b) and found indeed an extensive degradation of secretinstimulated duodenal proteins. Subsequently, we applied a multiplexed quantitative proteomics approach with isobaric labeling (TMT, tandem mass tags) to a training set of secretinstimulated duodenal juice from three CEL mutation carriers and three healthy controls. Consistent with the previously identified protein degradation we found large differences in protein identifications using standard

LysC compared to ‘noenzyme’ specific searches of proteomics data (Fig 4c). Hence, to identify both the degraded and nondegraded proteins to account for all the secreted proteins in the original sample, we further pursued noenzyme specified database searching, and we identified

757 proteins (1% false discovery rate) in the secretinstimulated duodenal juice (Suppl. Table 2) despite the extensive protein degradation. Further filtering of the list to include only proteins abundantly expressed in mice pancreata (18) resulted in the identification of 115 proteins

(excerpt in Table 2). Intriguingly, an unsupervised clustering analysis clearly separated the patients and the controls into two separate groups (Fig 5a), supporting the existence of a unique proteomic signature (Table 2 and Suppl. Table 2) in diabetic CEL mutation carriers. We identified mostly digestive (Table 2) among the duodenal proteins showing a relatively

9

Page 11 of 61 Diabetes

higher abundance in control samples (Fig. 5b), including carboxylester lipase (CEL) and

elastase (CELA2A, CELA3B), consistent with our anticipation of a greater abundance of

pancreatic in healthy subjects. Proteins more abundant in CELmutation carriers (Table

2) included proteins associated with diabetes (TSPAN8; (21)) and secretion

(GLUD1;(22)). Together these observations provide confidence that secretinstimulated duodenal

proteins actually reflect pancreatic output and could serve as potential indicators of pancreatic

pathology.

Validation of the training set proteins by immunoblotting and their potential role as

mitogen-activated protein kinase (MAPK) targets. Next, to validate the proteome signature in

CEL mutation carriers, we applied immunoblotting of selected signature proteins in secretin

stimulated duodenal juice from the training set of three CEL mutation carriers and three controls.

Indeed, band intensities and mass spectrometry abundances correlated well for the proteins

(compare Fig. 5c and Suppl. Table 2), confirming the validity of the mass spectrometry findings.

Furthermore, band intensities were also clearly different between controls and two additional pre

diabetic CEL mutation carriers (Fig. 5c). Notably, the protein markers LMNA, SKP1 and KRT18

clearly separated CEL mutation carriers from controls, whereas the protein markers PKM2 and

GSN more partially separated these groups. In order to assess whether the proteome signature

proteins in CEL mutation carriers were parts of an activated pathway, we explored the potential

connectivity of the top 30 most abundant proteins in the training set using a curated database

search (Biobase Explain) of reported protein interactions (19). Intriguingly, we found that several

of these validated markers were downstream targets of MAPK (Fig. 5d and Suppl. Table 3),

including several of the proteins also validated by immunoblotting (compare Fig. 5d with Fig.

5c).

10

Diabetes Page 12 of 61

To further assess the strength of connectivity between the most abundant proteins, we used Gene

Network Enrichment Analysis (GNEA; (23; 24)) to test for significant protein interactions based on yeast two hybrid systems data. We identified the 1433 protein zeta, encoded by YWHAZ, interacting with 18 (KRT18) and the subnetwork of interacting proteins around YWHAZ to be cumulatively significant (Fisher’s p = 0.00028), supporting interactions between 1433 protein zeta and in disease pathogenesis (Suppl. Fig. 1). Both these proteins were also

MAPK targets as defined by the Biobase Explain findings.

Multiplexed kinase studies provide further evidence of altered kinase activity. Since the above data suggested the involvement of mitogenactivated protein kinase signaling we profiled multiple kinase activities in both duodenal samples using mass spectrometry ((15); Fig. 5e).

Upon examining a different aliquot of the same secretinstimulated duodenal juice samples as that used in the immunoblotting studies, and adopting unsupervised clustering analysis we observed that the three controls and the prediabetic CEL mutation carrier clustered in one group clearly different from a group with the four diabetic CEL mutation carriers (including a subject with pancreatic ductal adenocarcinoma). Interestingly, the cell cyclerelated kinases, CHK1 and

CHK2, and PKC, and to a lesser extent also MAPK, displayed elevated kinase activity in the diabetic CEL mutation carriers (Fig. 5f).

DISCUSSION

Our data further support that CELMODY is a progressive disease. We have previously reported the occurence of pancreatic exocrine dysfunction from infancy (3), pancreatic lipomatosis form early childhood (4) and diabetes developing in the forties (3). Here, we show that CEL mutation carriers also develop multiple pancreatic cysts as they develop diabetes. Thus, there seems to be a

11

Page 13 of 61 Diabetes

sequence of clinical characteristics over time that may reflect a pathogenic process taking place

in the pancreas and ultimately leading to diabetes. Our data support that this pathogenic process

is associated with upregulated MAPK signaling for the following reasons: First, cytokine

analyses in the pancreatic secretome demonstrated increasing levels of the MAPKdriven (25)

cytokine GRO over the course of the disease. Second, using a sensitive and accurate quantitative

proteomics approach, we identified elevated levels of downstream target proteins of

MAPK/ERK2 signaling in diabetic CEL mutation carriers. Third, the mass spectrometry data

were confirmed by immunoblotting for proteins in the duodenal juice, and immunoblotting also

confirmed our observations in several other CEL mutation carrying subjects. Finally, we

identified elevated kinase activity including that of MAPK in CEL mutation carriers.

Our data also support our hypothesis that secretinstimulated duodenal secretory proteins truly

reflect pancreatic disease. First, unsupervised clustering analysis of proteomics data correctly

identified the diseased subjects. Second, we also detected increased levels of digestive enzymes

in healthy subjects consistent with our anticipation of a greater abundance of pancreatic proteases

in healthy subjects and consistent with proteomics findings in normal pancreatic juice by ERCP

(26), by enzymatic findings (of elastase) in feces (3) and by enzymatic findings (of ,

lipase and chymoptrypsin) in the secretinstimulated duodenal juice of CEL mutation carriers

(27). Third, the increased levels of digestive enzymes were confirmed by immunoblotting (for

amylase).

We have described a new feature of the CELMODY phenotype by demonstrating the presence

of pancreatic cysts in mutation carriers. Such cysts are an established risk factor for pancreatic

cancer (28). Notably, one of the oldest affected members of the family was diagnosed with

pancreatic ductal adenocarcinoma at the age of 78. We therefore conclude that CELMODY

12

Diabetes Page 14 of 61

patients could be at increased risk for developing . The cytokine analyses revealed a linear relationship between the number of cysts and the CXCR1and CXCR2targeting

MAPKdriven (25) cytokines (GRO, IL8); a finding consistent with a previous report of elevated

IL8 levels in sera of patients with pancreatic cancer (29). We believe that the low levels of GRO and IL8 despite multiple cysts in a diabetic CEL mutation carrier (Subject D1) fits with the long duration of his diabetes and the development of endstage pancreatic disease with loss of inflamatory cells as observed in endstage (30), although there also the possibility of phenotypic variance within the family. The finding of MAPKrelated proteins and cytokines in duodenal juice of subjects with progressive pancreatic disease is particularly interesting due to the role of MAPK both in diabetes and cancer (31). In the subject with cancer, the tumor had a somatic KRAS mutation (G12V, not shown) commonly observed in pancreatic adenocarcinomas

(32). Cancerassociated KRAS mutations generally lead to overactive proteins that stimulate oncogenic signaling through the MAPK pathway (33).

In conclusion, subjects with CELMODY develop multiple pancreatic cysts and diabetes in their forties. Increased levels of MAPK target proteins may reflect the pathophysiological development of pancreatic cysts and diabetes in CELMODY. These data suggest that the MAPK pathway should be further explored in subjects with CELMODY in order to find drug targets for the possible prevention of disease development.

ACKNOWLEDGEMENTS

This work was supported by NIH grant RO1 DK 67536 and the Graetz Bridge Funds (to R.N.

Kulkarni), and the Joslin DRC Specialized Assay and Advanced Microscopy Cores (NIH P30

13

Page 15 of 61 Diabetes

DK36836) and NIH grant HG3456 (to S.P.G.) and the Norwegian Research Council (to H.R. and

P.R.N.) and by grants from the Western Norway Regional Health Authority (to H.R., H.I., and

P.R.N.) and the Norwegian Endocrine Society (to H.R.) and the Norwegian Cancer Society (to

A.M.) and the Fulbright Foundation (to H.R.), and the University of Bergen (to P.R.N.), and

Innovest (to P.R.N.).

No potential conflicts of interest relevant to this article were reported.

HR SPG RNK designed the study; HR FEMA ET SB IH JH SMW MV AEO DH GD collected

the data; HR FEMA ET SB IH ML MBR HI PRN AM SPG RNK contributed to data analysis

and interpretation. The manuscript was drafted by HR and RNK with input from all authors. All

authors contributed to the revision and approved the final version of the manuscript.

HR and RNK are the guarantors of this work and, as such, had full access to all data in the study

and take responsibility for the integrity of the data and accuracy of the data analysis.

The authors thank C. Ronald Kahn MD and Chong Wee Liew PhD of Joslin Diabetes Center for

discussions; G. Sankaranarayanan of Joslin Diabetes Center for assistance with cytokine assays;

C. Cahill of Joslin Diabetes Center for assistance with electron microscopy; E. Huttlin of

Harvard Medical School for assistance with data analysis of pancreatic specific proteins.

REFERENCES

1. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT: Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003;362:12751281 2. Ashcroft FM, Rorsman P: Diabetes mellitus and the beta cell: the last ten years. Cell 2012;148:11601171 3. Ræder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, Nermoen I, Eide SA, Grevle L, Bjørkhaug L, Sagen JV, Aksnes L, Søvik O, Lombardo D, Molven A, Njølstad PR: Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 2006;38:5462 4. Ræder H, Haldorsen IS, Ersland L, Gruner R, Taxt T, Søvik O, Molven A, Njølstad PR: Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl ester lipase. Diabetes 2007;56:444449

14

Diabetes Page 16 of 61

5. Lombardo D: saltdependent lipase: its pathophysiological implications. Biochim Biophys Acta 2001;1533:128 6. Vesterhus M, Ræder H, Kurpad AJ, Kawamori D, Molven A, Kulkarni RN, Kahn CR, Njølstad PR: Pancreatic Function in CarboxylEster Lipase Knockout Mice. Pancreatology 2010;10:467476 7. Ræder H, Vesterhus M, El Ouaamari A, Paulo JA, McAllister FE, Liew CW, Hu J, Kawamori D, Molven A, Gygi SP, Njølstad PR, Kahn CR, Kulkarni RN: Absence of Diabetes and Pancreatic Exocrine Dysfunction in a Transgenic Model of CarboxylEster LipaseMODY (MaturityOnset Diabetes of the Young). PLoS One 2013;8:e60229 8. Johansson BB, Torsvik J, Bjørkhaug L, Vesterhus M, Ragvin A, Tjora E, Fjeld K, Hoem D, Johansson S, Ræder H, Lindquist S, Hernell O, Cnop M, Saraste J, Flatmark T, Molven A, Njølstad PR: Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase genematurity onset diabetes of the young (CELMODY): a protein misfolding disease. J Biol Chem 2011;286:3459334605 9. Paulo JA, Lee LS, Wu B, Banks PA, Steen H, Conwell DL: Mass spectrometrybased proteomics of endoscopically collected pancreatic fluid in research. Proteomics. Clinical applications 2011;5:109120 10. Ting L, Rad R, Gygi SP, Haas W: MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nature methods 2011; 11. Kunz RC, McAllister FE, Rush J, Gygi SP: A highthroughput, multiplexed kinase assay using a benchtop orbitrap mass spectrometer to investigate the effect of kinase inhibitors on kinase signaling pathways. Anal Chem 2012;84:62336239 12. Stevens T, Conwell DL, Zuccaro G, Jr., Lewis SA, Love TE: The efficiency of endoscopic pancreatic function testing is optimized using duodenal aspirates at 30 and 45 minutes after intravenous secretin. The American journal of gastroenterology 2007;102:297301 13. Stevens T, Conwell DL, Zuccaro G, Jr., Vargo JJ, Dumot JA, Lopez R: Comparison of endoscopic ultrasound and endoscopic retrograde pancreatography for the prediction of pancreatic exocrine insufficiency. Digestive diseases and sciences 2008;53:11461151 14. Ting L, Rad R, Gygi SP, Haas W: MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 2011;8:937940 15. Kubota K, Anjum R, Yu Y, Kunz RC, Andersen JN, Kraus M, Keilhack H, Nagashima K, Krauss S, Paweletz C, Hendrickson RC, Feldman AS, Wu CL, Rush J, Villen J, Gygi SP: Sensitive multiplexed analysis of kinase activities and activitybased kinase identification. Nat Biotechnol 2009;27:933940 16. Eng JK, McCormack AL, Yates JR, 3rd: An approach to correlate tandem mass spectral data of peptides with sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976989 17. Elias JE, Gygi SP: Targetdecoy search strategy for increased confidence in largescale protein identifications by mass spectrometry. Nature methods 2007;4:207214 18. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissuespecific atlas of mouse protein phosphorylation and expression. Cell 2010;143:11741189 19. Kel A, Voss N, Valeev T, Stegmaier P, KelMargoulis O, Wingender E: ExPlain: finding upstream drug targets in disease gene regulatory networks. SAR and QSAR in environmental research 2008;19:481494 20. Paulo JA, Lee LS, Wu B, Banks PA, Steen H, Conwell DL: Cytokine profiling of pancreatic fluid using the ePFT collection method in tandem with a multiplexed microarray assay. J Immunol Methods 2011;369:98107 21. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic D, Barnes C, Conrad DF, Giannoulatou E, Holmes C, Marchini JL, Stirrups K, Tobin MD, Wain LV, Yau

15

Page 17 of 61 Diabetes

C, Aerts J, Ahmad T, Andrews TD, Arbury H, Attwood A, Auton A, Ball SG, Balmforth AJ, Barrett JC, Barroso I, Barton A, Bennett AJ, Bhaskar S, Blaszczyk K, Bowes J, Brand OJ, Braund PS, Bredin F, Breen G, Brown MJ, Bruce IN, Bull J, Burren OS, Burton J, Byrnes J, Caesar S, Clee CM, Coffey AJ, Connell JM, Cooper JD, Dominiczak AF, Downes K, Drummond HE, Dudakia D, Dunham A, Ebbs B, Eccles D, Edkins S, Edwards C, Elliot A, Emery P, Evans DM, Evans G, Eyre S, Farmer A, Ferrier IN, Feuk L, Fitzgerald T, Flynn E, Forbes A, Forty L, Franklyn JA, Freathy RM, Gibbs P, Gilbert P, Gokumen O, GordonSmith K, Gray E, Green E, Groves CJ, Grozeva D, Gwilliam R, Hall A, Hammond N, Hardy M, Harrison P, Hassanali N, Hebaishi H, Hines S, Hinks A, Hitman GA, Hocking L, Howard E, Howard P, Howson JM, Hughes D, Hunt S, Isaacs JD, Jain M, Jewell DP, Johnson T, Jolley JD, Jones IR, Jones LA, Kirov G, Langford CF, LangoAllen H, Lathrop GM, Lee J, Lee KL, Lees C, Lewis K, Lindgren CM, MaisuriaArmer M, Maller J, Mansfield J, Martin P, Massey DC, McArdle WL, McGuffin P, McLay KE, Mentzer A, Mimmack ML, Morgan AE, Morris AP, Mowat C, Myers S, Newman W, Nimmo ER, O'Donovan MC, Onipinla A, Onyiah I, Ovington NR, Owen MJ, Palin K, Parnell K, Pernet D, Perry JR, Phillips A, Pinto D, Prescott NJ, Prokopenko I, Quail MA, Rafelt S, Rayner NW, Redon R, Reid DM, Renwick, Ring SM, Robertson N, Russell E, St Clair D, Sambrook JG, Sanderson JD, Schuilenburg H, Scott CE, Scott R, Seal S, ShawHawkins S, Shields BM, Simmonds MJ, Smyth DJ, Somaskantharajah E, Spanova K, Steer S, Stephens J, Stevens HE, Stone MA, Su Z, Symmons DP, Thompson JR, Thomson W, Travers ME, Turnbull C, Valsesia A, Walker M, Walker NM, Wallace C, WarrenPerry M, Watkins NA, Webster J, Weedon MN, Wilson AG, Woodburn M, Wordsworth BP, Young AH, Zeggini E, Carter NP, Frayling TM, Lee C, McVean G, Munroe PB, Palotie A, Sawcer SJ, Scherer SW, Strachan DP, TylerSmith C, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall M, Gough SC, Hall AS, Hattersley AT, Hill AV, Mathew CG, Pembrey M, Satsangi J, Stratton MR, Worthington J, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand W, Parkes M, Rahman N, Todd JA, Samani NJ, Donnelly P: Genomewide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 2010;464:713720 22. Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M: Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998;338:13521357 23. Strnad P, Tao GZ, Zhou Q, Harada M, Toivola DM, Brunt EM, Omary MB: Keratin mutation predisposes to mouse liver fibrosis and unmasks differential effects of the carbon tetrachloride and thioacetamide models. Gastroenterology 2008;134:11691179 24. Tao GZ, Li DH, Zhou Q, Toivola DM, Strnad P, Sandesara N, Cheung RC, Hong A, Omary MB: Monitoring of epithelial cell caspase activation via detection of durable keratin fragment formation. J Pathol 2008;215:164174 25. Ancrile BB, O'Hayer KM, Counter CM: Oncogenic rasinduced expression of cytokines: a new target of anticancer therapeutics. Molecular interventions 2008;8:2227 26. Zhou L, Lu Z, Yang A, Deng R, Mai C, Sang X, Faber KN, Lu X: Comparative proteomic analysis of human pancreatic juice: methodological study. Proteomics 2007;7:13451355 27. Tjora E, Wathle G, Engjom T, Erchinger F, Molven A, Aksnes L, Haldorsen IS, Dimcevski G, Njolstad PR, Raeder H: Severe Pancreatic Dysfunction But Compensated Nutritional Status in Monogenic Pancreatic Disease Caused by CarboxylEster Lipase Mutations. Pancreas 2013; 28. Tanaka S, Nakao M, Ioka T, Takakura R, Takano Y, Tsukuma H, Uehara H, Suzuki R, Fukuda J: Slight dilatation of the main pancreatic duct and presence of pancreatic cysts as predictive signs of pancreatic cancer: a prospective study. Radiology 2010;254:965972 29. Wigmore SJ, Fearon KC, Sangster K, Maingay JP, Garden OJ, Ross JA: Cytokine regulation of constitutive production of interleukin8 and 6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer. Int J Oncol 2002;21:881886

16

Diabetes Page 18 of 61

30. Braganza JM, Lee SH, McCloy RF, McMahon MJ: Chronic pancreatitis. Lancet 2011;377:11841197 31. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH: The roles of MAPKs in disease. Cell Res 2008;18:436 442 32. Immervoll H, Hoem D, Kugarajh K, Steine SJ, Molven A: Molecular analysis of the EGFR RASRAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR . Virchows Arch 2006;448:788796 33. Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, Charles RP, Rabinovich BA, Hann B, Dankort D, Spellman PT, Phillips WA, Gray JW, McMahon M: A central role for RAF>MEK>ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2012;2:685693

17

Page 19 of 61 Diabetes

TABLES

Largest Fecal Diabetes Age Number cyst Pancreatic GRO IL8 Status Sex elastase Diabetes? duration (years) of cysts diameter duct>2.5 (pg/mL) (pg/mL) (ug/g) (years) (mm) mm? Control F 32 426 no 0 0 0 no 2.5 0.3 Control (N2) F 38 561 no 0 0 0 no 7.3 0.0 Control M 40 584 no 0 0 0 no 5.9 1.5 Control F 50 723 no 0 0 0 no 0.0 0.2 Control F 53 486 no 0 1 2 no 2.5 0.1 Control F 64 525 no 0 0 0 no 9.7 2.1 Control (N1) M 63 363 no 0 NA NA NA 4.3 2.6 Control (N3) M 25 299 no 0 NA NA NA 11.3 4.4 CEL carrier M 9 448 no 0 0 0 no 2.5 2.0 CEL carrier M 14 50 no 0 0 0 no 11.1 4.5 CEL carrier F 17 71 no 0 1 6 no 5.1 5.3 CEL carrier M 37 10 no 0 0 0 (P2) no NA NA CEL carrier M 40 12 no 0 0 0 (P1) no 7.3 7.7 CEL carrier F 43 0 yes 13.1 12 7 (D2) no 116.7 21.1 CEL carrier F 45 51 yes 6.2 9 4 no 45.1 16.8 CEL carrier M 56 0 yes 11.8 6 4 no 97.3 4.3 CEL carrier M 57 0 yes 17.5 4 11 yes 15.2 3.1 CEL carrier F 57 5 yes 19.1 60 11 (D4) no 109.7 373.6 CEL carrier M 65 0 yes 44.7 20 13 (D1) no 2.5 1.2 CEL carrier M 69 3 yes 13.6 30 9 (D3) no 88.8 4.4 CEL carrier 60 13 F 78 0 yes 37.5 (C1) no 161.0 167.7

Table 1: Clinical characteristics of CEL mutation carriers and controls. NA, not available.

The alphanumeric codes i Status are explained in Methods.

18

Diabetes Page 20 of 61

Gene ID Log 2 ratio Log 2 total Gene ID Log 2 ratio Log 2 total 1 CLEC3B 16.0 23.2 87 MUC1 2.4 20.2 2 KRT18 15.2 22.4 88 CUZD1 2.5 25.8 3 NUCB2 12.5 19.7 89 CLPS 2.6 22.5 4 DCI 11.5 19.6 90 PNLIPRP2 2.7 27.3 5 MYL1 11.5 18.7 91 KLK1 2.7 24.1 6 RPLP2 11.1 23.2 92 RNASE1 3.5 25.7 7 SKP1 10.8 18.1 93 CPA2 3.6 27.7 8 RPLP0 10.7 21.7 94 S100A7 3.9 22.4 9 RPLP1 9.7 21.4 95 CEL 3.9 28.5 10 SFN 9.5 19.1 96 CTRB1 3.9 27.8 11 EPB41L3 9.4 22.1 97 CTRL 3.9 23.9 12 CHGA 8.9 16.1 98 PRSS1 4.0 28.1 13 PKM2 7.5 22.3 99 CPA1 4.1 28.9 14 IDH1 7.1 22.5 100 CELA3B 4.3 25.6 15 MYH14 6.2 22.3 101 PNLIPRP1 4.3 26.3 16 PURA 6.2 20.7 102 IPI00219910 4.6 23.5 17 LMNA 5.5 21.3 103 PNLIP 4.8 30.0 18 KRT8 5.1 24.9 104 PRSS2 4.8 26.6 19 EEF1A1 5.1 21.0 105 CELA3A 4.9 27.8 20 GLUD1 4.9 22.5 106 CTRC 5.0 26.8 21 PCDH24 4.7 21.8 107 GP2 5.2 25.8 22 PPA1 4.1 22.1 108 CPB1 5.3 27.9 23 NPC2 4.0 20.2 109 AMY1C 5.3 26.8 24 ALDOB 3.8 25.5 110 AMY2B 5.4 29.6 25 TSPAN8 3.7 20.2 111 SERPINI2 6.7 22.8 26 CLIC1 3.7 23.0 112 PLA2G1B 6.9 25.8 27 PGD 3.7 19.9 113 CD302 8.2 16.7 28 CST3 3.3 23.5 114 HPN 8.4 18.4 29 GSN 3.3 24.9 115 CTRB2 11.3 18.5

Table 2: The most extreme differentially expressed proteins in secretin-stimulated duodenal juice. Log2 ratio, Log2 of the ratio of mass spectrometry abundance for the sum of the three healthy controls divided by the sum of the three diabetic mutation carriers. Log 2 total, Log 2 of the total mass spectrometry abundance for a protein as the sum of the abundances of three healthy controls and the three diabetic mutation carriers.

19

Page 21 of 61 Diabetes

FIGURE LEGENDS

Fig. 1: Overview of the multimodal systems biology approach.

A systems biology approach using secretinstimulated duodenal juice from subjects in a CEL

MODY family to discover early markers in pancreatic disease development by proteomics

methods.

Fig. 2: The Magnetic Resonance Imaging of Pancreatic cysts in CEL mutation carriers.

MRCP (ac) and axial fatsaturated T2weighted imaging at the level of the pancreatic body (df)

in two CELmutation carriers (a, d and b, e) and a normal control (c, f). Both mutation carriers

had multiple cystic lesions within the pancreatic body and tail (white thin arrows; ab, de) as

well as in the pancreatic head (arrowheads; ab). The pancreatic ducts (filled black arrows) and

common bile ducts (filled white arrows) have normal caliper (ab, de) similar to that in the

control (c, f). GB, gallbladder. The alphanumeric codes refer to the subject designation explained

in Research Design and Methods.

Fig. 3: The identification of a patient-specific cytokine signature in pancreatic juice and a

mass spectrometry degradation assay.

Cytokine levels for GRO compared to mutation status (a) and correlated with cyst number (b).

Cytokine levels for IL8 compared to mutation status (c) and correlated with cyst number (d).

Further, IL1b was increased in the carriers (P=0.005) and also significantly correlated with the

number of cysts (R2=0.70, P<0.001). None of the remaining cytokines correlated significantly

20

Diabetes Page 22 of 61

with the number of cysts although significantly elevated in the carriers (FGF2 (P=0.04), Flt3 ligand (P=0.03), GMCSF (P=0.01), IL1ra (P=0.02), IL12 (P=0.01), MCP1(P=0.04), sCD

40L (P=0.03); Suppl. Table 1).

Fig. 4: Reduced substrate degradation in CEL-MODY patients.

Greater substrate degradation was observed for control patients compared to CELMODY patients. A set of 45 substrate peptides are incubated with pancreatic juice for 45 minutes and the amount of degradation is measured by comparison of the substrate with internal standard heavy peptides at 0, 15, 60 minute time points (a). The differences in protein identifications using silver staining of secretinstimulated duodenal juice for equal quantities of protein loaded onto gels (b).

Consistent with this reduced substrate degradation in the secretinstimulated duodenal juice of

CELMODY patients we also identified differences in protein identifications using LysC and

‘noenzyme’ specific searches of proteomics data (c). Using ‘noenzyme’ specific searches we identified 757 proteins in the secretinstimulated duodenal juice.

Fig. 5: The identification of a patient-specific protein signature in pancreatic juice

Protein quantitation was performed using isobaric labeling with tandem mass tags (TMT) and

LCMS/MS analysis on an LTQOrbitrap Velos mass spectrometer. An unsupervised clustering analysis identified clearly different expression patterns in CEL mutation carriers compared to controls with analyses performed by an investigator (FM) blinded to the samples (a). Log2plot of secretinstimulated duodenal proteins protein abundances and ratios of levels in the three CEL mutation carriers compared to the three controls (b). Log2 ratio, Log2 of the ratio of mass spectrometry abundance for the sum of the three controls divided by the sum of the three diabetic mutation carriers. Log 2 total, Log 2 of the total mass spectrometry abundance for a protein as the sum of the abundances of three controls and the three diabetic mutation carriers. Note the

21

Page 23 of 61 Diabetes

lack of skewed distribution of pancreatic proteins in the log2plot indicating that a majority of the

proteins had been detected despite degradation. Using ‘noenzyme’ specific searches we

identified 757 proteins in the secretinstimulated duodenal juice, of which 115 proteins were

pancreatic specific based on (18). Immunoblot validation examples of proteins identified with

stipled lines indicate gel crops (c). In addition to the three diabetic CEL mutation carriers (D1,

D2, D3) and three nonfamily controls (N1,N2,N3) we also added secretinstimulated duodenal

juice samples from two prediabetic CEL mutation carriers (subjects P1 and P2) and from the

CEL mutation carrier with the KRASmutated pancreatic ductal adenocarcinoma (Subject C1).

Visualization of the MAPKtargeted proteins identified by Biobase, ExPlain 3.0 tool, and

alphanumeric codes refering to IDs in Suppl. Table 3 (d). Heatmap demonstrating

differential clustering of kinase activities in the secretinstimulated duodenal juice and pancreatic

tissue of CEL mutation carriers and controls (e). Vertical bar graphs showing significant

differences in kinase activities for PKC, CH1 and CH2 in secretinstimulated duodenal juice and

for PKC in pancreatic tissue. The multiplexed kinase activity assay allows the absolute

quantitation of kinase activities by measuring the amount of phosphorylation of 60 peptide

substrates with known motifs for many kinases. (f) Vertical bar graphs showing differences in

kinase activities for PKC, CH1, CH2 and MAPK in secretinstimulated duodenal juice. PDAC,

pancreatic ductal adenocarcinoma.

22

Diabetes Page 24 of 61

42x9mm (300 x 300 DPI)

Page 25 of 61 Diabetes

110x60mm (300 x 300 DPI)

Diabetes Page 26 of 61

146x116mm (300 x 300 DPI)

Page 27 of 61 Diabetes

152x141mm (300 x 300 DPI)

Diabetes Page 28 of 61

Fig.5 246x235mm (300 x 300 DPI)

Page 29 of 61 Diabetes

Supplemental Online Appendix

Raeder et al; Carboxylester lipase MaturityOnset Diabetes of the Young is Associated with Development of Pancreatic Cysts and Upregulated MAPK Signaling in Secretinstimulated duodenal fluid

Supplementary Material

Patients

The subject designation corresponds to the following pedigree status in a published

pedigree (1): D1 = III9, D2 = IV11, D3 = III5, P1 = IV8, P2 = IV12.

Sample preparation for tissue samples for kinase activity and proteolytic

degradation assays

Pancreatic tissue was homogenized using a Dounce homogenizer and icecold lysis

buffer: 10 mM K2HPO4 pH 7.5, 1 mM EDTA, 10 mM MgCl2, 50 mM β

glycerophosphate, 5 mM EGTA, 0.5% Nonidet P40, 0.1% Brij 35, 0.1% deoxycholic

acid, 1mM sodium orthovanadate, 1mM phenylmethylsulfonyl fluoride and

inhibitors (Complete protease inhibitor tablet, Roche). Following homogenization, the

lysate was centrifuged at 10,000 rpm for 10 min at 4 °C and the supernatant was snap

frozen with liquid nitrogen and stored at 80 °C. Kinase activities were determined on

lysate that had only been frozen once following harvesting since freezethaw cycles

decrease kinase activities. Protein concentration was determined by the modified

Bradford assay (Pierce).

Proteomic analysis of pancreatic fluid

The purified peptides following digestion were labeled with TMT. Each tube of 0.8

mg for each TMT label was dissolved in 40 L of anhydrous acetonitrile, of which 5

1 Diabetes Page 30 of 61

L of each was used to label peptides from 40 g of pancreatic fluid protein. The labeling reaction was quenched by the addition of 10 l of 5% hydroxylamine and the individual samples combined and desalted with C18 solidphase extraction (SepPak,

Waters, Milford, MA).

The combined sample was fractionated by strong cation exchange chromatography

(SCX), similar to that described previously (2). Briefly, a 2.1 x 200 mm polySULFOETHYL A HPLC column (particle size, 5 m; pore size, 200 Å; PolyLC,

Columbia, MD) was used to separate the sample that was resuspended in 300 L SCX buffer A (7 mM KH2PO4, 30% ACN, pH 2.6). A twobuffer (SCX A and B) gradient from 0 to 50% SCX buffer B (7 mM KH2PO4, 350 mM KCl, pH 2.6, 30% ACN) in

47 min was used at a flow rate of 0.2 ml/min, followed by 50 to 100% SCX buffer A to buffer B in 4.5 min using an Agilent 1100 quaternary pump with a degasser and a photodiode array detector (PDA) (Thermo Scientific, San Jose, CA). Fractions were collected every 90 s into a 96well plate, and dried with a speedvac. The dried peptide fractions were then resuspended with 1% FA, and combined into 14 fractions based on the intensity from the SCX chromatographic UV trace and then desalted by

C18 SPE, and dried using a speedvac.

Dried peptides were resuspended in 15 L 4% formic acid, 5% ACN, and 2 L was loaded onto a microcapillary column (100 m I.D, 20 cm, packed with Magic C18AQ resin: 5 m, 100 Å, Michrom Bioresources, Auburn, CA) with Famos autosampler

(LC Packings, Sunnyvale, CA) and an Agilent 1100 binary HPLC pump (Agilent

Technologies, Santa Clara, CA). Reverse phase chromatography was used for peptide separation with a 150 minute gradient of 9 to 32% ACN in 0.125% FA at a flow rate of around 300 nL/min. An LTQ Orbitrap Velos (Thermo Fischer Scientific) was

2 Page 31 of 61 Diabetes

used, with XCalibur 2.0.7 acquisition software. Data acquisition was performed in

datadependent mode with a survey scan in the range of 3001500 m/z with a 30,000

resolution. The top 10 most intense ions were selected for fragmentation in the LTQ

with a precursor isolation width window of 2 m/z. The AGC target was set at 3x106

for the survey scan and ions were selected for MS2 and their intensity was greater

than 500 accounts. Ions with unassigned or 1+ charge states were excluded. Selected

ions were excluded from further analysis for 30 s. Maximum ion accumulation times

were 1000 ms and 250 ms for survey and MS/MS scans respectively. An MS3 method

developed by the lab was used to overcome the problem of interfering peaks in the

analysis of TMT data. The instrument parameters used were the same as those

described (3). Briefly, after each MS2 analysis, the most intense fragment ion in an

m/z range between 110160% of the precursor m/z was selected for HCDMS3. The

fragment ion isolation width was set to 4 m/z, the MS3 AGC was 20 x 104 and the

maximum ion time set to 250 ms. The normalized collision energy was set to 35%

and 60% at an activation time of 20 ms and 50 ms for MS2 and MS3 scans,

respectively.

Database searches and data filtering and quantitation

Following mass spectrometric acquisition, the RAW files were converted into the

mzXML format and individual precursors selected for MS2 fragmentation were

checked for erroneous monoisotopic m/z and the mass measurements refined (4). The

MS/MS spectra were searched against the human ipi database (version 3.6) using the

Sequest algorithm (version 28) (5). A decoy database search approach was employed,

where each protein sequence was listed in both the forward and reversed direction, to

enable the estimation of the peptide and protein identification false discovery rates

3 Diabetes Page 32 of 61

(FDR). The search parameters were as follows: 50 ppm precursor ion tolerance; 1.0

Da product mass tolerance; variable modifications:oxidation of methionine

(+15.9949); fixed modifications: carbamidomethylation of cysteine (+57.0214), Six plex TMT tags on lysine residues and peptide N termini (+ 229.162932 Da). Two different types of searches were performed. Firstly, LysC specificity was required and secondly, 'no enzyme specificity' was required. On account of the large numbers of proteolytic enzymes known to be present in pancreatic fluid, it is likely that during the clinical sampling of pancreatic fluid degradation by enzymes had occurred in addition to the desired LysC digestion, hence the reason to search with 'no enzyme' specified'.

The data was filtered to a false discovery rate of less than 1% based on the target decoy database approach (6). Filtering using linear discriminant analysis was performed to generate a classifier to distinguish between correct and incorrect identifications based on the following parameters: XCorr, Cn, peptide ion mass accuracy, charge state and peptide length, as described (4).

Further filtering of the list to include only 'pancreas specific' proteins was based on analyses of nine different mouse tissues (4)

(https://gygi.med.harvard.edu/phosphomouse/index.php).

To test the hypothesis that secretinstimulated duodenal secretory proteins truly reflected pancreatic disease, an investigator (F.M.) blinded to the samples, performed unsupervised clustering analysis based on protein abundance (i.e. algoritmic classification procedure to group samples based on protein expression similarities and blinded to a knowledge of sample disease status).

Peptide quantification using TMT reporter ion intensity was performed using inhouse software, as described previously (3). Briefly, a 0.06 m/z window around the theoretical m/z value of each reporter ion (126, 127, 128, 129, 130 and 131) was

4 Page 33 of 61 Diabetes

scanned for ions, and the intensity of the signal nearest to the theoretical m/z value

was recorded. The intensities of the reporter ion intensities were denormalised by

multiplying them with the ion accumulation time for each MS3 spectrum and.

Adjustment based on the overlap of isotopic envelopes for the reporter ions was

performed.

Immunoblotting. from the pancreas (15 microgram applied to each well;

concentration estimated by BCA assay; Pierce) was applied directly to and separated

by SDSPAGE, electrophoretically transferred to a nitrocellulose membrane and

stained with antikeratin 18 antibody (4548S ;1:2000; Cell Signaling Technology),

antiSKP1 antibody (2156S; 1:500; Cell Signaling Technology), antiPKM2 antibody

(4053S; 1:1000; Cell Signaling Technology), antiLMNA (4777S;1:1000; Cell

Signaling Technology), antiGSN (AB2969; 1:2000; Millipore) or antiamylase

(3796S;1:500; Cell Signaling Technology). Staining was developed using a

chemoilluminescence method (Pierce ECL Western blotting substrate; Pierce).

Kinase activity assay

The procedures were similar to that described (7) but with a few changes to the

method as described below. A set of 60 synthetic peptide substrates, each at 5 M,

were incubated with 10 g lysate and kinase reaction buffer containing TrisCl (25

mM, pH 7.5), ATP (5 mM), MgCl2 (7.5 mM), EGTA (0.2 mM), βglycerophosphate

(7.5 mM), Na3VO4 (0.1 mM) and DTT (0.1 mM). After incubation for 45 minutes at

room temperature, the reaction was quenched with 100 L of 1% trifluoroacetic acid

(TFA). A known amount (5 pmol) of internal standard phosphorylated stableisotope

labeled peptides were spiked into the quenched reaction. The solution was desalted

5 Diabetes Page 34 of 61

using SepPak C18 50 mg cartridges (Waters) and dried using vacuum centrifugation.

Different to the previous method (7), enrichment for phosphoproteins using immobilized metal affinity chromatrography (IMAC) was not performed. The desalted sample were resuspended in 100 L of 5% formic acid of which 2 L was then subjected to analysis by reverse phase liquid chromatography mass spectrometry. Technical duplicates were performed for each lysate.

Kinase abbreviation

Category Kinase

AA PKA

CC PKC

DD Acidic

MM MAPK

PP Proline directed

RR RSK

KK AKT

XX pY_group_1

YY pY_group_2

ZZ pY_group_3

QQ DNA damage

GG GSK3

CH CHEK

OO Other S/T kinase

WW Y other

6 Page 35 of 61 Diabetes

BB Basic

AM AMPK

Proteolytic degradation assay

A set of 45 synthetic peptide substrates, each at 1 M, were incubated with 10 g

pancreatic fluid and reaction buffer containing TrisCl (25 mM, pH 7.5), MgCl2 (7.5

mM), EGTA (0.2 mM), βglycerophosphate (7.5 mM), Na3VO4 (0.1 mM) and DTT

(0.1 mM). The reaction was incubated at room temperature for 0, 15, 60 min, after

which the reaction was quenched with 100 L of 1% trifluoroacetic acid (TFA).

Twenty five pmol of internal standard stableisotope labeled substrate peptides was

spiked into the quenched reaction. The solution was desalted using SepPak C18 50

mg cartridges (Waters) and dried using vacuum centrifugation. The desalted sample

was then resuspended in 100 L of 5% formic acid of which 2 L was then subjected

to analysis by mass spectrometry. Technical duplicates were performed for each

sample at each time point.

The peptides from the kinase activity and proteolytic degradation assays were

analysed by LCMS on a high resolution Exactive Orbitrap mass spectrometer

(Thermo). The experimental details are outlined in the Suppl. information. Briefly, a

45 minute gradient was used to separate the peptides from 1037% solvent B (0.125%

formic acid in acentonitrile) at a flow rate of 300 mL/min. LCMS data was collected

from 3501500 m/z and the extracted ion chromatograms of the light and heavy

peptides were used to quantitate the absolute kinase activity and the extent of peptide

degradation respectively. Data analysis was performed using Pinpoint (Thermo).

7 Diabetes Page 36 of 61

Mass spectrometry and data analysis for kinase and proteolytic degradation assays

The peptides from the kinase activity and proteolytic degradation assay, dissolved in

5% formic acid, were analysed by LCMS on a high resolution Exactive Orbitrap mass spectrometer (Thermo) equipped with a Nanospray II electrospray ionisation source (Thermo) coupled to a Thermo binary pump and a Famos autosampler (LC

Packings). Peptides were separated on a handpulled fused silica microcapillary with an internal diameter of 175 m, 15 cm long, packed with a C18 reversedphase resin

(Magic C18AQ, particle size 5 m, pore size 200 Å, Michrom Bioresources, Auburn,

CA). The needle tip had an internal diameter of approximately 5 m. Once loaded, the peptides were separated across a 45 minute linear gradient of 1037% solvent B

(0.125 % FA in ACN) at a flow rate of 300 nl/min provided across a flow splitter by the HPLC pumps. Buffer A comprised 0.125% FA and 3% ACN in water. Data was collected from 3501500 m/z full MS with a resolution setting of 60,000.

Analysis was performed using the commercial software package Pinpoint

(Thermo).The amount of substrate phosphorylation was determined by comparing the area of the light phosphorylated substrate peptide with that of the heavy phosphorylated internal standard peptide. The phosphorylated substrate peptides are chemically identical to the heavy internal standard and therefore should have the same chromatographic characteristics and ionisation efficiency. In the case of the proteolytic degradation assay, the amount of peptide degradation was determined by comparing the area of the light substrate (degraded during the reaction) with that of

8 Page 37 of 61 Diabetes

the heavy substrate internal standard peptide that was added following quenching of

the reaction. Extracted ion chromatograms were generated from the MS scan with ±

10 ppm mass accuracy around the monoisotopic peak of the most abundant charge

state. The extracted ion chromatograms were integrated using Pinpoint. Whilst

Pinpoint generates the area of the extracted ion chromatograms semiautomatically,

each chromatogram required manual inspection to ensure that the correct boundaries

had been selected. Where this was not the case, the peak boundaries were manually

altered. It was required that heavy and light peptides coeluted perfectly for accurate

quantitation. Measurements were excluded where the peak height was less than 10000

or where the peak area was less than 1% of the internal standard (50 fmol). Since a

known amount of internal standard was added to the reaction (5 pmol for the kinase

assay, 25 pmol for the proteolytic degradation assay) prior to purification, the

absolute amount of product formed could be determined. The product formed/kinase

activity is presented with units of fmol/g/min. The ratio of the light to heavy peptide

area was divided by the amount of lysate (10 g) and the time of the reaction (45 min

for the kinase activity assay). For the proteolytic digestion assay, the degradation is

normalized to the light peptide/heavy peptide ratio for the zero time point.

References

1. Ræder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, Nermoen I, Eide SA, Grevle L, Bjørkhaug L, Sagen JV, Aksnes L, Søvik O, Lombardo D, Molven A, Njølstad PR: Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 2006;38:5462 2. Villen J, Gygi SP: The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature protocols 2008;3:16301638 3. Ting L, Rad R, Gygi SP, Haas W: MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nature methods 2011;

9 Diabetes Page 38 of 61

4. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissuespecific atlas of mouse protein phosphorylation and expression. Cell 2010;143:11741189 5. Eng JK, McCormack AL, Yates JR, 3rd: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976989 6. Elias JE, Gygi SP: Targetdecoy search strategy for increased confidence in large scale protein identifications by mass spectrometry. Nature methods 2007;4:207214 7. Kubota K, Anjum R, Yu Y, Kunz RC, Andersen JN, Kraus M, Keilhack H, Nagashima K, Krauss S, Paweletz C, Hendrickson RC, Feldman AS, Wu CL, Rush J, Villen J, Gygi SP: Sensitive multiplexed analysis of kinase activities and activity based kinase identification. Nat Biotechnol 2009;27:933940

Supplementary Figure Legends and Supplementary Table Legends

Suppl. Fig. 1: Protein-protein interaction modeling of upregulated pancreatic juice proteins in CEL mutation carriers. Using Cytoscape, the figure shows major protein protein interactions among the proteins identified in pancreatic juice based on Gene

Network Enrichment Analysis. Note the direct interaction between YWHAZ and

KRT18, two proteins that were identified in the pancreatic juice protein analyses.

More generally, the immediate set of proteinprotein interactors to the YWHAZ encoded protein, comprising the proteins encoded by YWHAE, ATP5A1, EPB41L3,

PPP1CC, ENO1, and KRT18 was together highly significant (Fisher’s pvalue =

0.00028).

Suppl. Table 1: Clinical, imaging and cytokine characteristics for CEL mutation carriers and controls.

Suppl. table 2: Protein expression values for proteins identified in the pancreatic proteome by proteomics analysis. Log2 ratio, Log2 of the ratio of mass spectrometry

10 Page 39 of 61 Diabetes

abundance for the sum of the three healthy controls divided by the sum of the three

diabetic mutation carriers. Log 2 total, Log 2 of the total mass spectrometry

abundance for a protein as the sum of the abundances of three healthy controls and the

three diabetic mutation carriers.

Suppl. table 3: PubMed IDs documenting the literature support of pathways

involved in the MAPK-targeted proteins based on the output from the Biobase

Explain tool.

Supplementary Figure and Tables

Suppl. Fig. 1

11 Diabetes Page 40 of 61

Suppl Table 1:

Status Control Control Control Control Control Control Control Control CEL CEL (N2) (N1) (N3) carrier carrier Sex F F M F F F M M M M Age (yrs) 32 38 40 50 53 64 63 25 9 14 EGF 442.88 110.76 20.13 39.72 110.37 63.48 143.63 128.28 101.22 32.19 EOTAXIN 0 1.55 1.07 0 0 1.58 1.79 7.26 1.18 0.53 FGF-2 0 2.5 0 0 0 8.66 2.50 16.71 2.5 0 Flt-3 1.03 0 0 0 0 3.85 2.49 7.86 1.77 3.18 ligand fractalkine 0 0 0 0 0 0 <1.28 <1.28 0 0 G-CSF 1.11 0 0 0 0 0 <0.42 0.59 0 1.11 GM-CSF 0 0.72 0.96 0 0 0.82 0.74 1.49 2.17 0.74 GRO 2.46 7.32 5.91 0 2.46 9.73 4.32 11.29 2.46 11.05 IFN-a2 0 0 0 0 0 0 <1.05 <1.05 0 0 IFN-G 0 0 0 0 0 1.68 <1.38 2.92 0 0 IL-1a 2.08 0.56 20.53 2.32 0.68 16.15 510.68 79.36 35.79 5.48 IL-1b 0 0 0 0 0 0.76 8.71 1.97 1.14 3.67 IL-1ra 0.79 1.77 7.37 1.91 0 3.51 67.50 10.07 6.38 13.15 IL-2 0 0 0.45 0 0 0.45 <0.45 2.06 0 0 IL-3 4 16.28 4.94 11.56 0 8.52 6.26 12.45 0 0 IL-4 0 0 0 0 0 0 <0.84 <0.84 0 0 IL-5 0 0 0 0 0 0 0.18 <0.16 0 0.2 IL-6 0 0 0 0 0 0.52 1.20 5.19 0 4.75 IL-7 0 0 0 0 0 0 <0.62 <0.62 0 3.56 IL-8 0.31 0 1.52 0.22 0.14 2.13 2.64 4.40 1.95 4.53 IL-9 0 0 0 0 0 0 <1.12 <1.12 0 0 IL-10 0 0 0 0.8 0 0.39 6.40 2.25 0 9.45 IL- 0 0.9 0 1.04 0 3.21 5.02 10.94 6.13 7.25 12(P40) IL- 0 0 1.28 0 0 0 <1.23 3.93 0 0 12(P70) IL-13 0 0 0 0 0 0 2.81 2.02 0 3.47 IL-15 0 0 1.99 0 1.85 2.84 2.70 5.41 0 1.65 IL-17A 0 0 0 0 0 0 <0.36 0.90 0 0 IP-10 0 0 0 0 0 0 <0.41 7.08 0 0 MCP-1 16.4 1.07 1.07 0 0 1.07 <0.38 1.40 104.43 23.22 MCP-3 3.64 3.64 4.49 0 0 8.15 4.49 12.96 0 7.49 MDC 3.25 2.32 7.74 0 0 10.24 <1.98 14.83 0 13.36 MIP-1a 0 1.73 7.1 0 0 15.78 14.93 22.33 0 18.64 MIP-1b 0 0 0 0 0 0 <0.41 4.40 0 0

12 Page 41 of 61 Diabetes

PDGF-AA 75.46 69.6 64.7 73.02 135.13 118.56 149.74 73.18 58.35 109.98 PDGF- 0 0 0 0 0 0 19.27 10.71 0 0 AB/BB RANTES 17.26 0 0 0 0 0 <1.51 <1.51 1.77 7.38 sCD-40L 1.56 0.99 0.99 0.51 0.99 1.88 0.51 1.41 1.26 2.21 sIL-2Ra 0 1.9 0 0 0 2.12 <0.7 3.44 0 0 TGF-a 1.4 0 0 0.63 0.7 0 <0.82 1.28 0 0 TNF-a 0 0 0 0 0 0 <0.42 <0.42 0 0 TNF-b 0 0 0 0 0 0 <0.6 <0.6 0 1.41 VEGF 5.55 0 5.55 0 0 12.51 <0.88 16.84 2.02 12.51

Status CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL carrier carrier carrier carrier carrier carrier carrier carrier carrier carrier (P2) (P1) (D2) (D4) (D1) (D3) (C1) Sex M M F F M M F M M F Age (yrs) 37 40 43 45 56 57 57 65 69 78 EGF NA 44.74 80.68 23.95 5.5 13.84 125.19 1.76 6.85 19.4 EOTAXIN NA 1.07 0.92 0.1 68.8 0.41 0.57 3.24 40.57 0.71 FGF-2 NA 3.9 19.62 0 14.3 7.57 10.2 3.9 12.57 13.45 Flt-3 NA 0 6.26 0 6.81 3.18 1.77 1.03 5.69 1.77 ligand fractalkine NA 0 0 0 26.05 0 0 0 487 0 G-CSF NA 0 0.59 0 26.4 3.86 0 0 0 1.95 GM-CSF NA 0.35 1.73 0.19 1.33 0.77 0.77 1.54 2.98 1.58 GRO NA 7.32 116.7 45.11 97.31 15.2 109.7 2.46 88.81 161.02 IFN-a2 NA 0 7.32 0 2.1 0 0 0 0 3.9 IFN-G NA 0 0 0 0 0 0 0 1.45 6.45 IL-1a NA 33.67 273.25 109.59 14.57 37.1 594.34 10.72 6.5 2.16 IL-1b NA 2.39 2.82 1.5 0.67 0 1.24 0 0.76 0 IL-1ra NA 16.26 22.85 186.32 69.2 150.09 41.18 7.71 43.41 15.74 IL-2 NA 0.5 0.54 0 0.74 0.74 0.54 0.45 1.22 0.74 IL-3 NA 0 0 0 0 0 0 5.64 0 0 IL-4 NA 0 2.1 0 3.3 0 0 0 0 0 IL-5 NA 0 0.28 0 0 0 0 0 0 0 IL-6 NA 0 5.19 0 0 0 0 0 0 15.46 IL-7 NA 0 1.36 0 6.23 0 0 0 0 0 IL-8 NA 7.67 21.1 16.76 4.28 3.08 373.59 1.16 4.4 167.74 IL-9 NA 0 0 0 0 0 0 0 0 0 IL-10 NA 0.2 1.53 0.86 0.5 0.39 0 0 0.2 0 IL- NA 2.16 18.45 0 4.29 1.83 1.5 7.8 5.02 0 12(P40) IL- NA 0 1.44 0 0 0 0 0 0 0 12(P70)

13 Diabetes Page 42 of 61

IL-13 NA 0 2.33 0 11.32 0 0 0 0 0 IL-15 NA 1.85 5.96 0 3.14 3.28 0 4.49 3.21 0 IL-17A NA 0 0 0 0 0 0 0.39 1.47 0 IP-10 NA 0 50.3 0 333.95 23.96 13.9 3.89 165.19 1.12 MCP-1 NA 0 119.07 10.28 225.49 48.74 34.65 5.89 441.82 61.38 MCP-3 NA 6.79 14.62 3.64 6.79 7.49 5.3 3.64 11.14 6.43 MDC NA 4.18 24.01 5.09 16.26 28.57 6.87 3.25 21.56 3.25 MIP-1a NA 4.31 22.97 0 18.39 0 0 10.42 26.41 3.6 MIP-1b NA 0 14.68 0 19.84 0 0 0 39.28 9.49 PDGF-AA NA 55.77 202.14 53.72 61.89 61.12 51.57 370.6 74.34 23.48 PDGF- NA 0 0 0 0 0 0 0 0 0 AB/BB RANTES NA 0 31.26 35.13 202.69 106.27 10.65 0 69.44 4.71 sCD-40L NA 1.88 2.92 0.73 4.47 2.21 0.99 0.73 4.07 2.56 sIL-2Ra NA 0 0.74 0 10.45 2.01 0 0 4.35 1.2 TGF-a NA 0 12.11 0 8.63 0 8.27 0 3.16 4.96 TNF-a NA 0 0 0 0.45 0 0 0 0 0 TNF-b NA 0 0.73 0 0 0 0 0 0 0 VEGF NA 0 50.92 0 176.64 6.68 0 0 21.28 32.91

Suppl Table 2:

Gene D1 D3 D2 N2 N3 N1 CLEC3B 1.0E+06 5.5E+06 3.1E+06 5.0E+01 5.0E+01 5.0E+01 ATP5A1 1.1E+06 2.9E+06 4.4E+06 5.0E+01 5.0E+01 5.0E+01 KRT18 1.5E+06 1.2E+06 3.0E+06 5.0E+01 5.0E+01 5.0E+01 CAPZA1 7.4E+05 1.4E+06 2.8E+06 5.0E+01 5.0E+01 5.0E+01 LOC100133511 7.3E+05 1.3E+06 2.4E+06 5.0E+01 5.0E+01 5.0E+01 FETUB 1.2E+05 1.7E+06 2.5E+06 5.0E+01 5.0E+01 5.0E+01 HSPD1 5.0E+01 7.5E+05 3.5E+06 5.0E+01 5.0E+01 5.0E+01 GPR126 1.5E+05 2.5E+06 5.8E+05 5.0E+01 5.0E+01 5.0E+01 TPM1 7.7E+04 5.7E+05 1.5E+06 2.0E+01 5.0E+01 5.0E+01 SUCLG2 2.7E+05 9.6E+05 1.9E+06 5.0E+01 1.1E+02 5.0E+01 TTBK2 8.8E+04 2.8E+05 1.9E+06 5.0E+01 5.0E+01 5.0E+01 SERPINA10 5.0E+01 1.4E+06 7.0E+05 5.0E+01 5.0E+01 5.0E+01 ATP1A2 5.0E+01 4.1E+05 2.6E+06 5.0E+01 1.5E+02 5.0E+01 LUM 5.0E+01 1.2E+06 6.2E+05 5.0E+01 5.0E+01 5.0E+01 BCAS1 6.9E+04 6.9E+05 1.1E+06 5.0E+01 5.0E+01 5.0E+01 HPGD 5.0E+01 4.0E+05 1.4E+06 5.0E+01 5.0E+01 5.0E+01

14 Page 43 of 61 Diabetes

ATP6V1E1 4.2E+05 4.9E+05 8.8E+05 5.0E+01 5.0E+01 5.0E+01 AKR1D1 2.6E+05 1.1E+06 3.5E+05 5.0E+01 5.0E+01 5.0E+01 MUPCDH 5.0E+01 4.4E+05 1.2E+06 5.0E+01 5.0E+01 5.0E+01 EFNA1 5.0E+01 1.1E+06 5.3E+05 5.0E+01 5.0E+01 5.0E+01 CYB5A 5.5E+05 4.3E+05 6.2E+05 5.0E+01 5.0E+01 5.0E+01 CRNN 3.3E+05 6.1E+05 6.3E+05 5.0E+01 5.0E+01 5.0E+01 TRAP1 7.2E+04 5.6E+05 8.3E+05 5.0E+01 5.0E+01 5.0E+01 IGLC1;IGLV1- 4.2E+06 7.2E+05 5.0E+01 4.5E+02 5.0E+01 5.0E+01 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 APOL1 5.0E+01 1.2E+06 9.0E+04 5.0E+01 5.0E+01 5.0E+01 HIBADH 2.9E+05 3.2E+05 7.0E+05 5.0E+01 5.0E+01 5.0E+01 COL1A1 2.0E+05 7.7E+05 2.7E+05 5.0E+01 5.0E+01 5.0E+01 IPI00386135 1.7E+06 5.0E+01 4.1E+03 1.3E+02 5.0E+01 5.0E+01 AK3 2.6E+05 3.6E+05 5.1E+05 5.0E+01 5.0E+01 5.0E+01 ARHGDIA 2.3E+05 2.9E+05 5.8E+05 5.0E+01 5.0E+01 5.0E+01 ATP5B 1.0E+06 1.4E+06 1.4E+06 5.0E+01 4.4E+02 5.0E+01 EPS8 1.1E+05 4.0E+05 5.5E+05 5.0E+01 5.0E+01 5.0E+01 COPZ1 1.9E+05 1.9E+05 6.8E+05 5.0E+01 5.0E+01 5.0E+01 PSME1 1.8E+05 4.6E+05 4.1E+05 5.0E+01 5.0E+01 5.0E+01 PTGR1 1.1E+05 4.0E+05 5.1E+05 5.0E+01 5.0E+01 5.0E+01 DSC2 1.7E+05 2.3E+05 1.0E+06 5.0E+01 1.3E+02 5.0E+01 SIRPA 1.2E+05 8.2E+05 6.2E+02 5.0E+01 5.0E+01 5.0E+01 ARPC5 1.6E+05 3.8E+05 3.7E+05 5.0E+01 5.0E+01 5.0E+01 NUCB2 2.2E+05 1.5E+05 4.8E+05 5.0E+01 5.0E+01 5.0E+01 PBLD 5.0E+01 2.3E+05 6.2E+05 5.0E+01 5.0E+01 5.0E+01 SULT1A3;SULT1A4 5.0E+01 2.6E+05 5.7E+05 5.0E+01 5.0E+01 5.0E+01 APOF 5.0E+01 5.7E+05 2.4E+05 5.0E+01 5.0E+01 5.0E+01 HEPH 1.8E+05 1.3E+05 3.7E+05 5.0E+01 5.0E+01 5.0E+01 HSPA9 3.8E+05 2.7E+05 1.9E+03 5.0E+01 5.0E+01 5.0E+01 DDX3X 9.9E+04 1.1E+05 4.2E+05 5.0E+01 5.0E+01 5.0E+01 RPL17;LOC1001339 5.0E+01 1.6E+05 4.6E+05 5.0E+01 5.0E+01 5.0E+01 31 DGAT1 1.3E+05 2.3E+05 2.5E+05 5.0E+01 5.0E+01 5.0E+01 COPB1 5.0E+01 1.9E+05 4.1E+05 5.0E+01 5.0E+01 5.0E+01 PGLYRP2 6.4E+04 3.4E+05 1.9E+05 5.0E+01 5.0E+01 5.0E+01 ARPC2 5.0E+01 1.9E+05 3.6E+05 5.0E+01 5.0E+01 5.0E+01 DBI 1.8E+05 2.1E+05 1.4E+05 5.0E+01 5.0E+01 5.0E+01 IGHG1;IGHG2;IGHV4 5.2E+05 5.0E+01 6.6E+04 5.0E+01 7.4E+01 5.0E+01 -31;IGH@ MYH14 2.9E+05 2.3E+05 6.4E+05 5.0E+01 2.7E+02 5.0E+01 IGLV10-54 1.6E+05 3.1E+05 8.1E+02 5.0E+01 5.0E+01 5.0E+01 DCI 2.4E+05 2.2E+05 3.3E+05 5.0E+01 1.7E+02 5.0E+01

15 Diabetes Page 44 of 61

MYL1 9.6E+04 1.7E+05 1.7E+05 5.0E+01 5.0E+01 5.0E+01 KIAA1967 5.0E+01 1.5E+05 2.7E+05 5.0E+01 5.0E+01 5.0E+01 IPI00384394 4.2E+05 5.0E+01 2.1E+03 5.0E+01 5.0E+01 5.0E+01 SLC16A1 5.0E+01 1.1E+05 3.1E+05 5.0E+01 5.0E+01 5.0E+01 UGT2B28 4.3E+05 5.0E+01 1.2E+05 5.0E+01 1.4E+02 5.0E+01 ARPC4;TTLL3 5.0E+01 1.0E+05 2.4E+05 5.0E+01 5.0E+01 5.0E+01 RPLP2 7.9E+05 2.2E+06 6.4E+06 4.1E+03 5.0E+01 5.0E+01 SKP1 7.0E+04 1.3E+05 7.4E+04 5.0E+01 5.0E+01 5.0E+01 RPLP0 3.7E+05 1.2E+06 1.9E+06 2.1E+03 5.0E+01 5.0E+01 PSMD2 5.0E+01 1.2E+05 1.2E+05 5.0E+01 5.0E+01 5.0E+01 ACAA1 5.0E+01 8.4E+04 2.8E+05 5.0E+01 1.9E+02 5.0E+01 PHB 5.5E+05 6.8E+05 1.2E+06 5.0E+01 5.0E+01 1.9E+03 IPI00017870 1.7E+06 1.8E+06 5.0E+06 7.1E+03 5.0E+01 5.0E+01 LIPF 1.8E+05 5.0E+01 2.9E+05 5.0E+01 3.4E+02 5.0E+01 RAB14 1.3E+05 5.0E+01 2.8E+05 5.0E+01 3.3E+02 5.0E+01 HNRNPK 1.2E+05 5.0E+01 1.8E+05 5.0E+01 2.1E+02 5.0E+01 RPN1 1.2E+05 5.0E+01 2.0E+05 5.0E+01 2.4E+02 5.0E+01 MARCKSL1 5.0E+01 5.6E+04 8.1E+04 5.0E+01 5.0E+01 5.0E+01 DDAH1 9.9E+04 5.0E+01 1.9E+05 5.0E+01 2.2E+02 5.0E+01 SPTAN1 8.9E+04 5.0E+01 9.4E+04 5.0E+01 1.1E+02 5.0E+01 SPRR2C;SPRR2G 1.3E+05 5.0E+01 6.3E+02 5.0E+01 5.0E+01 5.0E+01 RPLP1 5.0E+01 5.0E+01 2.8E+06 5.0E+01 3.3E+03 5.0E+01 ALPI 7.0E+04 5.0E+01 2.3E+05 5.0E+01 2.7E+02 5.0E+01 AK2 2.0E+06 2.1E+06 1.9E+06 5.0E+01 5.0E+01 7.6E+03 ALDH3A2 6.4E+04 5.0E+01 1.2E+05 5.0E+01 1.4E+02 5.0E+01 IGLV3-25 5.0E+01 5.0E+01 5.7E+05 5.0E+01 6.7E+02 5.0E+01 SFN 5.0E+01 5.0E+01 5.5E+05 5.0E+01 6.5E+02 5.0E+01 ICAM1 5.0E+01 1.0E+05 5.0E+01 5.0E+01 5.0E+01 5.0E+01 ELANE 5.0E+01 5.0E+01 3.0E+05 5.0E+01 3.5E+02 5.0E+01 EPB41L3 8.0E+05 1.4E+06 2.4E+06 5.0E+01 5.0E+01 6.9E+03 LOC723972;ANP32A 5.0E+01 9.6E+04 5.0E+01 5.0E+01 5.0E+01 5.0E+01 TXNDC17 5.0E+01 5.0E+01 2.6E+05 5.0E+01 3.0E+02 5.0E+01 PGA3;PGA4;PGA5 5.0E+01 5.0E+01 2.5E+05 5.0E+01 3.0E+02 5.0E+01 ITIH2 3.1E+06 1.5E+07 2.0E+07 3.4E+03 7.3E+02 5.7E+04 GPD1 5.0E+01 5.0E+01 1.7E+05 5.0E+01 2.0E+02 5.0E+01 UBE2V1;TMEM189- 5.0E+01 5.0E+01 1.6E+05 5.0E+01 1.8E+02 5.0E+01 UBE2V1 SERPINF1 1.4E+06 4.0E+06 3.8E+06 5.0E+01 5.0E+01 1.7E+04 GSTT1 5.0E+01 7.9E+04 5.0E+01 5.0E+01 5.0E+01 5.0E+01 MEP1B 5.0E+01 5.0E+01 1.0E+05 5.0E+01 1.2E+02 5.0E+01 CHGA 5.0E+01 7.0E+04 5.0E+01 5.0E+01 5.0E+01 5.0E+01 RANP1; 5.0E+01 6.6E+04 5.0E+01 5.0E+01 5.0E+01 5.0E+01 YWHAH 5.0E+01 5.0E+01 8.3E+04 5.0E+01 9.8E+01 5.0E+01 YWHAQ 5.0E+01 5.0E+01 7.2E+04 5.0E+01 8.5E+01 5.0E+01 HIST2H2BE 3.6E+05 8.5E+04 1.7E+06 4.8E+03 4.9E+02 5.0E+01

16 Page 45 of 61 Diabetes

C9 1.3E+06 1.2E+07 5.7E+06 1.2E+04 5.0E+01 4.6E+04 HSP90AA1 1.1E+06 1.7E+06 2.2E+06 5.0E+01 5.0E+01 2.0E+04 APOC1 3.9E+05 4.6E+06 2.6E+06 5.0E+01 5.0E+01 3.0E+04 AGR2 8.5E+05 7.5E+05 1.1E+06 1.1E+04 5.0E+01 5.0E+01 AHSG 1.1E+07 2.6E+07 2.0E+07 1.0E+04 1.0E+05 1.2E+05 EIF5A2 2.3E+05 2.7E+06 5.2E+06 5.0E+01 5.0E+01 3.4E+04 FBP1 9.0E+05 1.9E+06 2.1E+06 5.0E+01 5.0E+01 2.5E+04 YWHAZ 6.8E+05 4.1E+05 5.7E+05 6.6E+01 6.6E+02 8.3E+03 PKM2 4.5E+05 2.3E+06 2.4E+06 5.0E+01 2.9E+04 5.0E+01 HIST1H2AB;HIST1H 1.8E+05 4.4E+05 5.2E+06 5.0E+01 5.0E+01 3.5E+04 2AE;HIST1H2AL;HIS T1H2AG;HIST1H2AJ; HIST1H2AK;HIST1H 2AI;HIST1H2AM HIST1H4J;HIST1H4E 4.5E+06 2.3E+06 9.7E+06 5.8E+02 2.4E+03 1.1E+05 ;HIST1H4H;HIST1H 4K;HIST2H4A;HIST1 H4D;HIST1H4F;HIST 2H4B;HIST1H4C;HIS T1H4B;HIST1H4I;HI ST1H4L;HIST1H4A; HIST4H4 AFM 1.7E+06 5.3E+06 3.7E+06 5.0E+01 5.0E+01 7.8E+04 IDH1 1.5E+06 2.3E+06 2.2E+06 5.0E+01 5.0E+01 4.5E+04 ETFB 1.1E+06 1.8E+06 2.3E+06 4.1E+03 5.0E+01 4.2E+04 PFN1 3.4E+06 3.1E+06 7.4E+06 5.0E+01 5.0E+01 1.3E+05 MYL6;MYL6B 5.0E+01 2.9E+05 1.1E+06 1.3E+04 5.0E+01 5.0E+01 CFL1 3.2E+05 2.1E+06 3.4E+06 5.0E+01 2.2E+02 5.5E+04 FABP2 4.4E+05 5.0E+01 7.3E+04 5.0E+01 9.0E+01 4.7E+03 APOA1 1.1E+05 7.6E+07 5.1E+07 5.2E+05 3.5E+05 4.0E+05 KRT19 6.0E+05 1.0E+06 3.2E+06 1.4E+04 1.3E+02 4.1E+04 CMAS 2.1E+05 2.1E+05 8.9E+05 5.0E+01 5.0E+01 1.7E+04 MYH14 3.8E+05 6.7E+05 4.0E+06 5.0E+01 9.2E+02 6.6E+04 PURA 9.4E+04 5.0E+01 1.6E+06 5.0E+01 1.9E+03 2.1E+04 HGFAC 6.5E+04 3.0E+06 1.0E+06 5.0E+01 5.6E+04 5.0E+01 ACSL5 2.5E+05 6.5E+05 7.1E+05 5.0E+01 2.6E+02 2.2E+04 IPI00398129 2.2E+05 5.8E+05 1.2E+06 2.7E+03 5.0E+01 2.7E+04 HIST2H3D;HIST2H3 6.6E+05 9.4E+04 4.9E+06 2.3E+04 1.3E+02 6.0E+04 C;HIST2H3A BTD 1.5E+06 5.9E+06 5.0E+06 5.0E+01 1.0E+04 1.7E+05 UQCRC2 5.7E+06 4.0E+06 9.8E+06 5.0E+01 5.0E+01 2.9E+05 CPS1 8.1E+05 3.7E+06 4.6E+06 1.0E+02 3.8E+04 1.0E+05 ANXA13 2.3E+05 2.1E+06 6.5E+06 5.0E+01 1.2E+05 3.1E+04 HNRNPL 1.3E+06 5.8E+05 1.5E+06 1.3E+04 5.0E+01 4.7E+04 PROC 5.9E+04 1.2E+06 6.3E+05 5.0E+01 5.0E+01 3.4E+04 APOA4 9.0E+05 7.0E+07 3.5E+07 1.2E+06 4.0E+05 4.4E+05

17 Diabetes Page 46 of 61

TST 2.0E+05 2.5E+05 1.3E+06 5.0E+01 6.2E+02 3.4E+04 HRG 6.1E+06 9.4E+06 6.8E+06 4.5E+04 2.8E+05 1.3E+05 NP 1.7E+06 1.6E+06 3.1E+06 1.1E+05 5.0E+01 2.0E+04 LMNA 7.2E+05 5.1E+05 1.2E+06 9.6E+03 5.0E+01 4.3E+04 DEFA5 3.8E+06 3.2E+06 7.0E+06 1.2E+02 1.4E+05 1.7E+05 CNDP1 2.3E+05 1.7E+06 9.5E+05 5.0E+01 2.9E+04 4.6E+04 MYH9 1.8E+06 3.7E+06 1.6E+07 4.5E+05 7.1E+04 4.3E+04 SLC9A3R1 2.7E+06 4.4E+06 3.4E+06 2.0E+04 1.5E+05 1.2E+05 HYOU1 1.2E+06 1.4E+06 1.6E+06 5.0E+01 5.0E+01 1.2E+05 HBG1;HBG2 2.2E+05 8.1E+06 3.6E+06 5.0E+01 1.0E+05 2.4E+05 PRDX5 9.6E+05 1.2E+06 1.2E+06 2.0E+04 5.0E+01 7.8E+04 KRT8 5.8E+06 5.5E+06 1.9E+07 1.3E+05 3.0E+05 4.4E+05 EEF1A1 5.0E+01 5.0E+05 1.5E+06 5.9E+04 5.0E+01 5.0E+01 ACO2 1.2E+06 1.3E+06 2.3E+06 5.0E+01 3.1E+02 1.4E+05 GKN1 4.7E+04 1.4E+02 4.0E+06 8.6E+04 3.5E+04 5.0E+01 HSPA7 6.3E+05 7.6E+05 1.2E+06 5.0E+01 5.0E+01 7.9E+04 AKR7A3 3.0E+05 1.1E+06 1.1E+06 5.3E+04 5.0E+01 2.3E+04 APOC3 5.0E+01 1.4E+06 6.6E+05 1.0E+04 5.0E+01 5.3E+04 REG4 1.7E+05 7.9E+05 2.8E+06 6.5E+04 5.7E+04 5.0E+01 ACAT1 2.2E+06 2.1E+06 4.5E+06 5.0E+01 7.9E+04 2.0E+05 UQCRB 7.1E+05 6.0E+05 9.7E+05 5.0E+01 5.0E+01 7.5E+04 ITIH3 8.8E+05 2.8E+06 3.2E+06 1.8E+02 5.0E+01 2.3E+05 GLUD1 2.6E+06 1.5E+06 1.7E+06 5.0E+01 5.0E+01 2.0E+05 PGC 1.4E+07 1.5E+06 1.0E+07 2.0E+05 4.0E+05 2.8E+05 AGT 3.0E+06 9.5E+06 5.9E+06 1.5E+04 9.5E+01 6.4E+05 CKMT1B;LOC10013 5.0E+01 1.2E+06 2.1E+06 6.0E+04 5.0E+01 5.7E+04 3623;CKMT1A APOA2 6.0E+04 6.5E+06 3.6E+06 2.8E+04 5.1E+04 2.9E+05 IPI00382440 6.7E+05 8.4E+05 1.2E+06 5.0E+01 5.0E+01 1.0E+05 PCDH24 2.0E+05 2.8E+06 5.0E+05 5.0E+01 1.3E+05 5.0E+01 PDIA3 6.4E+06 4.0E+06 2.5E+06 2.6E+04 5.0E+01 4.8E+05 C8B 2.7E+05 1.9E+06 6.3E+05 5.0E+01 1.1E+05 5.0E+01 CFI 5.7E+06 1.9E+07 1.0E+07 1.2E+05 7.6E+05 5.2E+05 IGFALS 3.2E+05 5.2E+05 4.1E+05 5.0E+01 5.2E+04 5.0E+01 ARCN1 8.6E+05 1.1E+06 1.0E+06 7.6E+04 5.0E+01 5.9E+04 PRDX3 1.4E+06 1.0E+06 2.2E+06 1.6E+03 6.3E+04 1.5E+05 IPI00382489 2.9E+06 7.8E+05 2.8E+05 5.0E+01 4.9E+04 1.3E+05 VNN1 1.7E+05 9.4E+05 7.6E+05 5.0E+01 8.8E+04 5.0E+01 SLC5A1 2.5E+05 3.8E+05 3.5E+05 5.0E+01 5.0E+01 4.7E+04 ETFA 2.9E+06 2.9E+06 1.0E+06 8.5E+03 6.2E+04 2.6E+05 HSP90B1 2.9E+06 3.2E+06 3.7E+06 5.0E+01 2.5E+05 2.2E+05 CD59 6.8E+06 6.5E+06 3.3E+06 5.3E+03 2.9E+05 5.3E+05 IPI00782983 6.9E+05 1.1E+06 8.6E+04 5.0E+01 5.0E+01 9.2E+04 OAT 1.1E+06 1.5E+06 2.7E+06 5.0E+01 1.8E+05 8.6E+04 PCK2 7.5E+05 7.8E+05 7.9E+05 5.0E+01 6.8E+04 5.2E+04

18 Page 47 of 61 Diabetes

IGJ 3.5E+07 1.0E+07 3.3E+07 2.4E+05 1.9E+06 2.1E+06 MYO1A 2.9E+05 1.9E+05 1.6E+05 5.0E+01 5.0E+01 3.5E+04 LCT 2.8E+05 7.3E+05 2.4E+06 1.5E+04 8.0E+04 9.6E+04 UQCRC1 4.7E+05 7.6E+05 1.8E+06 5.0E+01 1.1E+05 6.4E+04 RAB35 3.7E+05 2.2E+05 8.3E+05 8.1E+04 2.8E+02 5.0E+01 IPI00829624 9.5E+05 3.3E+05 2.3E+05 5.0E+01 5.0E+01 8.6E+04 B2M 6.0E+05 1.4E+05 1.1E+05 3.4E+04 5.0E+01 1.5E+04 KRT4 2.6E+06 1.6E+06 8.9E+06 2.8E+05 3.7E+05 1.3E+05 PPA1 1.5E+06 9.2E+05 1.9E+06 1.4E+05 1.1E+03 1.2E+05 CPN2 1.7E+05 5.0E+05 2.3E+05 5.0E+01 1.3E+02 5.4E+04 IPI00003469 6.8E+05 7.7E+05 5.0E+01 5.0E+01 3.8E+04 5.1E+04 PRB3 4.4E+05 3.1E+02 1.4E+06 8.7E+04 6.1E+02 2.5E+04 NPC2 4.2E+05 2.7E+05 4.8E+05 1.9E+04 5.0E+01 5.5E+04 KNG1 9.8E+06 2.9E+07 2.1E+07 3.2E+05 1.7E+06 1.8E+06 PRSS8 2.3E+05 3.7E+05 4.9E+05 5.1E+02 3.9E+04 3.1E+04 EEF2 1.4E+06 3.0E+06 5.9E+06 3.3E+05 1.9E+05 1.5E+05 ITIH1 9.6E+06 1.6E+07 1.8E+07 5.5E+03 2.6E+05 2.7E+06 ACTN2 7.0E+05 1.1E+02 4.4E+05 2.6E+04 5.0E+01 5.3E+04 PGA3;PGA4;PGA5 1.2E+07 2.5E+06 2.7E+07 1.9E+06 2.3E+05 8.7E+05 ALDOB 1.3E+07 1.4E+07 1.8E+07 7.7E+05 1.2E+06 1.3E+06 TUBA4A 1.9E+05 7.7E+05 1.5E+06 2.7E+02 2.5E+02 1.7E+05 PRDX2 1.9E+06 3.7E+06 6.3E+06 1.9E+05 3.3E+04 6.5E+05 TSPAN8 2.1E+05 9.7E+04 8.3E+05 3.1E+04 6.5E+02 5.2E+04 SERPINC1 5.4E+06 2.8E+07 3.2E+07 4.2E+05 1.8E+06 2.7E+06 CLIC1 2.2E+06 2.0E+06 3.4E+06 4.6E+04 1.1E+05 4.0E+05 PGD 2.3E+05 2.5E+05 4.5E+05 5.0E+01 7.1E+04 5.0E+01 RDX 7.6E+05 2.9E+05 9.7E+05 5.0E+01 5.0E+01 1.5E+05 C6 7.7E+05 2.0E+06 2.3E+06 1.0E+05 1.1E+05 1.9E+05 TXN 6.7E+06 6.2E+06 2.0E+07 7.1E+05 4.1E+05 1.5E+06 MANF 1.9E+05 5.0E+01 2.2E+05 5.0E+01 2.6E+02 3.1E+04 HABP2 4.1E+05 5.0E+01 5.0E+01 1.7E+02 5.0E+01 3.3E+04 FBLN1 4.8E+05 7.8E+05 1.1E+05 5.0E+01 5.0E+01 1.1E+05 NT5E 8.9E+04 1.8E+06 1.2E+06 8.5E+04 1.8E+05 5.0E+01 QSOX1 1.7E+06 6.4E+05 3.3E+06 7.1E+04 1.8E+05 2.3E+05 C7 1.7E+06 4.2E+06 2.5E+06 1.4E+05 3.0E+05 2.9E+05 PON1 1.7E+06 4.6E+06 4.3E+06 1.2E+05 3.1E+05 5.1E+05 IPI00386136 1.2E+06 5.0E+01 6.1E+03 2.9E+02 5.0E+01 1.1E+05 C8A 1.3E+06 2.0E+06 1.7E+05 1.8E+02 6.0E+04 2.6E+05 KRT13 1.4E+06 3.4E+05 2.1E+06 1.0E+05 1.4E+05 1.2E+05 SLC25A5 3.7E+06 6.5E+06 6.6E+06 3.4E+04 4.8E+05 1.1E+06 HSP90AB1 8.3E+05 8.4E+05 1.4E+06 5.0E+01 6.5E+04 2.2E+05 ALPP 1.1E+05 1.0E+05 3.0E+05 4.9E+04 5.0E+01 5.0E+01 F2 5.1E+06 1.2E+07 8.5E+06 8.6E+05 6.0E+05 1.0E+06 IPI00783024 9.0E+05 2.1E+06 1.6E+05 1.4E+02 2.3E+04 2.8E+05 EPS8L3 4.3E+05 3.8E+05 8.9E+05 5.0E+01 3.1E+04 1.3E+05

19 Diabetes Page 48 of 61

PDCD6IP 2.8E+05 2.0E+05 3.7E+05 5.0E+01 5.0E+01 8.3E+04 CST3 5.9E+06 2.1E+06 2.8E+06 7.1E+05 3.3E+05 5.8E+04 GSN 5.8E+06 1.0E+07 1.1E+07 1.1E+06 4.3E+05 1.4E+06 HNRNPA2B1 8.1E+05 4.3E+05 2.3E+06 9.3E+04 1.9E+05 9.3E+04 FGA 1.4E+07 2.1E+07 2.5E+07 1.5E+05 3.0E+06 3.3E+06 HSPA1A;HSPA1B 6.4E+04 5.0E+01 2.0E+06 5.0E+01 5.1E+04 1.7E+05 HSD17B2 2.2E+06 2.3E+06 1.5E+06 5.0E+01 4.5E+04 6.2E+05 SDHB 4.6E+05 5.0E+01 1.0E+06 1.7E+04 9.7E+04 4.9E+04 RHOC 3.0E+05 3.2E+05 4.0E+05 5.0E+01 5.0E+01 1.2E+05 PPIAP19 1.9E+06 7.2E+05 1.9E+06 5.0E+01 1.0E+05 4.4E+05 IGHG1;IGHG2;IGHV4 4.9E+05 7.9E+04 2.8E+05 3.5E+02 5.0E+01 1.0E+05 -31;IGH@ GSTA3 5.0E+06 3.2E+06 2.9E+06 8.3E+04 3.1E+05 9.6E+05 F11R 4.7E+05 7.5E+05 1.7E+06 5.0E+01 1.1E+05 2.6E+05 IPI00019591 8.3E+06 2.4E+07 1.4E+07 4.0E+02 4.0E+05 5.8E+06 HADHA 2.7E+06 3.2E+06 4.0E+06 4.8E+05 2.0E+05 6.5E+05 MDH1 4.7E+05 5.0E+05 1.1E+05 2.4E+02 5.0E+01 1.5E+05 MUC13 4.1E+06 1.9E+06 5.4E+06 1.5E+05 3.4E+05 1.1E+06 CD36 1.6E+06 9.7E+05 2.5E+06 1.1E+04 3.6E+05 3.4E+05 KRT20 1.6E+06 1.7E+06 6.0E+06 2.1E+02 7.1E+04 1.2E+06 IPI00924820 5.9E+05 2.7E+05 6.4E+05 5.0E+01 3.6E+04 1.7E+05 IPI00164838 2.0E+05 2.5E+05 1.0E+05 5.0E+01 5.0E+01 7.6E+04 GSTA5 8.2E+05 5.0E+01 4.4E+05 5.0E+01 5.5E+02 1.8E+05 SOD1 5.9E+05 8.7E+05 3.2E+05 2.1E+05 4.7E+04 5.0E+01 ANXA2 2.2E+06 2.6E+06 4.2E+06 3.8E+04 5.4E+05 7.3E+05 CTSB 1.4E+05 4.1E+05 1.4E+05 5.0E+01 1.0E+05 5.0E+01 OTC 7.6E+05 5.6E+05 6.7E+05 9.8E+04 6.9E+04 1.3E+05 LRG1 1.5E+06 2.7E+06 1.3E+06 5.0E+01 2.3E+05 6.0E+05 CES2 7.9E+05 1.2E+06 1.2E+06 5.0E+01 2.2E+05 2.6E+05 LIPF 6.6E+07 4.0E+06 5.3E+07 1.4E+07 3.8E+06 1.0E+06 ACTA2 1.2E+07 1.6E+07 1.8E+07 6.5E+05 2.3E+06 4.1E+06 OLFM4 1.1E+07 1.1E+06 3.4E+06 8.4E+04 1.2E+06 1.2E+06 ACE2 1.4E+06 1.2E+06 4.2E+06 1.1E+05 9.0E+05 4.8E+04 APOE 2.4E+05 6.4E+06 2.2E+06 9.0E+05 3.3E+05 1.8E+05 PPIB 9.4E+05 7.5E+05 1.2E+06 3.4E+04 1.1E+02 4.5E+05 ECHS1 5.2E+05 1.0E+06 1.9E+06 5.0E+01 1.9E+05 3.8E+05 HPGD 2.0E+05 3.3E+05 5.8E+05 9.7E+04 3.3E+04 5.3E+04 MSMB 1.3E+05 1.0E+05 2.2E+05 7.5E+04 5.0E+01 5.0E+01 HMGCS2 2.8E+05 7.4E+05 4.0E+05 5.7E+04 5.2E+04 1.3E+05 LYZ 4.4E+07 1.5E+07 2.6E+07 6.3E+06 2.7E+06 5.7E+06 MAOA 3.2E+05 2.6E+05 6.8E+05 5.0E+01 2.1E+02 2.2E+05 GPA33 6.3E+05 4.0E+05 1.6E+06 8.5E+04 2.3E+05 1.5E+05 SUCLG1 1.1E+06 1.2E+06 1.3E+06 5.0E+01 4.8E+05 1.6E+05 PIGR 1.0E+08 4.3E+07 7.3E+07 1.4E+07 1.3E+07 1.2E+07 ATP1B3 3.7E+05 2.4E+05 3.3E+05 5.0E+01 7.4E+04 9.4E+04

20 Page 49 of 61 Diabetes

FABP5L9;FABP5L2; 5.0E+01 7.4E+01 1.3E+05 2.4E+04 5.0E+01 5.0E+01 FABP5;FABP5L7 CRISP3 6.1E+05 1.0E+05 1.9E+05 3.5E+04 1.2E+02 1.3E+05 GOLM1 1.5E+06 3.5E+05 3.6E+06 4.7E+05 1.6E+05 3.7E+05 FAM3C 5.8E+05 1.7E+05 1.1E+06 3.9E+04 1.3E+05 1.7E+05 ALDH2 3.9E+06 2.1E+06 3.0E+06 1.6E+05 7.4E+05 7.7E+05 ACAA2 4.8E+05 2.3E+05 6.9E+05 1.3E+05 9.0E+04 4.1E+04 FCN3 6.5E+05 2.0E+06 1.5E+06 5.0E+01 2.6E+05 5.3E+05 PLG 1.5E+07 2.2E+07 1.3E+07 5.5E+05 3.0E+06 5.7E+06 CLU 3.6E+06 2.0E+07 1.8E+07 4.8E+05 5.0E+06 2.5E+06 IGHM 5.6E+07 1.8E+07 2.4E+07 1.1E+06 7.1E+06 1.1E+07 FABP1 1.2E+07 1.1E+07 1.6E+07 8.1E+05 1.9E+06 5.0E+06 GC 2.1E+07 2.7E+07 2.1E+07 2.3E+05 3.6E+06 9.9E+06 GPLD1 6.4E+05 1.2E+06 1.2E+06 5.0E+01 5.0E+01 6.2E+05 CLTC 1.5E+05 1.1E+06 1.1E+06 1.5E+05 1.8E+05 1.5E+05 TUBB 8.0E+04 5.0E+01 9.7E+04 5.0E+01 1.2E+02 3.6E+04 APOB 2.1E+07 6.4E+07 8.2E+07 4.0E+06 6.1E+06 2.4E+07 PRDX1 7.3E+06 7.0E+06 1.2E+07 7.0E+05 3.1E+06 1.6E+06 YWHAE 1.1E+06 5.0E+01 3.2E+05 5.0E+01 4.3E+02 2.8E+05 MASP2 4.1E+05 1.4E+05 1.0E+05 5.0E+01 5.0E+01 1.4E+05 HEPACAM 5.0E+01 3.9E+05 5.7E+04 5.9E+04 3.5E+04 5.0E+01 KLKB1 1.9E+06 4.5E+06 1.1E+06 6.0E+05 3.4E+05 6.7E+05 IGHA1 1.8E+06 1.3E+06 2.5E+02 1.1E+02 2.2E+05 4.5E+05 SERPINA7 7.7E+05 6.1E+05 6.5E+05 5.0E+01 7.8E+04 3.7E+05 ALB 3.0E+06 3.1E+06 1.2E+06 5.0E+01 4.0E+04 1.6E+06 CFHR2 1.7E+06 4.8E+06 1.7E+06 5.0E+01 4.1E+05 1.4E+06 ANPEP 2.6E+07 1.1E+07 1.3E+07 4.3E+06 5.5E+06 1.7E+06 GIF 5.6E+05 5.0E+01 1.3E+05 1.3E+05 3.0E+04 5.0E+01 UBC;RPS27A;UBB 2.2E+06 1.6E+06 5.0E+06 1.0E+06 4.6E+05 4.9E+05 ATRN 1.2E+06 1.3E+06 7.5E+05 2.5E+04 2.1E+05 5.2E+05 C8G 1.2E+06 1.8E+06 1.1E+06 2.3E+04 1.6E+05 7.6E+05 IPI00827815 2.2E+06 1.2E+06 3.6E+06 5.0E+01 4.1E+05 1.2E+06 SPINK1 4.3E+05 6.1E+05 7.2E+05 5.0E+01 2.0E+05 2.0E+05 SI 9.8E+06 4.5E+06 1.2E+07 7.3E+05 3.2E+06 2.1E+06 IPI00386137 5.0E+01 3.8E+05 4.4E+05 5.0E+01 8.5E+04 1.0E+05 CDH17 3.7E+06 3.4E+06 1.1E+07 9.8E+05 2.0E+06 1.3E+06 MVP 4.4E+05 7.2E+05 2.6E+06 2.6E+05 4.8E+05 2.0E+05 HSP90AA2 1.6E+05 5.0E+01 1.4E+05 2.1E+02 1.6E+02 7.2E+04 APOD 1.9E+06 2.5E+06 1.9E+06 1.1E+05 3.8E+05 1.0E+06 MUC6 1.1E+08 1.6E+07 6.2E+07 6.6E+06 2.0E+07 2.1E+07 HLA-H 1.3E+05 7.5E+04 5.0E+01 1.5E+02 5.0E+01 5.2E+04 S100A9 2.4E+05 6.3E+05 7.6E+05 1.5E+05 7.1E+04 1.9E+05 LOC100126583;IGH 9.0E+05 4.2E+05 4.8E+05 5.0E+01 9.1E+04 3.7E+05 A2 SERPIND1 2.7E+06 7.0E+06 6.7E+06 6.0E+02 1.1E+06 3.2E+06

21 Diabetes Page 50 of 61

PTGR1 5.5E+05 8.4E+05 7.0E+05 3.3E+05 1.4E+05 7.9E+04 GDI2 7.8E+05 1.7E+06 3.6E+06 2.7E+05 9.6E+05 3.7E+05 TUBA1C 1.5E+06 1.3E+06 3.4E+06 5.2E+04 5.3E+05 1.0E+06 CD5L 8.6E+06 6.0E+06 5.5E+06 7.7E+04 7.5E+05 4.5E+06 SERPINA1 1.1E+07 2.9E+07 2.9E+07 2.1E+05 6.1E+06 1.2E+07 DAK 1.3E+06 2.2E+06 1.3E+06 1.1E+06 4.7E+04 1.2E+05 SERPINA4 6.3E+05 3.4E+06 5.3E+06 9.1E+04 1.1E+06 1.3E+06 PPP1CC 2.0E+05 2.2E+05 2.6E+05 6.3E+04 7.0E+04 5.1E+04 REG3A 2.9E+06 4.5E+06 6.8E+06 9.1E+05 6.9E+05 2.2E+06 F13B 5.5E+06 3.0E+06 3.0E+06 5.0E+01 4.1E+05 2.7E+06 ACTN4 6.6E+06 4.3E+06 8.0E+06 6.3E+05 9.8E+05 3.6E+06 PDIA6 1.2E+05 5.0E+01 7.6E+04 1.7E+02 8.9E+01 5.4E+04 IPI00382439 8.1E+05 9.4E+05 1.4E+06 5.0E+01 1.5E+05 7.3E+05 IPI00384401 4.3E+06 4.0E+06 4.7E+06 4.1E+04 2.3E+05 3.4E+06 ANXA2P2 1.9E+06 1.6E+06 4.1E+06 9.8E+05 5.7E+05 6.3E+05 PARK7 5.8E+05 5.1E+05 7.1E+05 1.8E+05 5.0E+04 2.9E+05 DPP4 2.3E+05 6.7E+05 6.4E+05 3.6E+04 1.6E+05 2.5E+05 CANX 2.2E+06 1.4E+06 7.2E+06 1.4E+06 1.1E+06 6.1E+05 ACTBL2 5.8E+06 6.2E+06 4.8E+06 4.4E+05 1.8E+06 2.7E+06 ACY1 8.7E+05 2.4E+06 1.2E+06 1.3E+05 9.3E+05 2.3E+05 IPI00385264 8.6E+07 1.1E+07 1.4E+07 3.5E+06 1.2E+07 1.7E+07 IPI00830057 1.6E+05 2.3E+05 4.6E+05 5.0E+01 4.8E+04 2.0E+05 SERPING1 3.8E+06 7.6E+06 7.1E+06 1.0E+05 1.8E+06 3.5E+06 S100A8 1.7E+06 1.1E+06 5.0E+06 1.6E+06 3.5E+05 2.9E+05 ETFDH 1.8E+05 5.0E+01 1.9E+05 5.6E+04 5.2E+04 5.0E+01 P4HB 1.6E+07 9.0E+06 1.2E+07 1.6E+06 5.5E+06 3.7E+06 LOC440786 5.1E+05 5.0E+01 2.5E+05 5.0E+02 3.1E+02 2.2E+05 KRT24 1.9E+05 5.0E+01 4.5E+02 1.7E+02 5.0E+01 5.5E+04 CSTB 1.2E+06 2.8E+06 1.4E+06 1.2E+06 2.9E+05 1.6E+05 COX4I1 5.4E+05 8.0E+05 1.2E+05 3.1E+05 1.1E+05 1.8E+04 IPI00827690 3.1E+05 1.3E+05 3.4E+05 5.0E+01 3.7E+04 2.0E+05 C1R 1.7E+06 5.8E+06 4.4E+06 8.1E+04 9.9E+05 2.6E+06 IGKC 5.8E+05 5.0E+01 2.3E+05 5.0E+01 5.3E+04 2.0E+05 C1S 2.0E+06 6.3E+06 3.1E+06 5.0E+05 1.1E+06 1.9E+06 IPI00854709 3.4E+05 2.0E+05 2.7E+05 5.0E+01 5.0E+01 2.5E+05 RAB1A 1.2E+06 1.3E+06 2.3E+06 6.5E+05 3.8E+05 4.4E+05 EEF1A2 2.2E+06 2.7E+06 5.4E+06 8.7E+05 7.0E+05 1.7E+06 IGKV3D-11 1.7E+06 1.7E+06 1.4E+06 1.5E+04 3.9E+05 1.1E+06 LOC100126583;IGH 4.3E+07 1.0E+07 7.6E+06 4.1E+06 8.4E+06 6.8E+06 A2 A1BG 8.0E+06 1.6E+07 1.2E+07 1.2E+05 3.7E+06 7.7E+06 PDIA4 5.5E+05 6.3E+05 7.6E+05 1.8E+05 3.1E+05 1.4E+05 IGKV3-20 1.6E+07 1.9E+07 3.1E+06 4.5E+05 2.8E+06 9.2E+06 IGLV7-43 5.0E+05 2.3E+05 1.6E+05 5.0E+01 1.1E+05 1.8E+05 LOC100126583;IGH 1.7E+06 1.6E+06 5.0E+01 5.0E+01 3.5E+05 7.5E+05

22 Page 51 of 61 Diabetes

A2 PGK1 2.7E+06 1.7E+06 3.2E+06 8.7E+04 7.5E+05 1.7E+06 ACTB 6.8E+06 8.0E+06 1.2E+07 1.7E+05 1.7E+06 7.1E+06 IPI00382494 5.6E+06 3.0E+06 2.2E+06 5.0E+01 9.7E+05 2.7E+06 ORM2 7.2E+06 2.1E+07 8.1E+06 1.8E+05 3.3E+06 8.9E+06 PSMB8 5.5E+05 3.9E+05 2.3E+05 5.0E+01 2.8E+05 1.4E+05 IPI00735451 3.8E+06 3.5E+06 4.7E+06 7.7E+05 8.2E+05 2.7E+06 HADHB 4.1E+06 2.9E+06 3.5E+06 9.9E+05 1.2E+06 1.6E+06 PTGDS 6.1E+05 2.2E+06 7.0E+05 5.0E+01 7.1E+05 5.5E+05 IGHA1 1.1E+07 5.6E+06 5.5E+06 1.1E+06 3.4E+06 3.5E+06 MME 1.7E+06 6.8E+05 1.6E+06 3.1E+05 6.0E+05 5.3E+05 ATP1A1 1.5E+06 9.3E+05 1.5E+06 9.6E+05 1.4E+05 3.1E+05 ACTN1 7.8E+05 1.8E+06 7.7E+05 3.4E+05 3.2E+05 5.8E+05 HSPE1 3.3E+06 1.3E+06 1.9E+06 7.9E+05 9.6E+05 6.8E+05 CAP1 1.5E+06 1.2E+06 1.9E+06 5.0E+01 9.4E+05 7.6E+05 PLS1 6.6E+06 2.9E+06 5.5E+06 2.8E+06 1.2E+06 1.6E+06 IGHG1;IGHG2;IGHV4 3.0E+06 2.4E+06 3.1E+06 6.8E+02 5.0E+05 2.7E+06 -31;IGH@ IPI00783094 3.3E+05 2.0E+05 6.4E+05 5.0E+01 1.2E+05 3.2E+05 HP 3.9E+07 1.1E+08 5.5E+07 2.6E+06 1.5E+07 5.9E+07 AKR1C4 1.9E+06 1.5E+06 1.6E+06 8.3E+05 1.3E+05 9.1E+05 IPI00382500 1.6E+06 1.8E+06 2.3E+06 3.4E+05 8.0E+05 1.0E+06 PROS1 3.9E+06 5.2E+06 3.9E+06 7.1E+04 1.5E+06 3.4E+06 SPRR1A 7.4E+05 3.4E+05 3.3E+06 1.6E+06 5.8E+04 5.0E+01 IPI00387100 2.5E+05 3.9E+05 3.6E+05 6.6E+04 1.3E+05 1.8E+05 DMBT1 4.3E+07 5.2E+06 6.7E+06 1.6E+07 3.2E+06 1.9E+06 IPI00069693 3.6E+05 5.0E+01 4.7E+05 5.0E+01 6.1E+02 3.2E+05 VIL1 5.8E+06 3.6E+06 7.3E+06 4.1E+05 1.5E+06 4.5E+06 ORM1 3.2E+06 2.4E+07 4.1E+06 5.2E+06 2.5E+06 4.2E+06 CD14 4.5E+04 2.7E+06 6.3E+05 2.4E+05 4.6E+05 6.1E+05 IPI00827944 4.5E+05 2.4E+05 1.6E+05 5.0E+01 8.4E+04 2.5E+05 PREP 3.3E+05 1.5E+05 4.2E+05 9.5E+04 1.1E+05 1.4E+05 SERPINA3 1.8E+07 1.3E+07 1.0E+07 4.4E+05 4.0E+06 1.2E+07 LOC100126583;IGH 2.3E+06 8.9E+05 1.3E+05 1.7E+02 5.0E+05 8.3E+05 A2 RBP2 1.6E+06 1.6E+06 1.7E+06 2.6E+05 1.0E+06 7.0E+05 IPI00387026 2.0E+06 6.6E+05 4.4E+05 2.1E+04 4.1E+05 8.1E+05 PPIA 5.0E+01 1.1E+02 1.1E+05 4.4E+04 1.3E+02 5.0E+01 SPRR2C;SPRR2G 4.8E+05 1.2E+02 2.0E+05 2.2E+05 4.6E+04 5.0E+01 PCK2 5.8E+06 3.4E+06 2.4E+06 1.7E+06 1.6E+06 1.3E+06 IPI00382436 4.3E+05 7.3E+05 6.8E+05 5.0E+01 8.1E+04 6.7E+05 CP 2.5E+07 4.4E+07 3.3E+07 3.3E+06 8.8E+06 3.0E+07 RAP1B 1.4E+05 7.1E+04 2.4E+05 4.8E+04 7.5E+04 5.8E+04 CES1 1.4E+05 5.0E+01 2.2E+05 5.0E+01 2.9E+02 1.5E+05 HSPA8 5.6E+06 2.2E+06 6.2E+06 1.8E+06 1.1E+06 2.9E+06

23 Diabetes Page 52 of 61

CFHR5 2.3E+05 2.5E+05 4.1E+05 5.0E+01 4.1E+02 3.7E+05 KRT3 6.7E+05 3.0E+05 1.5E+06 7.7E+05 2.9E+02 2.6E+05 LDHAL6A 3.2E+06 3.6E+06 6.8E+05 6.8E+03 1.6E+06 1.5E+06 IPI00384409 3.2E+05 5.0E+05 1.4E+05 5.0E+01 7.2E+04 3.2E+05 IGLL1 4.5E+06 1.3E+06 7.5E+05 3.3E+05 1.0E+06 1.4E+06 ITIH4 1.1E+07 2.0E+07 2.0E+07 1.3E+06 5.9E+06 1.4E+07 PYCARD 5.0E+01 5.0E+01 2.6E+02 5.0E+01 5.0E+01 5.0E+01 LOC284422 2.8E+05 1.3E+05 1.4E+05 5.0E+01 5.0E+01 2.3E+05 TFF1 2.0E+06 4.1E+05 1.8E+06 1.5E+06 2.4E+05 2.0E+04 CAPRIN2 1.6E+05 1.4E+05 6.0E+04 5.0E+01 4.5E+04 1.0E+05 IPI00382420 1.2E+06 8.4E+05 8.9E+04 3.8E+02 5.0E+01 9.1E+05 CPB2 2.2E+05 2.2E+05 2.7E+05 5.0E+01 1.3E+05 1.7E+05 GMDS 1.9E+05 2.9E+05 6.5E+05 1.2E+05 2.9E+05 7.3E+04 ITLN2 1.2E+06 2.0E+06 3.5E+06 1.2E+06 1.2E+06 4.9E+05 CBR1 3.8E+06 5.3E+06 9.0E+06 5.2E+06 1.5E+06 1.1E+06 ATP1B1 1.5E+06 5.0E+05 1.9E+06 4.0E+05 4.5E+05 8.6E+05 VTN 2.1E+06 1.1E+07 9.3E+06 7.6E+05 3.7E+06 5.6E+06 TP53I3 1.7E+05 5.0E+01 5.0E+01 2.3E+02 5.0E+01 7.4E+04 PRKCSH 8.9E+04 5.0E+01 1.9E+05 5.0E+01 7.4E+04 5.2E+04 EPCAM 1.6E+06 5.7E+05 1.7E+06 2.8E+04 6.4E+05 1.0E+06 VDAC1 2.8E+06 1.2E+06 8.6E+06 1.3E+06 2.5E+06 1.8E+06 CPT2 6.1E+05 1.8E+05 5.8E+05 5.0E+01 4.8E+05 1.3E+05 IGKV1-5 3.5E+05 1.6E+05 1.5E+05 5.0E+01 7.4E+04 2.2E+05 AKR1C3 9.0E+04 7.2E+05 1.5E+06 9.8E+05 5.0E+01 5.3E+04 TUBB2C 9.8E+05 4.2E+05 1.8E+06 4.0E+04 5.0E+05 9.0E+05 C5 5.1E+06 9.6E+06 8.2E+06 5.1E+05 3.6E+06 6.3E+06 FN1 1.6E+07 2.2E+07 1.4E+07 4.3E+05 4.6E+06 1.8E+07 ALDH1A1 7.1E+06 8.7E+06 1.6E+07 6.8E+06 5.5E+06 2.6E+06 ANP32B 8.8E+04 9.6E+04 3.6E+02 5.0E+01 8.7E+04 5.0E+01 GDA 6.6E+05 8.1E+05 2.5E+06 7.3E+05 5.0E+05 6.7E+05 IPI00829653 1.2E+05 6.7E+04 5.0E+01 2.5E+02 5.0E+01 9.0E+04 UGT2B17 2.5E+06 6.9E+05 3.4E+06 2.6E+06 1.5E+02 5.9E+05 IPI00829701 9.2E+05 2.5E+05 3.2E+05 1.8E+02 1.3E+05 5.8E+05 IGHA1 1.3E+08 5.4E+07 7.0E+07 2.3E+07 5.1E+07 4.7E+07 VCP 7.6E+05 4.2E+05 1.8E+06 1.4E+05 6.3E+05 6.9E+05 CEACAM5 1.4E+05 1.1E+05 1.1E+05 5.2E+04 3.4E+04 8.9E+04 GSTA1 3.2E+06 1.2E+06 2.7E+06 2.7E+06 1.2E+03 8.5E+05 EEF1G 3.1E+05 1.0E+06 2.3E+06 5.9E+05 9.9E+05 2.8E+05 LCP1 6.4E+05 2.0E+05 3.8E+05 1.3E+05 6.4E+04 4.3E+05 IGLC1;IGLV1- 8.6E+06 5.4E+06 5.9E+06 1.0E+05 2.9E+06 7.2E+06 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 FGG 7.2E+07 4.2E+07 1.8E+07 3.3E+06 1.9E+07 4.5E+07

24 Page 53 of 61 Diabetes

ALDOA 1.7E+05 6.9E+05 4.5E+05 5.0E+01 6.2E+05 5.6E+04 LGALS3BP 6.1E+06 1.4E+06 1.1E+06 8.2E+05 2.3E+06 1.3E+06 IPI00385253 7.1E+05 3.2E+05 6.4E+05 1.2E+02 2.0E+05 6.7E+05 SDHA 9.7E+05 4.4E+05 9.3E+05 1.6E+05 9.8E+05 6.8E+04 MDH2 2.5E+06 1.1E+06 1.4E+06 1.1E+06 1.2E+06 3.5E+05 IPI00829873 2.1E+05 5.0E+01 1.3E+05 5.0E+01 1.8E+02 1.8E+05 ADH5;ADH5P4 5.0E+01 1.9E+05 3.6E+05 4.5E+04 2.4E+05 5.0E+01 CA2 1.2E+06 3.4E+06 7.0E+06 2.9E+06 2.5E+06 8.8E+05 IPI00101961 7.3E+05 1.2E+05 2.4E+05 1.8E+05 2.2E+05 1.9E+05 IGLV2-18 5.9E+05 1.4E+05 7.5E+04 4.5E+04 3.3E+05 6.0E+04 APOH 4.9E+06 2.8E+07 7.3E+06 1.3E+06 8.4E+06 1.2E+07 LOC390956 5.6E+05 1.1E+02 1.6E+06 3.6E+05 2.5E+05 5.7E+05 IPI00003939 5.2E+05 5.6E+05 1.9E+05 5.0E+01 8.0E+04 6.2E+05 MYL12B 5.0E+01 5.0E+05 1.2E+06 7.6E+05 1.7E+05 5.0E+01 CFH 1.6E+07 2.3E+07 2.4E+07 1.2E+06 8.8E+06 2.4E+07 DECR1 4.0E+05 5.0E+01 2.9E+05 7.1E+04 2.2E+05 8.2E+04 LOC401847 1.8E+06 8.2E+05 4.0E+05 5.0E+01 3.4E+05 1.4E+06 PRSS7 5.9E+06 2.8E+06 8.2E+06 5.0E+06 1.6E+06 2.6E+06 NUDT21 2.6E+05 1.0E+05 2.8E+05 2.1E+05 1.4E+05 1.9E+04 LOC652128 1.0E+07 4.3E+06 3.2E+06 3.5E+02 3.6E+06 6.6E+06 IGLC1;IGLV1- 3.6E+07 1.7E+07 2.0E+07 1.1E+06 1.4E+07 2.7E+07 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 A2M 9.7E+07 1.0E+08 1.1E+08 8.6E+06 6.1E+07 1.1E+08 TFF3 2.0E+06 1.4E+06 4.8E+06 2.0E+06 1.9E+06 8.6E+05 ENO1 4.9E+06 3.9E+06 4.9E+06 1.5E+06 2.8E+06 3.8E+06 TCN1 1.5E+05 3.0E+05 6.8E+05 4.0E+04 1.1E+05 5.1E+05 IGLC1;IGLV1- 5.0E+01 5.0E+01 9.6E+05 2.0E+02 1.2E+03 5.8E+05 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 C20orf114 2.0E+06 1.5E+05 3.8E+05 7.4E+05 1.9E+05 6.0E+05 IPI00382478 5.0E+06 2.6E+06 1.4E+06 1.4E+02 1.7E+06 3.8E+06 IGHG1;IGHG2;IGHV4 5.0E+01 5.5E+05 1.6E+06 5.0E+01 1.3E+06 5.0E+01 -31;IGH@ IPI00760721 9.6E+05 6.4E+05 1.0E+05 3.0E+04 4.4E+05 5.8E+05 MUC2 2.2E+07 4.1E+06 1.2E+07 4.3E+06 1.1E+07 8.6E+06 FH 8.4E+05 4.8E+05 1.2E+06 7.9E+05 6.3E+05 1.3E+05 AZGP1 7.0E+06 1.2E+07 4.9E+06 4.1E+06 4.3E+06 6.6E+06 HDGF 3.7E+06 1.9E+05 1.9E+05 5.0E+01 5.0E+01 2.6E+06 SELENBP1 6.2E+04 6.5E+05 4.8E+05 5.0E+01 1.0E+05 6.5E+05 IPI00383732 2.8E+06 2.5E+06 1.3E+06 6.2E+02 1.3E+06 3.0E+06 IGHA1 1.0E+06 8.0E+05 1.1E+06 5.0E+01 2.4E+05 1.6E+06

25 Diabetes Page 54 of 61

BCHE 5.1E+05 6.2E+05 1.0E+06 3.2E+04 5.3E+05 7.9E+05 DLD 6.5E+05 1.7E+05 5.3E+05 2.3E+05 5.4E+05 8.3E+04 IGLV8-61 7.5E+05 1.6E+05 2.0E+05 3.7E+02 1.9E+05 5.2E+05 WDR1 2.0E+06 1.4E+06 1.5E+06 9.4E+05 1.1E+06 1.1E+06 GALNT7 2.9E+05 1.4E+05 5.2E+05 4.2E+05 8.3E+04 1.1E+05 LAP3 9.7E+05 8.3E+05 6.2E+05 1.1E+05 7.6E+05 6.9E+05 HEBP1 2.0E+06 1.2E+06 1.4E+06 2.2E+05 2.1E+06 6.8E+05 HSPA5 6.1E+06 5.9E+06 8.2E+06 6.4E+06 4.1E+06 2.7E+06 NME1;NME2 1.0E+06 5.0E+01 6.3E+05 1.1E+05 4.4E+05 5.4E+05 ADH6 1.4E+05 5.9E+05 1.3E+06 1.7E+05 9.7E+05 2.2E+05 C4BPA 5.2E+06 6.9E+06 4.7E+06 4.0E+05 3.3E+06 7.5E+06 IPI00550731 5.3E+07 5.7E+07 6.6E+07 2.7E+07 3.4E+07 5.6E+07 HBZ 2.0E+06 1.3E+06 1.9E+06 5.0E+01 6.3E+05 2.9E+06 IPI00830122 1.2E+05 9.6E+04 5.0E+01 5.0E+01 4.0E+04 1.0E+05 CNDP2 9.8E+05 1.4E+06 1.8E+06 1.8E+06 5.4E+05 5.5E+05 ACADVL 1.2E+06 8.4E+05 2.3E+05 2.3E+05 1.2E+06 1.2E+05 IGKV4-1 4.0E+06 4.3E+06 6.1E+06 1.5E+06 2.4E+06 5.9E+06 TF 8.8E+07 1.4E+08 8.4E+07 1.2E+07 8.1E+07 1.2E+08 IGHG4 1.0E+07 2.5E+07 1.6E+07 8.1E+05 5.7E+06 2.8E+07 HPR 7.9E+06 1.4E+07 9.0E+06 8.8E+05 5.3E+06 1.5E+07 IPI00382486 3.3E+05 8.6E+04 6.2E+04 5.0E+01 7.7E+04 2.5E+05 ACE 8.3E+05 1.4E+05 7.1E+05 1.5E+05 3.4E+05 6.9E+05 IPI00007899 4.3E+06 8.7E+05 4.5E+05 1.5E+05 1.2E+06 2.5E+06 MYL6B 1.9E+06 6.8E+05 1.2E+06 1.6E+05 1.5E+06 1.0E+06 SERPINA1 4.1E+07 8.3E+07 5.0E+07 1.6E+07 3.6E+07 7.3E+07 AKR1A1 3.6E+05 7.9E+05 8.1E+05 6.1E+05 7.5E+05 5.8E+04 TTR 1.5E+07 1.6E+07 5.1E+06 2.0E+06 6.3E+06 1.8E+07 ALB 5.9E+08 7.8E+08 5.3E+08 1.0E+08 4.0E+08 8.9E+08 HPR;HP 1.5E+07 2.2E+07 1.1E+07 1.3E+06 9.8E+06 2.4E+07 CALR 4.1E+06 2.7E+06 4.5E+06 4.7E+06 2.7E+06 9.8E+05 PGM2 4.3E+05 2.5E+05 4.4E+05 3.5E+05 3.1E+05 1.7E+05 UGT2B15 2.3E+05 2.7E+05 1.5E+06 1.4E+06 3.0E+02 1.1E+05 IPI00029863 1.9E+06 4.0E+06 1.7E+06 1.7E+06 2.5E+06 1.5E+06 HBB 9.4E+06 1.8E+07 3.1E+07 4.0E+05 2.0E+07 2.4E+07 IPI00003470 1.8E+06 1.9E+05 2.1E+05 7.5E+02 1.6E+05 1.5E+06 ADA 1.1E+07 7.1E+06 5.5E+06 3.8E+06 7.6E+06 6.7E+06 CLCA1 3.9E+07 1.5E+07 4.1E+07 3.8E+06 4.5E+07 2.5E+07 SLPI 1.1E+07 1.8E+05 8.1E+06 1.4E+07 2.9E+05 7.2E+05 IGHG1;IGHG2;IGHV4 3.6E+05 3.5E+05 2.0E+05 1.4E+05 2.0E+05 3.6E+05 -31;IGH@ SERPINA6 1.3E+06 2.4E+06 6.6E+05 5.0E+01 1.2E+06 2.2E+06 CS 3.0E+05 3.1E+02 5.0E+01 1.2E+05 5.0E+01 1.1E+05 GOT2 2.3E+05 1.9E+05 3.8E+05 1.9E+05 1.9E+05 2.5E+05 HSPB1 2.3E+05 5.0E+01 6.5E+05 1.2E+05 4.8E+05 8.2E+04 KRT6B 7.7E+05 3.2E+03 2.2E+06 1.2E+06 4.0E+05 7.2E+05

26 Page 55 of 61 Diabetes

IPI00384397 7.1E+06 1.5E+06 1.4E+06 7.3E+04 2.3E+06 5.6E+06 LOC651751 5.0E+01 3.4E+05 3.6E+05 3.6E+05 2.0E+05 5.0E+01 HPX 2.7E+07 4.1E+07 1.2E+07 1.6E+06 2.0E+07 4.2E+07 IPI00386131 2.7E+05 8.5E+04 5.0E+01 8.2E+02 5.0E+01 2.9E+05 IGHG1;IGHG2;IGHV4 5.1E+07 3.1E+07 3.8E+07 4.2E+06 2.3E+07 7.2E+07 -31;IGH@ PEBP1 6.2E+06 6.3E+06 6.9E+06 1.8E+06 2.4E+06 1.2E+07 PCK1 3.6E+05 6.2E+05 1.0E+06 4.5E+05 8.8E+05 3.5E+05 IPI00383887 1.7E+05 9.3E+04 5.0E+01 5.0E+01 5.8E+04 1.6E+05 GSR 8.2E+05 5.3E+05 8.5E+05 5.5E+05 7.5E+05 5.3E+05 ITLN1 3.3E+06 2.5E+06 1.2E+06 4.4E+05 3.0E+06 2.4E+06 C3 6.1E+07 8.0E+07 8.8E+07 9.4E+06 6.8E+07 1.2E+08 LOC653879 2.1E+07 2.7E+07 2.3E+07 5.3E+06 1.9E+07 3.8E+07 IPI00890703 3.0E+05 1.2E+05 2.8E+05 2.1E+02 5.9E+04 5.4E+05 MTTP 6.5E+06 2.1E+06 3.6E+06 3.1E+06 5.9E+06 1.6E+06 AMBP 1.0E+06 2.9E+06 2.8E+06 7.7E+04 3.1E+06 2.7E+06 IPI00382499 1.1E+06 8.5E+05 2.4E+06 1.6E+06 6.3E+05 1.5E+06 LTF 2.3E+06 3.0E+06 3.3E+06 3.8E+06 3.3E+06 5.9E+05 CFHR3 7.3E+05 5.3E+05 1.2E+05 1.8E+05 2.6E+05 8.0E+05 PEPD 2.3E+06 2.7E+05 6.3E+05 1.8E+06 5.0E+01 1.1E+06 UBA1 5.0E+01 5.0E+01 7.0E+04 5.0E+01 9.2E+01 6.3E+04 IPI00829980 7.3E+05 2.7E+05 4.5E+05 5.0E+01 2.3E+05 1.1E+06 KRT14 4.5E+05 2.4E+05 7.8E+05 7.2E+05 4.1E+05 2.3E+05 ITGB1 9.0E+05 2.7E+05 1.7E+05 4.7E+05 5.0E+05 2.7E+05 IPI00007906 6.2E+05 5.8E+05 2.2E+05 1.1E+05 3.9E+05 8.1E+05 GOT1 2.6E+05 2.8E+05 8.5E+04 6.8E+04 3.1E+05 2.0E+05 SERPINA5 2.0E+06 1.3E+06 1.1E+06 2.0E+05 1.3E+06 2.6E+06 LDHA 6.5E+05 3.5E+05 5.4E+05 1.1E+02 7.9E+05 6.6E+05 IPI00384404 1.2E+05 8.4E+04 2.6E+05 5.0E+01 1.1E+05 3.4E+05 IPI00384391 2.3E+06 4.4E+05 5.7E+05 4.2E+04 8.1E+05 2.4E+06 GNB2 5.7E+05 5.0E+01 9.6E+04 1.5E+05 3.2E+05 1.9E+05 PZP 1.1E+07 1.3E+07 1.1E+07 5.0E+06 9.4E+06 2.1E+07 CKMT1B;LOC10013 6.5E+05 2.4E+05 4.4E+05 6.3E+05 5.6E+05 1.4E+05 3623;CKMT1A C6orf58 3.5E+06 5.9E+05 4.3E+06 2.1E+06 3.4E+06 3.0E+06 GNB1 5.0E+01 1.2E+05 2.6E+05 3.3E+05 5.5E+04 5.0E+01 IGHG1;IGHG2;IGHV4 1.4E+05 5.0E+01 5.0E+01 4.1E+02 5.0E+01 1.4E+05 -31;IGH@ LOC652113 2.1E+05 5.0E+01 1.2E+06 9.8E+05 3.9E+05 8.9E+04 ANXA5 7.5E+05 5.0E+01 1.6E+05 2.0E+05 3.0E+05 4.4E+05 HBD 1.1E+07 1.4E+07 2.9E+07 4.0E+05 1.9E+07 3.6E+07 EFHD2 1.9E+05 5.0E+01 1.5E+05 2.6E+05 1.6E+04 8.2E+04 ZG16B 2.1E+06 2.4E+06 4.5E+06 5.4E+06 1.6E+06 2.5E+06 IGKV1D-8 2.5E+06 1.7E+06 1.3E+06 3.5E+05 1.6E+06 3.8E+06 UGT2B10 6.9E+05 2.1E+05 6.6E+05 1.5E+06 5.0E+01 1.6E+05

27 Diabetes Page 56 of 61

FGB 6.2E+07 2.6E+07 1.6E+07 6.8E+06 4.9E+07 5.6E+07 ANXA4 5.4E+05 7.0E+05 1.3E+06 1.8E+06 5.6E+05 3.5E+05 GSTP1 2.6E+06 2.6E+06 6.4E+06 9.5E+06 1.7E+06 1.3E+06 ALDOC 5.2E+05 5.2E+05 9.7E+05 1.7E+06 2.8E+05 2.0E+05 FLNB 4.0E+06 1.4E+06 3.0E+06 2.7E+06 3.7E+06 2.9E+06 MASP1 3.5E+05 2.1E+05 1.1E+05 3.0E+04 1.5E+02 7.1E+05 UGCGL1 2.3E+05 1.2E+05 7.2E+04 5.0E+01 1.0E+05 3.5E+05 CNDP2 6.3E+05 7.0E+05 1.1E+06 1.2E+06 4.7E+05 1.0E+06 DEFA1;LOC728358 3.2E+06 4.2E+06 2.2E+06 1.0E+07 1.3E+05 2.0E+05 IGHG3 8.3E+07 7.6E+07 4.8E+07 1.5E+07 5.2E+07 1.6E+08 IGLV3-12 2.3E+05 5.0E+01 5.0E+01 5.0E+01 5.0E+01 2.6E+05 SCARB2 4.6E+05 2.0E+05 8.2E+05 1.1E+06 5.1E+05 1.2E+05 TPI1;RCTPI1 6.8E+05 3.3E+05 4.9E+05 1.6E+05 8.9E+05 6.6E+05 OGDH 3.5E+05 7.1E+05 1.1E+06 1.4E+06 9.4E+05 1.4E+05 C4A 1.9E+07 4.4E+07 2.8E+07 3.4E+06 4.5E+07 5.9E+07 UGT1A1;UGT1A8 4.5E+05 5.5E+05 5.0E+05 6.6E+05 3.6E+05 7.5E+05 PIP 5.0E+01 2.8E+05 8.6E+05 1.2E+06 1.4E+05 5.0E+01 VDAC2 3.0E+05 8.7E+04 6.2E+05 6.1E+05 5.9E+05 5.0E+01 CBR3 1.9E+06 1.9E+06 1.5E+06 4.5E+06 1.2E+06 6.6E+05 MUC5AC 4.1E+07 6.1E+06 5.7E+07 1.0E+08 1.5E+07 7.3E+06 C1QB 1.8E+05 1.6E+05 2.3E+04 3.6E+02 5.0E+01 4.4E+05 UGT2A3 9.1E+05 2.0E+05 9.1E+04 8.1E+05 3.7E+05 2.9E+05 IPI00743194 1.9E+06 3.7E+05 4.1E+05 3.5E+05 6.2E+05 2.4E+06 MAOB 3.1E+05 6.0E+04 3.1E+05 1.9E+05 3.3E+05 3.3E+05 RBP4 4.5E+06 5.9E+06 2.6E+06 2.5E+05 6.1E+06 1.0E+07 CA1 1.1E+06 2.7E+06 4.2E+06 4.8E+05 5.3E+06 4.4E+06 PSMA6 4.6E+05 1.6E+05 1.6E+06 2.2E+05 1.8E+06 7.8E+05 ANO10 5.0E+01 1.1E+05 1.5E+05 1.4E+05 1.9E+05 5.0E+01 HLA-DRB3;HLA- 5.0E+01 1.4E+05 8.9E+04 9.1E+04 2.1E+05 5.0E+01 DRB5;LOC649783;L OC100133484;LOC1 00133661;HLA- DRB4;LOC10013381 1;HLA-DRB1 IPI00384407 1.8E+06 4.5E+05 5.5E+05 2.3E+02 8.8E+05 2.7E+06 FKBP1A 1.3E+05 1.7E+05 3.0E+05 4.2E+04 2.2E+05 5.3E+05 ENPP7 1.9E+05 5.0E+01 5.0E+01 4.9E+04 1.7E+05 3.1E+04 ACADS 6.8E+05 3.5E+05 6.2E+05 4.9E+05 1.5E+06 1.8E+05 GKN2 5.0E+01 5.0E+01 1.8E+05 9.1E+04 1.5E+05 5.0E+01 GPI 2.0E+06 1.1E+06 1.1E+06 2.9E+06 1.7E+06 9.9E+05 DDT 6.1E+05 3.9E+05 1.1E+06 1.1E+06 7.6E+05 9.6E+05 IGHG1;IGHG2;IGHV4 5.4E+05 6.8E+04 1.1E+05 3.1E+02 1.4E+05 8.4E+05 -31;IGH@ ESD 9.7E+04 5.0E+01 1.7E+05 6.9E+04 1.5E+05 1.6E+05 TKT 1.5E+06 7.3E+05 1.8E+06 1.8E+06 2.6E+06 1.5E+06

28 Page 57 of 61 Diabetes

IGHG1;IGHG2;IGHV4 1.1E+07 1.7E+07 7.9E+06 4.2E+06 1.7E+07 3.2E+07 -31;IGH@ IGLC1;IGLV1- 1.7E+05 5.0E+01 5.0E+01 5.0E+01 3.7E+04 2.1E+05 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 TGM3 3.8E+06 2.7E+05 1.3E+06 7.8E+06 1.4E+05 1.4E+05 KRT10 4.9E+06 4.0E+06 1.2E+06 1.0E+06 8.1E+06 6.4E+06 IPI00385252 1.1E+05 5.0E+01 5.0E+01 4.8E+02 5.0E+01 1.7E+05 NDUFAB1 5.5E+04 5.0E+01 1.5E+05 1.8E+05 1.6E+05 5.0E+01 IPI00829827 1.8E+06 2.0E+05 2.2E+05 5.1E+04 8.7E+05 2.6E+06 KRT5 2.4E+06 6.7E+05 1.5E+06 4.7E+06 1.5E+06 1.2E+06 ADH4 1.3E+06 1.0E+06 2.1E+06 1.7E+06 4.7E+06 8.9E+05 IGKV2-40 1.5E+06 4.6E+05 6.7E+05 8.3E+05 9.8E+05 2.5E+06 HSD17B4 1.2E+06 4.0E+05 9.2E+05 2.3E+06 1.2E+06 6.3E+05 CAT 2.0E+06 1.2E+06 1.2E+06 1.3E+06 3.0E+06 3.1E+06 ADH1A 6.7E+06 4.7E+06 9.5E+06 4.1E+06 2.0E+07 1.0E+07 FGL1 8.8E+04 4.5E+05 1.1E+05 5.9E+04 6.3E+05 4.0E+05 CMBL 2.2E+06 1.5E+06 2.4E+06 4.3E+06 3.9E+06 2.0E+06 PSCA 1.1E+05 4.6E+03 1.4E+06 2.0E+06 4.1E+04 5.5E+05 CKMT2 2.0E+05 3.2E+05 1.1E+06 4.4E+05 2.1E+06 2.5E+05 IGHG1;IGHG2;IGHV4 2.0E+05 1.8E+05 1.6E+05 1.9E+05 2.6E+05 4.9E+05 -31;IGH@ REG1A 9.7E+06 3.5E+06 1.0E+07 1.1E+07 2.1E+07 8.7E+06 AKR1C2 1.9E+06 3.3E+06 4.5E+06 1.3E+07 2.3E+06 2.0E+06 LOC652694 3.5E+06 1.5E+06 1.2E+06 1.0E+06 3.4E+06 6.4E+06 KRT16 1.1E+06 8.4E+04 4.8E+04 1.9E+06 1.9E+05 1.4E+05 LOC100133944 6.8E+05 8.5E+05 1.9E+06 3.9E+05 4.6E+06 1.1E+06 LOC652493 9.4E+04 5.0E+01 1.2E+05 1.8E+02 6.5E+04 3.2E+05 CTSD 1.2E+06 5.7E+05 1.3E+06 3.1E+06 1.8E+06 6.4E+05 FCGBP 3.4E+07 1.6E+07 2.4E+07 3.4E+07 6.6E+07 3.4E+07 HBA1;HBA2 2.8E+07 2.3E+07 4.5E+07 2.5E+06 5.6E+07 1.1E+08 GDI1 2.6E+05 1.7E+05 6.7E+05 2.6E+05 3.8E+05 1.4E+06 ADH1C 4.0E+05 8.0E+05 1.4E+06 2.6E+06 1.7E+06 4.1E+05 CD163L1 6.8E+05 5.0E+01 3.2E+03 6.7E+05 5.0E+05 8.0E+04 AKR1B10 5.8E+06 3.4E+06 8.2E+06 1.3E+07 1.3E+07 7.0E+06 LTA4H 4.4E+05 1.5E+05 5.0E+05 1.1E+06 5.3E+05 4.3E+05 GAPDH 7.9E+06 4.1E+06 1.1E+07 2.2E+07 1.3E+07 9.6E+06 CFHR1 1.8E+05 3.9E+05 7.0E+05 5.7E+04 6.9E+05 1.7E+06 IPI00914985 1.7E+05 5.0E+01 5.0E+01 5.0E+01 7.8E+04 2.6E+05 LCN2 2.6E+06 2.0E+05 4.1E+05 6.3E+06 2.1E+05 6.5E+04 PGRMC2 2.2E+05 5.0E+01 5.0E+01 2.9E+05 1.6E+05 5.0E+01 PGLS 5.6E+05 1.4E+05 7.8E+04 7.1E+05 6.4E+05 2.6E+05 SYCN 8.0E+05 1.5E+05 3.8E+03 1.5E+06 2.6E+05 1.8E+05

29 Diabetes Page 58 of 61

DNASE1 1.8E+06 2.5E+04 5.0E+01 2.2E+06 7.3E+05 9.0E+05 IPI00784773 2.4E+06 3.9E+05 4.1E+05 1.4E+05 2.5E+06 4.2E+06 ACADM 2.9E+05 1.0E+05 1.8E+05 4.8E+04 9.8E+05 2.3E+05 LGALS3 1.2E+06 7.9E+05 1.7E+06 4.7E+06 3.0E+06 5.5E+05 MSRA 1.1E+05 5.0E+01 5.0E+01 8.9E+04 1.0E+05 6.5E+04 IGHD 2.4E+05 7.4E+04 2.4E+05 5.0E+01 9.9E+05 2.9E+05 TFF2 3.3E+06 2.5E+05 8.7E+05 8.5E+06 1.0E+06 6.9E+05 HPR 3.3E+06 1.0E+06 6.9E+06 2.6E+06 1.2E+07 1.2E+07 NAPRT1 3.8E+05 9.1E+04 1.7E+05 1.0E+06 2.7E+05 3.3E+05 RNPEP 9.5E+05 4.1E+05 8.4E+05 4.2E+06 1.2E+06 4.9E+05 IPI00387024 2.4E+06 3.5E+05 1.2E+05 9.4E+04 3.5E+06 4.1E+06 GAPDHS 2.8E+05 5.0E+01 1.7E+05 7.8E+04 6.6E+05 5.0E+05 SERPINB6 1.6E+05 5.0E+01 1.1E+05 3.0E+05 3.1E+05 1.5E+05 ZG16 2.3E+06 1.7E+05 8.7E+05 1.4E+06 5.0E+06 3.1E+06 VSIG1 5.0E+01 5.0E+01 8.0E+05 2.3E+06 9.1E+02 5.0E+01 TPI1;RCTPI1 3.0E+06 5.0E+06 1.6E+06 1.2E+07 1.2E+07 4.3E+06 NPM1 1.1E+05 2.6E+05 1.4E+05 4.8E+05 9.3E+05 6.7E+04 AKR1C1 5.7E+05 7.4E+04 4.0E+05 1.7E+06 6.9E+05 8.6E+05 IPI00387109 5.0E+01 5.0E+01 4.2E+04 5.0E+01 1.3E+05 5.0E+01 EPHX1 6.2E+05 4.6E+05 9.8E+05 5.5E+06 7.7E+05 2.6E+05 ANXA1 2.2E+05 2.8E+05 6.6E+05 3.6E+06 4.7E+04 1.4E+05 FN1 2.3E+05 5.0E+01 3.9E+02 1.3E+03 3.6E+04 6.9E+05 C1RL 1.5E+05 3.7E+05 3.9E+04 1.9E+05 9.8E+05 6.5E+05 KRT2 2.9E+06 1.2E+06 5.8E+05 1.4E+06 8.3E+06 5.8E+06 LGALS4 3.6E+06 9.8E+05 1.6E+06 1.2E+07 7.1E+06 3.0E+06 LOC100130811 5.3E+04 5.0E+01 5.0E+01 5.4E+02 5.0E+01 2.0E+05 C1QC 3.1E+05 1.8E+05 1.4E+05 6.4E+04 4.3E+05 1.9E+06 MUC5B 6.5E+06 2.3E+06 4.5E+06 4.9E+07 1.4E+06 7.3E+05 FTH1 1.3E+05 5.0E+01 5.0E+01 5.0E+01 3.1E+05 1.8E+05 KRT71 5.9E+05 5.0E+01 5.0E+01 5.0E+01 1.3E+06 1.0E+06 IPI00384395 8.1E+04 5.0E+01 5.0E+01 5.0E+01 1.8E+05 1.6E+05 REG1B 5.7E+04 4.7E+04 2.0E+05 3.5E+05 7.3E+05 2.4E+05 GP2 8.6E+05 2.2E+04 5.0E+01 1.9E+05 1.8E+06 1.9E+06 RBKS 5.0E+01 5.0E+01 6.7E+04 1.7E+05 6.5E+04 5.6E+04 CPA4 8.9E+05 1.2E+05 7.1E+04 2.1E+06 1.3E+06 1.5E+06 IGHV1OR15-1 2.8E+06 1.4E+06 3.1E+05 2.5E+04 9.1E+06 1.1E+07 SERPINB1 1.7E+06 9.7E+05 2.0E+06 1.8E+07 2.7E+06 2.8E+06 IPI00383629 7.7E+05 1.5E+05 5.0E+01 9.2E+04 1.5E+06 3.0E+06 PRSS3 1.9E+06 3.3E+05 1.2E+05 7.1E+06 1.7E+06 2.8E+06 KRT1 4.0E+06 2.8E+06 2.1E+06 7.1E+06 2.3E+07 1.5E+07 APCS 5.2E+05 3.5E+05 2.9E+05 1.2E+05 1.5E+06 4.3E+06 MUC1 1.4E+05 1.1E+02 4.7E+04 7.7E+05 1.7E+05 4.4E+04 IPI00829752 1.3E+05 5.0E+01 5.0E+01 5.0E+01 2.2E+05 4.4E+05 IPI00748265 7.8E+04 5.0E+01 4.7E+04 4.7E+02 1.1E+05 5.8E+05 TAGLN2 1.1E+06 1.1E+05 2.5E+05 6.9E+06 6.8E+05 9.7E+05

30 Page 59 of 61 Diabetes

CUZD1 2.6E+06 4.7E+06 1.3E+06 1.6E+07 2.4E+07 9.6E+06 CLPS 2.9E+05 3.7E+05 2.2E+05 1.6E+06 6.1E+05 3.0E+06 PNLIPRP2 1.5E+07 5.9E+06 8.2E+05 4.3E+07 6.1E+07 3.6E+07 IL1RN 8.5E+04 1.2E+03 5.0E+01 4.6E+05 5.0E+01 9.2E+04 KRT6A 7.5E+04 1.3E+03 5.0E+01 4.9E+05 5.0E+01 5.0E+01 KLK1 9.5E+05 6.9E+05 6.8E+05 9.1E+06 5.8E+06 5.0E+05 IPI00382442 4.5E+05 5.0E+01 5.0E+01 1.6E+05 7.9E+05 2.2E+06 KRT9 2.5E+06 4.1E+05 1.5E+05 3.8E+06 8.5E+06 8.9E+06 HBE1 8.5E+05 3.6E+05 3.1E+05 2.2E+04 5.9E+06 5.1E+06 IGK@ 6.8E+04 5.0E+01 5.0E+01 5.0E+01 1.2E+05 4.0E+05 CELA2B 9.5E+05 8.5E+05 5.6E+05 1.4E+07 7.6E+06 1.3E+06 CST2 5.0E+01 1.1E+05 5.0E+01 1.1E+06 5.7E+03 5.0E+01 HEXA 6.7E+04 5.0E+01 5.0E+01 4.2E+05 1.8E+05 8.9E+04 IPI00827637 7.2E+04 5.0E+01 5.0E+01 5.0E+01 3.6E+05 4.4E+05 RNASE1 6.9E+05 1.3E+06 2.5E+06 2.9E+07 2.0E+07 2.9E+06 CPA2 7.9E+06 4.2E+06 3.8E+06 1.6E+08 2.4E+07 1.4E+07 PSMB1 1.6E+05 5.0E+01 5.0E+01 9.1E+05 7.7E+05 3.3E+05 S100A7 4.3E+04 1.4E+05 1.6E+05 4.8E+06 5.5E+04 1.1E+05 LY6D 5.0E+01 6.4E+04 5.0E+01 9.1E+05 4.0E+04 5.0E+01 CEL 1.4E+07 5.8E+06 3.6E+06 1.1E+08 2.1E+08 3.1E+07 CTRB1 1.0E+07 2.7E+06 1.5E+06 4.9E+07 1.4E+08 3.2E+07 CTRL 4.1E+05 4.2E+05 1.3E+05 6.7E+06 6.1E+06 1.9E+06 PRSS1 9.4E+06 4.2E+06 3.5E+06 1.5E+08 9.1E+07 3.3E+07 PSMA1 1.3E+05 5.0E+01 4.4E+04 1.5E+06 9.9E+05 4.6E+05 CTRL 2.0E+05 5.0E+01 5.0E+01 4.6E+05 2.3E+06 6.5E+05 CPA1 1.8E+07 4.5E+06 5.6E+06 2.9E+08 1.5E+08 4.3E+07 IPI00385254 7.4E+04 5.0E+01 5.0E+01 3.7E+04 8.4E+05 4.4E+05 KRT76 2.1E+05 5.0E+01 5.9E+04 1.1E+06 2.5E+06 1.2E+06 NME1 2.2E+05 5.0E+01 5.0E+01 2.6E+06 8.3E+05 5.8E+05 CELA3B 1.6E+06 2.4E+04 7.8E+05 3.1E+07 1.1E+07 4.4E+06 PNLIPRP1 3.1E+06 3.0E+05 4.7E+05 4.9E+07 2.2E+07 6.7E+06 FASN 1.5E+05 7.6E+04 5.5E+04 2.8E+04 1.7E+06 4.7E+06 CELA2A 2.3E+06 9.2E+05 3.9E+05 4.3E+07 3.3E+07 1.3E+07 IPI00219910 2.3E+05 8.1E+04 1.4E+05 5.1E+06 5.7E+06 6.1E+05 IPI00827829 6.4E+04 5.7E+04 3.2E+02 3.3E+06 5.0E+01 5.0E+01 PNLIP 2.8E+07 3.5E+06 7.6E+06 7.0E+08 2.7E+08 9.1E+07 PRSS2 2.6E+06 2.7E+05 6.5E+05 5.3E+07 3.6E+07 1.1E+07 CLC 5.0E+01 4.3E+04 5.0E+01 7.0E+05 3.7E+05 2.1E+05 CELA3A 4.4E+06 1.1E+06 2.2E+06 1.3E+08 7.7E+07 2.7E+07 CTRC 2.0E+06 1.2E+06 4.9E+05 4.4E+07 5.6E+07 1.2E+07 MPO 5.0E+01 7.1E+04 3.5E+04 3.4E+06 2.2E+05 5.0E+01 GP2 8.7E+04 2.3E+05 1.1E+05 1.0E+07 2.6E+06 2.2E+06 GP2 9.5E+05 8.4E+04 4.8E+05 1.4E+07 2.8E+07 1.4E+07 CPB1 4.0E+06 1.5E+06 9.4E+05 1.3E+08 8.8E+07 2.4E+07 AMY1C;AMY2A;AMY 2.1E+06 3.3E+05 5.1E+05 7.7E+07 3.3E+07 4.6E+06

31 Diabetes Page 60 of 61

1A;AMY1B AMY2B 1.0E+07 4.9E+06 3.9E+06 4.3E+08 3.2E+08 4.6E+07 SERPINI2 5.0E+01 6.7E+04 5.0E+01 3.6E+06 3.3E+06 2.9E+05 PLA2G1B 3.7E+05 4.9E+04 7.6E+04 4.0E+07 1.5E+07 3.8E+06 HMGCL 5.0E+01 5.0E+01 5.0E+01 5.0E+01 4.1E+04 5.0E+01 CD302;LY75 5.0E+01 2.7E+02 5.0E+01 1.1E+05 5.0E+01 5.0E+01 HPN 5.0E+01 8.8E+02 5.0E+01 3.4E+05 5.0E+01 5.0E+01 SCFV 5.0E+01 5.0E+01 5.0E+01 1.5E+02 5.0E+01 5.4E+04 IPI00884092 5.0E+01 5.0E+01 5.0E+01 5.0E+01 3.0E+04 3.5E+04 AZU1 5.0E+01 2.3E+03 5.0E+01 1.4E+06 3.4E+05 5.0E+01 TPM3 5.0E+01 5.0E+01 5.0E+01 5.0E+01 3.5E+04 7.6E+04 LOC100132635 5.0E+01 4.2E+03 5.0E+01 3.1E+06 6.2E+04 5.0E+01 ERO1L 5.0E+01 5.0E+01 5.0E+01 9.8E+04 6.0E+04 5.0E+01 IPI00827580 5.0E+01 5.0E+01 5.0E+01 5.0E+01 4.5E+04 1.2E+05 TTN 5.0E+01 5.0E+01 5.0E+01 4.4E+04 4.1E+04 8.1E+04 PGAM4;LOC728188 5.0E+01 5.0E+01 5.0E+01 1.3E+05 6.4E+04 5.0E+01 IPI00398220 5.0E+01 5.0E+01 5.0E+01 5.2E+02 5.0E+01 1.9E+05 BPI 5.0E+01 1.4E+03 5.0E+01 2.9E+06 5.0E+01 5.0E+01 CTRB2 5.0E+01 5.0E+01 5.0E+01 2.7E+05 1.2E+05 5.0E+01 C1QA 5.0E+01 5.0E+01 5.0E+01 3.8E+05 8.5E+04 5.0E+01 GLO1 5.0E+01 9.9E+01 5.0E+01 4.5E+05 2.2E+05 5.0E+01 AMY1C;AMY2A;AMY 5.0E+01 9.4E+02 5.0E+01 2.7E+06 1.3E+06 5.0E+01 1A;AMY1B GALM 5.0E+01 5.0E+01 5.0E+01 3.0E+05 2.9E+05 5.0E+01 GC 5.0E+01 5.0E+01 5.0E+01 5.0E+01 6.7E+05 5.0E+01 CNP 5.0E+01 5.0E+01 5.0E+01 7.9E+05 5.8E+04 5.0E+01 LCN1 5.0E+01 1.2E+02 5.0E+01 1.4E+06 5.0E+01 5.0E+01 MBL2 5.0E+01 5.0E+01 5.0E+01 1.1E+06 2.6E+04 5.0E+01 CDH1 5.0E+01 5.0E+01 5.0E+01 7.4E+05 4.2E+05 4.2E+04 IGLC1;IGLV1- 5.0E+01 5.0E+01 5.0E+01 5.0E+01 9.6E+05 6.5E+05 44;IGLV1-40;IGLV3- 21;IGLV2-11;IGLV2- 14;IGL@;IGLC2;IGLC 3 PRSS1 5.0E+01 5.0E+01 5.0E+01 2.9E+06 3.0E+05 4.2E+05 GFPT1 5.0E+01 5.0E+01 5.0E+01 4.6E+06 7.8E+05 1.0E+05

Suppl Table 3:

Map PMID

32 Page 61 of 61 Diabetes

A1 15542607

A2 11274345

A3 11606045

A4 12205041

B1 10791986

B2 16611744

B3 16122376

B4 10880430

B5 11950845

B6 16614236

B7 11368003

C1 17915332

C2 10339425

C3 12049736

C4 9164868

C5 11389839

C6 11505407

C7 Gerhard Michal: Biochemical Pathways: An Atlas of Biochemistry and

Molecular Biology

D1 15071501

D2 15716280

D3 9054461

D4 7925482

D5 Gerhard Michal: Biochemical Pathways: An Atlas of Biochemistry and

33 Diabetes Page 62 of 61

Molecular Biology

E1 12235123

34