Some Type of Mysterious, Invisible Mass Holds the Universe Together

Total Page:16

File Type:pdf, Size:1020Kb

Some Type of Mysterious, Invisible Mass Holds the Universe Together Tales from the dark side What do we really know about dark matter? Some type of mysterious, invisible mass holds the universe together. Here’s how scientists are searching for it. by Liz Kruesi Massive galaxy clusters like Abell 2218 have pro- vided scientists with evidence for the existence of dark matter. By analyzing the arcs — warped images of a background galaxy — surrounding the cluster center, astronomers determined the cluster must have a lot more mass than meets the eye. NASA/Andrew Fruchter/ERO Team [Sylvia Baggett (STScI), Richard Hook (ST-ECF), Zoltan Levay (STScI)] (STScI) he universe doesn’t abide by “what it doesn’t emit X-rays or absorb infrared plotted the velocity versus the distance to Astronomers study the sizes and makes up most of their baryonic mass. Unlike anything we’ve seen you see is what you get.” In fact, radiation). This mysterious stuff is there- create a “rotation curve.” They expected shapes of those arcs to determine a clus- Ordinary matter interacts through elec- For many years astronomers thought dark the stuff we see in space — stars, fore invisible, yet astronomers learned it the velocities to reach a maximum and ter’s mass. By comparing that calculated tromagnetic forces. Thus, as matter col- matter could consist of dead stars, black gas, and dust — accounts for only exists because dark matter interacts with then decrease farther from the center — mass to the mass that comes from only lides it loses energy as radiation (in the holes, and other known objects that emit 10 percent of the universe’s mass. ordinary matter through gravity. but the data showed otherwise. The luminous objects (the galaxies), astrono- form of X-rays, in this case). The hot gas little or no light. They used gravitational TThis visible stuff is ordinary matter, and velocities reach a maximum and then mers can determine how much dark slows during the collision. microlensing to look for these objects. it’s made up of protons, neutrons, and Searching in the dark plateau. With velocities so high at the matter is in a cluster. Astronomers use gravitational lensing This technique is similar to gravitational electrons. Scientists call ordinary matter Swiss astrophysicist Fritz Zwicky first outer edge of galaxies, the stars should Other evidence has turned up in colli- to indirectly map the dark matter distri- lensing except the foreground object is “baryonic matter” because protons and proposed dark matter’s existence in 1933. fling out of their orbits. But they don’t. sions of galaxy clusters, namely the Bullet bution. It turns out that dark matter also much less massive. Instead of light bend- neutrons are subatomic particles called While studying the Coma cluster of gal- Some sort of mass scientists can’t detect cluster. This object is actually the after- passed through the collision unaffected. ing around the object, the body’s gravity baryons. The other 90 percent of the mass axies, he found that the galaxies’ collec- must be holding these outer stars in orbit. math of two galaxy clusters that collided. So images of the Bullet cluster show magnifies the light from behind it. While is “dark matter,” and it likely surrounds tive gravity alone was much too small to A very massive object — such as a gal- Astronomers used a multidetection direct evidence of dark matter. astronomers found some of these MAssive almost every galaxy in the universe. hold the cluster together. axy cluster — can act as a gravitational approach to look at the galaxies, gas, and The evidence is piling up — with 3-D Compact Halo Objects (MACHOs), there Dark matter doesn’t emit, absorb, or The next round of evidence came in lens. Some images of regions around gal- dark matter. When the clusters collided, dark matter maps and other detections. weren’t enough to account for all of the reflect any type of light (so, for example, the 1970s. Astronomers charted the axy clusters show numerous arcs. Those the galaxies’ stars passed through mostly Yet mapping the distribution is one thing; universe’s missing mass. velocities of stars at various distances are background galaxies distorted and unaffected because a lot of space exists knowing the characteristics of this myste- So if dark matter isn’t composed of Liz Kruesi is an associate editor of Astronomy. from the center of a spiral galaxy and magnified by the cluster’s gravity. between the stars. The clusters’ hot gas rious stuff is another story. normal objects, then it likely consists of 28 Astronomy • November© 2014 Kalmbach 09 Publishing Co. This material may not be reproduced in any www.Astronomy.com 29 form without permission from the publisher. www.Astronomy.com that each ordinary particle (such as an Simulating structure electron or quark) has a massive “super- partner” (a selectron or squark) that remains undetected. The leading dark matter candidate is a class of particles that supersymmetry predicts. These particles have mass and interact through the weak nuclear force, but they don’t interact through the elec- tromagnetic force. Because these weakly interacting massive particles (WIMPs) interact via the weak force, they can col- lide with normal atomic nuclei and bounce off them without emitting light or absorbing radiation. The lightest Klypin (NMSU) Chicago)/Anatoly (U. Kravtsov Andrey WIMP — called the neutralino — is also The universe’s structure seems to evolve as smaller clumps bunch to form larger structures. Astronomers simulate structure evolution with cold dark matter the most popular dark matter possibility. and create models that resemble today’s universe. This simulation shows dark matter distribution, where brighter areas represent more dense regions. Another common CDM candidate is the axion. The axion is also a hypotheti- matter in a detector. A WIMP can collide cal particle, but it arises from a theory with an atomic nucleus and move, or different from supersymmetry. This par- “scatter,” the nucleus. ticle is not a “matter particle” but instead Another method is to indirectly detect a force carrier, similar to the photon dark matter. A WIMP’s antiparticle is NASA/ESA/CXC/M. Bradac (University of California, Santa Barbara)/S. Allen (Stanford University) (Stanford Allen Santa Barbara)/S. of California, (University Bradac NASA/ESA/CXC/M. (which “carries” the electromagnetic itself, so if two WIMPs interact, they Two massive galaxy clusters collided to form what’s known as the Bullet cluster of galaxies. Ordi- force). It’s much lighter than a WIMP — annihilate each other and produce a nary matter — the hot gas, shown in pink — collided, lost energy, and slowed. The clusters’ dark at least 1 billion times less massive — so shower of secondary particles. Astro- matter (shown in blue) interacted little and passed through the ordinary matter. the universe would need a whole lot physicists can observe many of these sec- more axions than WIMPs to make up all ondary particles — such as electrons, non-baryonic particles — meaning it’s with dark matter,” says Juan Collar of the the invisible matter. positrons (the electron’s antiparticle), not made up of the same stuff as ordinary University of Chicago. “However, these One would expect that with so many gamma rays, and neutrinos. matter (protons and neutrons). Astrono- hypothetical particles turn out to have all CDM particles, WIMPs or axions would Scientists’ methods to locate axions mers split non-baryonic dark matter into of the properties (mass, abundance, life- be easy to find. But because they don’t are “totally different than the direct and two categories: hot and cold. These titles time, probability, and mode of interac- interact through the electromagnetic indirect detection methods used to look have nothing to do with temperature. tion) required to be the dark matter, or at force, detecting them pushes scientists’ for WIMPs,” says Dan Hooper of Fermi Hot means that early in the universe least a fraction of it.” experimental limits. National Accelerator Laboratory in Bata- these particles traveled extremely fast — For decades, physicists have worked to via, Illinois. When an axion traverses a almost at the speed of light. Cold means explain how the four fundamental physi- How to hunt CDM detector that has a magnetic field, it will that early in the universe the particles cal forces fit together. (These forces are The method used to detect dark matter convert into a photon. of Nottingham, U.K.)/ (University Gray Vancouver)/M. of British Columbia, (University NASA/ESA/C. Heymans U.K.)/K. Meisenheimer (Max University, (Oxford Wolf collaboration/C. (Innsbruck)/the M. Barden STAGES collaboration COMBO-17 Heidelberg)/the Astronomy, Institute for Planck traveled more slowly. gravitation, electromagnetism, weak depends on what type of dark matter Instead of trying to detect CDM par- Supercluster Abell 901/902 contains hundreds of galaxies. Astronomers analyzed the distortion of How does particle speed relate to dark nuclear, and strong nuclear.) In the past (WIMP or axion) scientists pursue. Sci- ticles, some scientists aim to create the some 60,000 background galaxies’ shapes to determine the supercluster’s distribution of dark mat- ter. They then combined a visible-light image of the supercluster with the dark matter distribution matter’s composition? Slower particles 30 or so years, they’ve arrived at super- entists looking for WIMPs try to directly particles — WIMPs and axions — in the map (shown as a magenta haze). will bunch up into small structures ear- symmetry theory. This model predicts observe the interaction with ordinary laboratory. To do this, they have to gen- lier in the universe. Those small struc- erate extremely high energies, similar to tures will eventually collide and merge to A rotation curve those shortly after the Big Bang. Only it moves through this dark matter haze.
Recommended publications
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Unification of Nature's Fundamental Forces
    Unification of Nature’s Geoffrey B. West Fredrick M. Cooper Fundamental Forces Emil Mottola a continuing search Michael P. Mattis it was explicitly recognized at the time that basic research had an im- portant and seminal role to play even in the highly programmatic en- vironment of the Manhattan Project. Not surprisingly this mode of opera- tion evolved into the remarkable and unique admixture of pure, applied, programmatic, and technological re- search that is the hallmark of the present Laboratory structure. No- where in the world today can one find under one roof such diversity of talent dealing with such a broad range of scientific and technological challenges—from questions con- cerning the evolution of the universe and the nature of elementary parti- cles to the structure of new materi- als, the design and control of weapons, the mysteries of the gene, and the nature of AIDS! Many of the original scientists would have, in today’s parlance, identified themselves as nuclear or particle physicists. They explored the most basic laws of physics and continued the search for and under- standing of the “fundamental build- ing blocks of nature’’ and the princi- t is a well-known, and much- grappled with deep questions con- ples that govern their interactions. overworked, adage that the group cerning the consequences of quan- It is therefore fitting that this area of Iof scientists brought to Los tum mechanics, the structure of the science has remained a highly visi- Alamos to work on the Manhattan atom and its nucleus, and the devel- ble and active component of the Project constituted the greatest as- opment of quantum electrodynamics basic research activity at Los Alam- semblage of scientific talent ever (QED, the relativistic quantum field os.
    [Show full text]
  • Adrien Christian René THOB
    THE RELATIONSHIP BETWEEN THE MORPHOLOGY AND KINEMATICS OF GALAXIES AND ITS DEPENDENCE ON DARK MATTER HALO STRUCTURE IN SIMULATED GALAXIES Adrien Christian René THOB A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy. 26 April 2019 To my grand-parents, René Roumeaux, Christian Thob, Yvette Roumeaux (née Bajaud) and Anne-Marie Thob (née Léglise). ii Abstract Galaxies are among nature’s most majestic and diverse structures. They can play host to as few as several thousands of stars, or as many as hundreds of billions. They exhibit a broad range of shapes, sizes, colours, and they can inhabit vastly differing cosmic environments. The physics of galaxy formation is highly non-linear and in- volves a variety of physical mechanisms, precluding the development of entirely an- alytic descriptions, thus requiring that theoretical ideas concerning the origin of this diversity are tested via the confrontation of numerical models (or “simulations”) with observational measurements. The EAGLE project (which stands for Evolution and Assembly of GaLaxies and their Environments) is a state-of-the-art suite of such cos- mological hydrodynamical simulations of the Universe. EAGLE is unique in that the ill-understood efficiencies of feedback mechanisms implemented in the model were calibrated to ensure that the observed stellar masses and sizes of present-day galaxies were reproduced. We investigate the connection between the morphology and internal 9:5 kinematics of the stellar component of central galaxies with mass M? > 10 M in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them.
    [Show full text]
  • Particle Dark Matter an Introduction Into Evidence, Models, and Direct Searches
    Particle Dark Matter An Introduction into Evidence, Models, and Direct Searches Lecture for ESIPAP 2016 European School of Instrumentation in Particle & Astroparticle Physics Archamps Technopole XENON1T January 25th, 2016 Uwe Oberlack Institute of Physics & PRISMA Cluster of Excellence Johannes Gutenberg University Mainz http://xenon.physik.uni-mainz.de Outline ● Evidence for Dark Matter: ▸ The Problem of Missing Mass ▸ In galaxies ▸ In galaxy clusters ▸ In the universe as a whole ● DM Candidates: ▸ The DM particle zoo ▸ WIMPs ● DM Direct Searches: ▸ Detection principle, physics inputs ▸ Example experiments & results ▸ Outlook Uwe Oberlack ESIPAP 2016 2 Types of Evidences for Dark Matter ● Kinematic studies use luminous astrophysical objects to probe the gravitational potential of a massive environment, e.g.: ▸ Stars or gas clouds probing the gravitational potential of galaxies ▸ Galaxies or intergalactic gas probing the gravitational potential of galaxy clusters ● Gravitational lensing is an independent way to measure the total mass (profle) of a foreground object using the light of background sources (galaxies, active galactic nuclei). ● Comparison of mass profles with observed luminosity profles lead to a problem of missing mass, usually interpreted as evidence for Dark Matter. ● Measuring the geometry (curvature) of the universe, indicates a ”fat” universe with close to critical density. Comparison with luminous mass: → a major accounting problem! Including observations of the expansion history lead to the Standard Model of Cosmology: accounting defcit solved by ~68% Dark Energy, ~27% Dark Matter and <5% “regular” (baryonic) matter. ● Other lines of evidence probe properties of matter under the infuence of gravity: ▸ the equation of state of oscillating matter as observed through fuctuations of the Cosmic Microwave Background (acoustic peaks).
    [Show full text]
  • An Interpreter's Glossary at a Conference on Recent Developments in the ATLAS Project at CERN
    Faculteit Letteren & Wijsbegeerte Jef Galle An interpreter’s glossary at a conference on recent developments in the ATLAS project at CERN Masterproef voorgedragen tot het behalen van de graad van Master in het Tolken 2015 Promotor Prof. Dr. Joost Buysschaert Vakgroep Vertalen Tolken Communicatie 2 ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude towards prof. dr. Joost Buysschaert, my supervisor, for his guidance and patience throughout this entire project. Furthermore, I wanted to thank my parents for their patience and support. I would like to express my utmost appreciation towards Sander Myngheer, whose time and insights in the field of physics were indispensable for this dissertation. Last but not least, I wish to convey my gratitude towards prof. dr. Ryckbosch for his time and professional advice concerning the quality of the suggested translations into Dutch. ABSTRACT The goal of this Master’s thesis is to provide a model glossary for conference interpreters on assignments in the domain of particle physics. It was based on criteria related to quality, role, cognition and conference interpreters’ preparatory methodology. This dissertation focuses on terminology used in scientific discourse on the ATLAS experiment at the European Organisation for Nuclear Research. Using automated terminology extraction software (MultiTerm Extract) 15 terms were selected and analysed in-depth in this dissertation to draft a glossary that meets the standards of modern day conference interpreting. The terms were extracted from a corpus which consists of the 50 most recent research papers that were publicly available on the official CERN document server. The glossary contains information I considered to be of vital importance based on relevant literature: collocations in both languages, a Dutch translation, synonyms whenever they were available, English pronunciation and a definition in Dutch for the concepts that are dealt with.
    [Show full text]
  • DARK MATTER and NEUTRINOS Arxiv:1711.10564V1 [Physics.Pop-Ph]
    Physics Education 1 dateline DARK MATTER AND NEUTRINOS Gazal Sharma1, Anu2 and B. C. Chauhan3 Department of Physics & Astronomical Science School of Physical & Material Sciences Central University of Himachal Pradesh (CUHP) Dharamshala, Kangra (HP) INDIA-176215. [email protected] [email protected] [email protected] (Submitted 03-08-2015) Abstract The Keplerian distribution of velocities is not observed in the rotation of large scale structures, such as found in the rotation of spiral galaxies. The deviation from Keplerian distribution provides compelling evidence of the presence of non-luminous matter i.e. called dark matter. There are several astrophysical motivations for investigating the dark matter in and around the galaxy as halo. In this work we address various theoretical and experimental indications pointing towards the existence of this unknown form of matter. Amongst its constituents neutrino is one of the most prospective candidates. We know the neutrinos oscillate and have tiny masses, but there are also signatures for existence of heavy and light sterile neutrinos and possibility of their mixing. Altogether, the role of neutrinos is of great interests in cosmology and understanding dark matter. arXiv:1711.10564v1 [physics.pop-ph] 23 Nov 2017 1 Introduction revealed in 2013 that our Universe contains 68:3% of dark energy, 26:8% of dark matter, and only 4:9% of the Universe is known mat- As a human being the biggest surprise for us ter which includes all the stars, planetary sys- was, that the Universe in which we live in tems, galaxies, and interstellar gas etc.. This is mostly dark.
    [Show full text]
  • On Particle Physics
    On Particle Physics Searching for the Fundamental US ATLAS The continuing search for the basic building blocks of matter is the US ATLAS subject of Particle Physics (also called High Energy Physics). The idea of fundamental building blocks has evolved from the concept of four elements (earth, air, fire and water) of the Ancient Greeks to the nineteenth century picture of atoms as tiny “billiard balls.” The key word here is FUNDAMENTAL — objects which are simple and have no structure — they are not made of anything smaller! Our current understanding of these fundamental constituents began to fall into place around 100 years ago, when experimenters first discovered that the atom was not fundamental at all, but was itself made of smaller building blocks. Using particle probes as “microscopes,” scientists deter- mined that an atom has a dense center, or NUCLEUS, of positive charge surrounded by a dilute “cloud” of light, negatively- charged electrons. In between the nucleus and electrons, most of the atom is empty space! As the particle “microscopes” became more and more powerful, scientists found that the nucleus was composed of two types of yet smaller constituents called protons and neutrons, and that even pro- tons and neutrons are made up of smaller particles called quarks. The quarks inside the nucleus come in two varieties, called “up” or u-quark and “down” or d-quark. As far as we know, quarks and electrons really are fundamental (although experimenters continue to look for evidence to the con- trary). We know that these fundamental building blocks are small, but just how small are they? Using probes that can “see” down to very small distances inside the atom, physicists know that quarks and electrons are smaller than 10-18 (that’s 0.000 000 000 000 000 001! ) meters across.
    [Show full text]
  • A Derivation of Modified Newtonian Dynamics
    Journal of The Korean Astronomical Society http://dx.doi.org/10.5303/JKAS.2013.46.2.93 46: 93 ∼ 96, 2013 April ISSN:1225-4614 c 2013 The Korean Astronomical Society. All Rights Reserved. http://jkas.kas.org A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS Sascha Trippe Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea E-mail : [email protected] (Received February 14, 2013; Revised March 20, 2013; Accepted March 29, 2013) ABSTRACT Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galac- tic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the “graviton picture”) which I proposed recently. I conclude that MOND naturally derives from the “graviton picture” at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that – to first order – the “graviton picture” indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general. Key words : Gravitation — Galaxies: kinematics and dynamics −10 −2 1. INTRODUCTION where x = ac/am, am ≈ 10 ms is Milgrom’s con- stant, and µ(x)isa transition function with the asymp- “ It is worth remembering that all of the discus- totic behavior µ(x) → 1 for x ≫ 1 and µ(x) → x for sion [on dark matter] so far has been based on x ≪ 1.
    [Show full text]
  • Implications of Graviton–Graviton Interaction to Dark Matter
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Physics Letters B 676 (2009) 21–24 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Implications of graviton–graviton interaction to dark matter A. Deur 1 University of Virginia, Charlottesville, VA 22904, USA article info abstract Article history: Our present understanding of the universe requires the existence of dark matter and dark energy. Received 26 February 2009 We describe here a natural mechanism that could make exotic dark matter and possibly dark energy Received in revised form 8 April 2009 unnecessary. Graviton–graviton interactions increase the gravitational binding of matter. This increase, Accepted 22 April 2009 for large massive systems such as galaxies, may be large enough to make exotic dark matter superfluous. Available online 25 April 2009 Within a weak field approximation we compute the effect on the rotation curves of galaxies and find the Editor: A. Ringwald correct magnitude and distribution without need for arbitrary parameters or additional exotic particles. PACS: The Tully–Fisher relation also emerges naturally from this framework. The computations are further 95.35.+d applied to galaxy clusters. 95.36.+x © 2009 Elsevier B.V. Open access under CC BY license. 95.30.Cq Cosmological observations appear to require ingredients beyond (dark matter) or gravity law modifications such as the empirical standard fundamental physics, such as exotic dark matter [1] and MOND model [4]. dark energy [2]. In this Letter, we discuss whether the observa- Galaxies are weak gravity field systems with stars moving at tions suggesting the existence of dark matter and dark energy non-relativistic speeds.
    [Show full text]
  • The Contents of the Universe
    Ay 127! The Contents of the Universe 0.5 % Stars and other visible stuff Supernovae alone ⇒ Accelerating expansion ⇒ Λ > 0 CMB alone ⇒ Flat universe ⇒ Λ > 0 Any two of SN, CMB, LSS ⇒ Dark energy ~70% Also in agreement with the age estimates (globular clusters, nucleocosmochronology, white dwarfs) Today’s Best Guess Universe Age: Best fit CMB model - consistent with ages of oldest stars t0 =13.82 ± 0.05 Gyr Hubble constant: CMB + HST Key Project to -1 -1 measure Cepheid distances H0 = 69 km s Mpc € Density of ordinary matter: CMB + comparison of nucleosynthesis with Lyman-a Ωbaryon = 0.04 € forest deuterium measurement Density of all forms of matter: Cluster dark matter estimate CMB power spectrum 0.31 € Ωmatter = Cosmological constant: Supernova data, CMB evidence Ω = 0.69 for a flat universe plus a low € Λ matter density € The Component Densities at z ~ 0, in critical density units, assuming h ≈ 0.7 Total matter/energy density: Ω0,tot ≈ 1.00 From CMB, and consistent with SNe, LSS From local dynamics and LSS, and Matter density: Ω0,m ≈ 0.31 consistent with SNe, CMB From cosmic nucleosynthesis, Baryon density: Ω0,b ≈ 0.045 and independently from CMB Luminous baryon density: Ω0,lum ≈ 0.005 From the census of luminous matter (stars, gas) Since: Ω0,tot > Ω0,m > Ω0,b > Ω0,lum There is baryonic dark matter There is non-baryonic dark matter There is dark energy The Luminosity Density Integrate galaxy luminosity function (obtained from large redshift surveys) to obtain the mean luminosity density at z ~ 0 8 3 SDSS, r band: ρL = (1.8 ± 0.2) 10 h70 L/Mpc 8 3 2dFGRS, b band: ρL = (1.4 ± 0.2) 10 h70 L/Mpc Luminosity To Mass Typical (M/L) ratios in the B band along the Hubble sequence, within the luminous portions of galaxies, are ~ 4 - 5 M/L This includes some dark matter - for pure stellar populations, (M/L) ratios should be slightly lower.
    [Show full text]
  • Modified Newtonian Dynamics, an Introductory Review
    Modified Newtonian Dynamics, an Introductory Review Riccardo Scarpa European Southern Observatory, Chile E-mail [email protected] Abstract. By the time, in 1937, the Swiss astronomer Zwicky measured the velocity dispersion of the Coma cluster of galaxies, astronomers somehow got acquainted with the idea that the universe is filled by some kind of dark matter. After almost a century of investigations, we have learned two things about dark matter, (i) it has to be non-baryonic -- that is, made of something new that interact with normal matter only by gravitation-- and, (ii) that its effects are observed in -8 -2 stellar systems when and only when their internal acceleration of gravity falls below a fix value a0=1.2×10 cm s . Being completely decoupled dark and normal matter can mix in any ratio to form the objects we see in the universe, and indeed observations show the relative content of dark matter to vary dramatically from object to object. This is in open contrast with point (ii). In fact, there is no reason why normal and dark matter should conspire to mix in just the right way for the mass discrepancy to appear always below a fixed acceleration. This systematic, more than anything else, tells us we might be facing a failure of the law of gravity in the weak field limit rather then the effects of dark matter. Thus, in an attempt to avoid the need for dark matter many modifications of the law of gravity have been proposed in the past decades. The most successful – and the only one that survived observational tests -- is the Modified Newtonian Dynamics.
    [Show full text]
  • Forces of Nature
    Forces of Nature NOVA Activity The Elegant Universe gravity strong force The world is made up of elementary particles called quarks, which include the up, down, charm, strange, top, and bottom quarks; and leptons, which include the electron, the muon, the tau, and their corresponding neutrinos. But how do these particles interact? How do they form the world you see around you? Find out in this activity. weak force electromagnetism Procedure 1 Look at the Finding Forces activity sheet. The graphic shows four areas of matter (labeled 1, 2, 3, and 4) that C Gravity is the phenomenon by which massive bodies, are governed by the four fundamental forces of nature. such as planets and stars, are attracted to one another. 2 Read “The Four Fundamental Forces” section that The warps and curves in the fabric of space and time starts below. Then see if you can match each force are a result of how these massive objects influence correctly with the numbers on the Finding Forces one another through gravity. Any object with mass illustration. Write the letter of each description next exerts a gravitational pull on any other object with to the number you think represents the area of matter mass. You don’t fly off Earth’s surface because Earth governed by that force. has a gravitational pull on you. Gravity is thought to be carried by the graviton, though so far no one has 3 Once you have labeled the forces, write next to each found evidence for its existence. force the name of the particle that carries (or is believed to carry) that force between the matter D The weak force is responsible for different types of particles it governs.
    [Show full text]