An Interpreter's Glossary at a Conference on Recent Developments in the ATLAS Project at CERN

Total Page:16

File Type:pdf, Size:1020Kb

An Interpreter's Glossary at a Conference on Recent Developments in the ATLAS Project at CERN Faculteit Letteren & Wijsbegeerte Jef Galle An interpreter’s glossary at a conference on recent developments in the ATLAS project at CERN Masterproef voorgedragen tot het behalen van de graad van Master in het Tolken 2015 Promotor Prof. Dr. Joost Buysschaert Vakgroep Vertalen Tolken Communicatie 2 ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude towards prof. dr. Joost Buysschaert, my supervisor, for his guidance and patience throughout this entire project. Furthermore, I wanted to thank my parents for their patience and support. I would like to express my utmost appreciation towards Sander Myngheer, whose time and insights in the field of physics were indispensable for this dissertation. Last but not least, I wish to convey my gratitude towards prof. dr. Ryckbosch for his time and professional advice concerning the quality of the suggested translations into Dutch. ABSTRACT The goal of this Master’s thesis is to provide a model glossary for conference interpreters on assignments in the domain of particle physics. It was based on criteria related to quality, role, cognition and conference interpreters’ preparatory methodology. This dissertation focuses on terminology used in scientific discourse on the ATLAS experiment at the European Organisation for Nuclear Research. Using automated terminology extraction software (MultiTerm Extract) 15 terms were selected and analysed in-depth in this dissertation to draft a glossary that meets the standards of modern day conference interpreting. The terms were extracted from a corpus which consists of the 50 most recent research papers that were publicly available on the official CERN document server. The glossary contains information I considered to be of vital importance based on relevant literature: collocations in both languages, a Dutch translation, synonyms whenever they were available, English pronunciation and a definition in Dutch for the concepts that are dealt with. The 15 terms were furthermore entered into limited GenTerm records, which were included in the appendix. The resulting glossary can be used by a professional interpreter for a conference on particle physics, but is by no means complete. It could therefore be useful to expand on this glossary by adding more terms and/or languages to it. 3 1) INTRODUCTION .................................................................................................................................. 4 1.1) DISSERTATION CONCEPT .............................................................................................................................. 4 1.2) RATIONALE .................................................................................................................................................. 4 1.3) TRANSLATOR’S NEEDS ................................................................................................................................. 5 1.4) INTERPRETER’S LIMITATIONS ....................................................................................................................... 5 2) CONFERENCE INTERPRETING ........................................................................................................ 6 2.1) ROLE AND QUALITY ASSESMENT .................................................................................................................. 7 2.1.1) Role ...................................................................................................................................................... 7 2.1.2) Quality .................................................................................................................................................. 7 2.2) COGNITIVE BACKGROUND ............................................................................................................................ 9 2.3) PRIOR KNOWLEDGE AND PREPARATION ...................................................................................................... 11 3) TERMINOLOGY AND GLOSSARIES .............................................................................................. 12 3.1) TERMS ........................................................................................................................................................ 13 3.2) GLOSSARIES ............................................................................................................................................... 13 4) RESEARCH ......................................................................................................................................... 14 4.1) THE ATLAS PROJECT AT CERN ................................................................................................................ 14 4.2) TERM EXTRACTION ..................................................................................................................................... 14 4.3) THE ACTUAL GLOSSARY ............................................................................................................................. 17 5) IN-DEPTH DISCUSSION .................................................................................................................... 18 5.1) ELEMENTARY PARTICLE ............................................................................................................................. 18 5.2) PARTICLE COLLISION .................................................................................................................................. 19 5.3) LUMINOSITY ............................................................................................................................................... 20 5.4) CROSS SECTION .......................................................................................................................................... 22 5.5) PARTICLE DECAY ........................................................................................................................................ 23 5.6) BRANCHING RATIO ...................................................................................................................................... 25 5.7) TRANSVERSE MOMENTUM .......................................................................................................................... 27 5.8) JET .............................................................................................................................................................. 28 5.9) PRIMARY VERTEX ....................................................................................................................................... 30 5.10) INVARIANT MASS ...................................................................................................................................... 31 5.11) PARTICLE DETECTOR ................................................................................................................................ 32 5.12) MUON SPECTROMETER .............................................................................................................................. 34 5.13) ELECTROMAGNETIC CALORIMETER ........................................................................................................... 35 5.14) HADRONIC CALORIMETER ......................................................................................................................... 36 5.15) HIGGS BOSON ........................................................................................................................................... 38 6) CONCLUSION ..................................................................................................................................... 39 7) REFERENCE LIST (ISDB) ................................................................................................................. 41 8) APPENDIX ........................................................................................................................................... 68 8.1) GENTERM RECORDS ................................................................................................................................... 68 8.2) BILINGUAL TERM LIST ............................................................................................................................. 114 8.3) INTERPRETER’S GLOSSARY ...................................................................................................................... 118 8.4) AUTHOR’S RECORD .................................................................................................................................. 124 4 1) INTRODUCTION 1.1) Dissertation Concept The modern world is faced with a need for efficient international communication. The combination of communication globalisation and specialisation creates specific working conditions and requirements for facilitators of that interlingual communication: interpreters. Bowker (2008) explains terminology is closely linked to bilingual contexts. She adds: “[…] terms refer to the discrete conceptual entities, properties, activities or relations that constitute knowledge in a particular domain. Ideally, then behind each term there should be a clearly defined concept which is systematically related to the other concepts that make up the knowledge structure of the domain.” In other words, if the interpreter is to be able to comprehend highly specialised discourse, he or she must study the terminology for that domain thoroughly. This dissertation will explore the literature on simultaneous conference interpreting
Recommended publications
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Unification of Nature's Fundamental Forces
    Unification of Nature’s Geoffrey B. West Fredrick M. Cooper Fundamental Forces Emil Mottola a continuing search Michael P. Mattis it was explicitly recognized at the time that basic research had an im- portant and seminal role to play even in the highly programmatic en- vironment of the Manhattan Project. Not surprisingly this mode of opera- tion evolved into the remarkable and unique admixture of pure, applied, programmatic, and technological re- search that is the hallmark of the present Laboratory structure. No- where in the world today can one find under one roof such diversity of talent dealing with such a broad range of scientific and technological challenges—from questions con- cerning the evolution of the universe and the nature of elementary parti- cles to the structure of new materi- als, the design and control of weapons, the mysteries of the gene, and the nature of AIDS! Many of the original scientists would have, in today’s parlance, identified themselves as nuclear or particle physicists. They explored the most basic laws of physics and continued the search for and under- standing of the “fundamental build- ing blocks of nature’’ and the princi- t is a well-known, and much- grappled with deep questions con- ples that govern their interactions. overworked, adage that the group cerning the consequences of quan- It is therefore fitting that this area of Iof scientists brought to Los tum mechanics, the structure of the science has remained a highly visi- Alamos to work on the Manhattan atom and its nucleus, and the devel- ble and active component of the Project constituted the greatest as- opment of quantum electrodynamics basic research activity at Los Alam- semblage of scientific talent ever (QED, the relativistic quantum field os.
    [Show full text]
  • Intrinsic Parity of Neutral Pion
    Intrinsic Parity of Neutral Pion Taushif Ahmed 13th September, 2012 1 2 Contents 1 Symmetry 4 2 Parity Transformation 5 2.1 Parity in CM . 5 2.2 Parity in QM . 6 2.2.1 Active viewpoint . 6 2.2.2 Passive viewpoint . 8 2.3 Parity in Relativistic QM . 9 2.4 Parity in QFT . 9 2.4.1 Parity in Photon field . 11 3 Decay of The Neutral Pion 14 4 Bibliography 17 3 1 Symmetry What does it mean by `a certain law of physics is symmetric under certain transfor- mations' ? To be specific, consider the statement `classical mechanics is symmetric under mirror inversion' which can be defined as follows: take any motion that satisfies the laws of classical mechanics. Then, reflect the motion into a mirror and imagine that the motion in the mirror is actually happening in front of your eyes, and check if the motion satisfies the same laws of clas- sical mechanics. If it does, then classical mechanics is said to be symmetric under mirror inversion. Or more precisely, if all motions that satisfy the laws of classical mechanics also satisfy them after being re- flected into a mirror, then classical mechanics is said to be symmetric under mirror inversion. In general, suppose one applies certain transformation to a motion that follows certain law of physics, if the resulting motion satisfies the same law, and if such is the case for all motion that satisfies the law, then the law of physics is said to be sym- metric under the given transformation. It is important to use exactly the same law of physics after the transfor- mation is applied.
    [Show full text]
  • On Particle Physics
    On Particle Physics Searching for the Fundamental US ATLAS The continuing search for the basic building blocks of matter is the US ATLAS subject of Particle Physics (also called High Energy Physics). The idea of fundamental building blocks has evolved from the concept of four elements (earth, air, fire and water) of the Ancient Greeks to the nineteenth century picture of atoms as tiny “billiard balls.” The key word here is FUNDAMENTAL — objects which are simple and have no structure — they are not made of anything smaller! Our current understanding of these fundamental constituents began to fall into place around 100 years ago, when experimenters first discovered that the atom was not fundamental at all, but was itself made of smaller building blocks. Using particle probes as “microscopes,” scientists deter- mined that an atom has a dense center, or NUCLEUS, of positive charge surrounded by a dilute “cloud” of light, negatively- charged electrons. In between the nucleus and electrons, most of the atom is empty space! As the particle “microscopes” became more and more powerful, scientists found that the nucleus was composed of two types of yet smaller constituents called protons and neutrons, and that even pro- tons and neutrons are made up of smaller particles called quarks. The quarks inside the nucleus come in two varieties, called “up” or u-quark and “down” or d-quark. As far as we know, quarks and electrons really are fundamental (although experimenters continue to look for evidence to the con- trary). We know that these fundamental building blocks are small, but just how small are they? Using probes that can “see” down to very small distances inside the atom, physicists know that quarks and electrons are smaller than 10-18 (that’s 0.000 000 000 000 000 001! ) meters across.
    [Show full text]
  • Helicity of the Neutrino Determination of the Nature of Weak Interaction
    GENERAL ¨ ARTICLE Helicity of the Neutrino Determination of the Nature of Weak Interaction Amit Roy Measurement of the helicity of the neutrino was crucial in identifying the nature of weak interac- tion. The measurement is an example of great ingenuity in choosing, (i) the right nucleus with a specific type of decay, (ii) the technique of res- onant fluorescence scattering for determining di- rection of neutrino and (iii) transmission through Amit Roy is currently at magnetised iron for measuring polarisation of γ- the Variable Energy rays. Cyclotron Centre after working at Tata Institute In the field of art and sculpture, we sometimes come of Fundamental Research across a piece of work of rare beauty, which arrests our and Inter-University attention as soon as we focus our gaze on it. The ex- Accelerator Centre. His research interests are in periment on the determination of helicity of the neutrino nuclear, atomic and falls in a similar category among experiments in the field accelerator physics. of modern physics. The experiments on the discovery of parity violation in 1957 [1] had established that the vi- olation parity was maximal in beta decay and that the polarisation of the emitted electron was 100%. This im- plies that its helicity was −1. The helicity of a particle is a measure of the angle (co- sine) between the spin direction of the particle and its momentum direction. H = σ.p,whereσ and p are unit vectors in the direction of the spin and the momentum, respectively. The spin direction of a particle of posi- tive helicity is parallel to its momentum direction, and for that of negative helicity, the directions are opposite (Box 1).
    [Show full text]
  • Title: Parity Non-Conservation in Β-Decay of Nuclei: Revisiting Experiment and Theory Fifty Years After
    Title: Parity non-conservation in β-decay of nuclei: revisiting experiment and theory fifty years after. IV. Parity breaking models. Author: Mladen Georgiev (ISSP, Bulg. Acad. Sci., Sofia) Comments: some 26 pdf pages with 4 figures. In memoriam: Prof. R.G. Zaykoff Subj-class: physics This final part offers a survey of models proposed to cope with the symmetry-breaking challenge. Among them are the two-component neutrinos, the neutrino twins, the universal Fermi interaction, etc. Moreover, the broken discrete symmetries in physics are very much on the agenda and may occupy considerable time for LHC experiments aimed at revealing the symmetry-breaking mechanisms. Finally, an account of the achievements of dual-component theories in explaining parity-breaking phenomena is added. 7. Two-component neutrino In the previous parts I through III of the paper we described the theoretical background as well as the bulk experimental evidence that discrete group symmetries break up in weak interactions, such as the β−decay. This last part IV will be devoted to the theoretical models designed to cope with the parity-breaking challenge. The quality of the proposed theories and the accuracy of the experiments made to check them underline the place occupied by papers such as ours in the dissemination of symmetry-related matter of modern science. 7.1. Neutrino gauge In the general form of β-interaction (5.6) the case Ck' = ±Ck (7.1) is of particular interest. It corresponds to interchanging the neutrino wave function in the parity-conserving Hamiltonian ( Ck' = 0 ) with the function ψν' = (! ± γs )ψν (7.2) In as much as parity is not conserved with this transformation, it is natural to put the blame on the neutrino.
    [Show full text]
  • MHPAEA-Faqs-Part-45.Pdf
    CCIIO OG MWRD 1295 FAQS ABOUT MENTAL HEALTH AND SUBSTANCE USE DISORDER PARITY IMPLEMENTATION AND THE CONSOLIDATED APPROPRIATIONS ACT, 2021 PART 45 April 2, 2021 The Consolidated Appropriations Act, 2021 (the Appropriations Act) amended the Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA) to provide important new protections. The Departments of Labor (DOL), Health and Human Services (HHS), and the Treasury (collectively, “the Departments”) have jointly prepared this document to help stakeholders understand these amendments. Previously issued Frequently Asked Questions (FAQs) related to MHPAEA are available at https://www.dol.gov/agencies/ebsa/laws-and- regulations/laws/mental-health-and-substance-use-disorder-parity and https://www.cms.gov/cciio/resources/fact-sheets-and-faqs#Mental_Health_Parity. Mental Health Parity and Addiction Equity Act of 2008 MHPAEA generally provides that financial requirements (such as coinsurance and copays) and treatment limitations (such as visit limits) imposed on mental health or substance use disorder (MH/SUD) benefits cannot be more restrictive than the predominant financial requirements and treatment limitations that apply to substantially all medical/surgical benefits in a classification.1 In addition, MHPAEA prohibits separate treatment limitations that apply only to MH/SUD benefits. MHPAEA also imposes several important disclosure requirements on group health plans and health insurance issuers. The MHPAEA final regulations require that a group health plan or health insurance issuer may
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • Implications of Graviton–Graviton Interaction to Dark Matter
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Physics Letters B 676 (2009) 21–24 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Implications of graviton–graviton interaction to dark matter A. Deur 1 University of Virginia, Charlottesville, VA 22904, USA article info abstract Article history: Our present understanding of the universe requires the existence of dark matter and dark energy. Received 26 February 2009 We describe here a natural mechanism that could make exotic dark matter and possibly dark energy Received in revised form 8 April 2009 unnecessary. Graviton–graviton interactions increase the gravitational binding of matter. This increase, Accepted 22 April 2009 for large massive systems such as galaxies, may be large enough to make exotic dark matter superfluous. Available online 25 April 2009 Within a weak field approximation we compute the effect on the rotation curves of galaxies and find the Editor: A. Ringwald correct magnitude and distribution without need for arbitrary parameters or additional exotic particles. PACS: The Tully–Fisher relation also emerges naturally from this framework. The computations are further 95.35.+d applied to galaxy clusters. 95.36.+x © 2009 Elsevier B.V. Open access under CC BY license. 95.30.Cq Cosmological observations appear to require ingredients beyond (dark matter) or gravity law modifications such as the empirical standard fundamental physics, such as exotic dark matter [1] and MOND model [4]. dark energy [2]. In this Letter, we discuss whether the observa- Galaxies are weak gravity field systems with stars moving at tions suggesting the existence of dark matter and dark energy non-relativistic speeds.
    [Show full text]
  • Dirac Equation
    Particle Physics Dr. Alexander Mitov µ+ µ+ e- e+ e- e+ µ- µ- µ+ µ+ e- e+ e- e+ µ- µ- Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 45 Non-Relativistic QM (Revision) • For particle physics need a relativistic formulation of quantum mechanics. But first take a few moments to review the non-relativistic formulation QM • Take as the starting point non-relativistic energy: • In QM we identify the energy and momentum operators: which gives the time dependent Schrödinger equation (take V=0 for simplicity) (S1) with plane wave solutions: where •The SE is first order in the time derivatives and second order in spatial derivatives – and is manifestly not Lorentz invariant. •In what follows we will use probability density/current extensively. For the non-relativistic case these are derived as follows (S1)* (S2) Dr. A. Mitov Particle Physics 46 •Which by comparison with the continuity equation leads to the following expressions for probability density and current: •For a plane wave and «The number of particles per unit volume is « For particles per unit volume moving at velocity , have passing through a unit area per unit time (particle flux). Therefore is a vector in the particle’s direction with magnitude equal to the flux. Dr. A. Mitov Particle Physics 47 The Klein-Gordon Equation •Applying to the relativistic equation for energy: (KG1) gives the Klein-Gordon equation: (KG2) •Using KG can be expressed compactly as (KG3) •For plane wave solutions, , the KG equation gives: « Not surprisingly, the KG equation has negative energy solutions – this is just what we started with in eq.
    [Show full text]
  • Parity Violating Electron Scattering at Jefferson Lab
    Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 11/10/15 UVA Physics Seminar 1 Outline ● Parity Violating Electron Scattering (PVES) overview ● Testing the Standard Model (SM) with PVES – Qweak, SoLID-PVDIS and MOLLER ● Nuclear structure physics with PVES – PREX/CREX ● PVES as a probe of nucleon structure – SoLID-PVDIS EMC proposal 11/10/15 UVA Physics Seminar 2 Parity Violating Electron Scattering Due to PV nature of the neutral current, the differential cross section is dependent on the helicity of the electron The difference in helicity correlated scattering cross section is known as the PV asymmetry, 11/10/15 UVA Physics Seminar 3 PVES Applications ● Testing the Standard Model (SM) – Qweak (e-p), MOLLER (e-e), SoLID-PVDIS (e-q) experiments ● Nuclear Structure – Neutron density measurements with PREX/CREX experiments (e-208Pb and e-48Ca) ● Nucleon Structure – EMC with SoLID-PVDIS experiment using e-48Ca – Strangeness in proton (HAPPEX, G0 experiments) and etc. 11/10/15 UVA Physics Seminar 4 PVES Historical Significance ● Confirmation of the EW SM from the first PVES experiment at SLAC by Prescott et. al. ● First measurement of parity-violation in the neutral weak current! – Which they found the weak mixing angle to be around 1/4 that amount to a small axial vector(e) X vector(f) weak neutral interaction! 1st PVDIS at SLAC! first result in 1978: Prescott et al., PLB 77, 347 (1978) Prescott et al., PLB 84, 524 (1978) 11/10/15 UVA Physics Seminar 5 Unique Nature of a PVES Experiment ●
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]