Dirac Equation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introductory Lectures on Quantum Field Theory
Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties. -
What Is the Dirac Equation?
What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c . -
Intrinsic Parity of Neutral Pion
Intrinsic Parity of Neutral Pion Taushif Ahmed 13th September, 2012 1 2 Contents 1 Symmetry 4 2 Parity Transformation 5 2.1 Parity in CM . 5 2.2 Parity in QM . 6 2.2.1 Active viewpoint . 6 2.2.2 Passive viewpoint . 8 2.3 Parity in Relativistic QM . 9 2.4 Parity in QFT . 9 2.4.1 Parity in Photon field . 11 3 Decay of The Neutral Pion 14 4 Bibliography 17 3 1 Symmetry What does it mean by `a certain law of physics is symmetric under certain transfor- mations' ? To be specific, consider the statement `classical mechanics is symmetric under mirror inversion' which can be defined as follows: take any motion that satisfies the laws of classical mechanics. Then, reflect the motion into a mirror and imagine that the motion in the mirror is actually happening in front of your eyes, and check if the motion satisfies the same laws of clas- sical mechanics. If it does, then classical mechanics is said to be symmetric under mirror inversion. Or more precisely, if all motions that satisfy the laws of classical mechanics also satisfy them after being re- flected into a mirror, then classical mechanics is said to be symmetric under mirror inversion. In general, suppose one applies certain transformation to a motion that follows certain law of physics, if the resulting motion satisfies the same law, and if such is the case for all motion that satisfies the law, then the law of physics is said to be sym- metric under the given transformation. It is important to use exactly the same law of physics after the transfor- mation is applied. -
An Interpreter's Glossary at a Conference on Recent Developments in the ATLAS Project at CERN
Faculteit Letteren & Wijsbegeerte Jef Galle An interpreter’s glossary at a conference on recent developments in the ATLAS project at CERN Masterproef voorgedragen tot het behalen van de graad van Master in het Tolken 2015 Promotor Prof. Dr. Joost Buysschaert Vakgroep Vertalen Tolken Communicatie 2 ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude towards prof. dr. Joost Buysschaert, my supervisor, for his guidance and patience throughout this entire project. Furthermore, I wanted to thank my parents for their patience and support. I would like to express my utmost appreciation towards Sander Myngheer, whose time and insights in the field of physics were indispensable for this dissertation. Last but not least, I wish to convey my gratitude towards prof. dr. Ryckbosch for his time and professional advice concerning the quality of the suggested translations into Dutch. ABSTRACT The goal of this Master’s thesis is to provide a model glossary for conference interpreters on assignments in the domain of particle physics. It was based on criteria related to quality, role, cognition and conference interpreters’ preparatory methodology. This dissertation focuses on terminology used in scientific discourse on the ATLAS experiment at the European Organisation for Nuclear Research. Using automated terminology extraction software (MultiTerm Extract) 15 terms were selected and analysed in-depth in this dissertation to draft a glossary that meets the standards of modern day conference interpreting. The terms were extracted from a corpus which consists of the 50 most recent research papers that were publicly available on the official CERN document server. The glossary contains information I considered to be of vital importance based on relevant literature: collocations in both languages, a Dutch translation, synonyms whenever they were available, English pronunciation and a definition in Dutch for the concepts that are dealt with. -
Dirac Equation - Wikipedia
Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics. -
5 the Dirac Equation and Spinors
5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory. -
13 the Dirac Equation
13 The Dirac Equation A two-component spinor a χ = b transforms under rotations as iθn J χ e− · χ; ! with the angular momentum operators, Ji given by: 1 Ji = σi; 2 where σ are the Pauli matrices, n is the unit vector along the axis of rotation and θ is the angle of rotation. For a relativistic description we must also describe Lorentz boosts generated by the operators Ki. Together Ji and Ki form the algebra (set of commutation relations) Ki;Kj = iεi jkJk − ε Ji;Kj = i i jkKk ε Ji;Jj = i i jkJk 1 For a spin- 2 particle Ki are represented as i Ki = σi; 2 giving us two inequivalent representations. 1 χ Starting with a spin- 2 particle at rest, described by a spinor (0), we can boost to give two possible spinors α=2n σ χR(p) = e · χ(0) = (cosh(α=2) + n σsinh(α=2))χ(0) · or α=2n σ χL(p) = e− · χ(0) = (cosh(α=2) n σsinh(α=2))χ(0) − · where p sinh(α) = j j m and Ep cosh(α) = m so that (Ep + m + σ p) χR(p) = · χ(0) 2m(Ep + m) σ (pEp + m p) χL(p) = − · χ(0) 2m(Ep + m) p 57 Under the parity operator the three-moment is reversed p p so that χL χR. Therefore if we 1 $ − $ require a Lorentz description of a spin- 2 particles to be a proper representation of parity, we must include both χL and χR in one spinor (note that for massive particles the transformation p p $ − can be achieved by a Lorentz boost). -
Helicity of the Neutrino Determination of the Nature of Weak Interaction
GENERAL ¨ ARTICLE Helicity of the Neutrino Determination of the Nature of Weak Interaction Amit Roy Measurement of the helicity of the neutrino was crucial in identifying the nature of weak interac- tion. The measurement is an example of great ingenuity in choosing, (i) the right nucleus with a specific type of decay, (ii) the technique of res- onant fluorescence scattering for determining di- rection of neutrino and (iii) transmission through Amit Roy is currently at magnetised iron for measuring polarisation of γ- the Variable Energy rays. Cyclotron Centre after working at Tata Institute In the field of art and sculpture, we sometimes come of Fundamental Research across a piece of work of rare beauty, which arrests our and Inter-University attention as soon as we focus our gaze on it. The ex- Accelerator Centre. His research interests are in periment on the determination of helicity of the neutrino nuclear, atomic and falls in a similar category among experiments in the field accelerator physics. of modern physics. The experiments on the discovery of parity violation in 1957 [1] had established that the vi- olation parity was maximal in beta decay and that the polarisation of the emitted electron was 100%. This im- plies that its helicity was −1. The helicity of a particle is a measure of the angle (co- sine) between the spin direction of the particle and its momentum direction. H = σ.p,whereσ and p are unit vectors in the direction of the spin and the momentum, respectively. The spin direction of a particle of posi- tive helicity is parallel to its momentum direction, and for that of negative helicity, the directions are opposite (Box 1). -
Title: Parity Non-Conservation in Β-Decay of Nuclei: Revisiting Experiment and Theory Fifty Years After
Title: Parity non-conservation in β-decay of nuclei: revisiting experiment and theory fifty years after. IV. Parity breaking models. Author: Mladen Georgiev (ISSP, Bulg. Acad. Sci., Sofia) Comments: some 26 pdf pages with 4 figures. In memoriam: Prof. R.G. Zaykoff Subj-class: physics This final part offers a survey of models proposed to cope with the symmetry-breaking challenge. Among them are the two-component neutrinos, the neutrino twins, the universal Fermi interaction, etc. Moreover, the broken discrete symmetries in physics are very much on the agenda and may occupy considerable time for LHC experiments aimed at revealing the symmetry-breaking mechanisms. Finally, an account of the achievements of dual-component theories in explaining parity-breaking phenomena is added. 7. Two-component neutrino In the previous parts I through III of the paper we described the theoretical background as well as the bulk experimental evidence that discrete group symmetries break up in weak interactions, such as the β−decay. This last part IV will be devoted to the theoretical models designed to cope with the parity-breaking challenge. The quality of the proposed theories and the accuracy of the experiments made to check them underline the place occupied by papers such as ours in the dissemination of symmetry-related matter of modern science. 7.1. Neutrino gauge In the general form of β-interaction (5.6) the case Ck' = ±Ck (7.1) is of particular interest. It corresponds to interchanging the neutrino wave function in the parity-conserving Hamiltonian ( Ck' = 0 ) with the function ψν' = (! ± γs )ψν (7.2) In as much as parity is not conserved with this transformation, it is natural to put the blame on the neutrino. -
MHPAEA-Faqs-Part-45.Pdf
CCIIO OG MWRD 1295 FAQS ABOUT MENTAL HEALTH AND SUBSTANCE USE DISORDER PARITY IMPLEMENTATION AND THE CONSOLIDATED APPROPRIATIONS ACT, 2021 PART 45 April 2, 2021 The Consolidated Appropriations Act, 2021 (the Appropriations Act) amended the Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA) to provide important new protections. The Departments of Labor (DOL), Health and Human Services (HHS), and the Treasury (collectively, “the Departments”) have jointly prepared this document to help stakeholders understand these amendments. Previously issued Frequently Asked Questions (FAQs) related to MHPAEA are available at https://www.dol.gov/agencies/ebsa/laws-and- regulations/laws/mental-health-and-substance-use-disorder-parity and https://www.cms.gov/cciio/resources/fact-sheets-and-faqs#Mental_Health_Parity. Mental Health Parity and Addiction Equity Act of 2008 MHPAEA generally provides that financial requirements (such as coinsurance and copays) and treatment limitations (such as visit limits) imposed on mental health or substance use disorder (MH/SUD) benefits cannot be more restrictive than the predominant financial requirements and treatment limitations that apply to substantially all medical/surgical benefits in a classification.1 In addition, MHPAEA prohibits separate treatment limitations that apply only to MH/SUD benefits. MHPAEA also imposes several important disclosure requirements on group health plans and health insurance issuers. The MHPAEA final regulations require that a group health plan or health insurance issuer may -
Relativistic Quantum Mechanics 1
Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4). -
1. Dirac Equation for Spin ½ Particles 2
Advanced Particle Physics: III. QED III. QED for “pedestrians” 1. Dirac equation for spin ½ particles 2. Quantum-Electrodynamics and Feynman rules 3. Fermion-fermion scattering 4. Higher orders Literature: F. Halzen, A.D. Martin, “Quarks and Leptons” O. Nachtmann, “Elementarteilchenphysik” 1. Dirac Equation for spin ½ particles ∂ Idea: Linear ansatz to obtain E → i a relativistic wave equation w/ “ E = p + m ” ∂t r linear time derivatives (remove pr = −i ∇ negative energy solutions). Eψ = (αr ⋅ pr + β ⋅ m)ψ ∂ ⎛ ∂ ∂ ∂ ⎞ ⎜ ⎟ i ψ = −i⎜α1 ψ +α2 ψ +α3 ψ ⎟ + β mψ ∂t ⎝ ∂x1 ∂x2 ∂x3 ⎠ Solutions should also satisfy the relativistic energy momentum relation: E 2ψ = (pr 2 + m2 )ψ (Klein-Gordon Eq.) U. Uwer 1 Advanced Particle Physics: III. QED This is only the case if coefficients fulfill the relations: αiα j + α jαi = 2δij αi β + βα j = 0 β 2 = 1 Cannot be satisfied by scalar coefficients: Dirac proposed αi and β being 4×4 matrices working on 4 dim. vectors: ⎛ 0 σ ⎞ ⎛ 1 0 ⎞ σ are Pauli α = ⎜ i ⎟ and β = ⎜ ⎟ i 4×4 martices: i ⎜ ⎟ ⎜ ⎟ matrices ⎝σ i 0 ⎠ ⎝0 − 1⎠ ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ ⎟ ψ = 2 ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ ⎛ ∂ r ⎞ i⎜ β ψ + βαr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ ⎛ 0 ∂ r ⎞ i⎜γ ψ + γr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ 0 i where γ = β and γ = βα i , i = 1,2,3 Dirac Equation: µ i γ ∂µψ − mψ = 0 ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ 2 ⎟ Solutions ψ describe spin ½ (anti) particles: ψ = ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ Extremely 4 ⎛ µ ∂ ⎞ compressed j = 1...4 : ∑ ⎜∑ i ⋅ (γ ) jk µ − mδ jk ⎟ψ k description k =1⎝ µ ∂x ⎠ U.