1. Dirac Equation for Spin ½ Particles 2

Total Page:16

File Type:pdf, Size:1020Kb

1. Dirac Equation for Spin ½ Particles 2 Advanced Particle Physics: III. QED III. QED for “pedestrians” 1. Dirac equation for spin ½ particles 2. Quantum-Electrodynamics and Feynman rules 3. Fermion-fermion scattering 4. Higher orders Literature: F. Halzen, A.D. Martin, “Quarks and Leptons” O. Nachtmann, “Elementarteilchenphysik” 1. Dirac Equation for spin ½ particles ∂ Idea: Linear ansatz to obtain E → i a relativistic wave equation w/ “ E = p + m ” ∂t r linear time derivatives (remove pr = −i ∇ negative energy solutions). Eψ = (αr ⋅ pr + β ⋅ m)ψ ∂ ⎛ ∂ ∂ ∂ ⎞ ⎜ ⎟ i ψ = −i⎜α1 ψ +α2 ψ +α3 ψ ⎟ + β mψ ∂t ⎝ ∂x1 ∂x2 ∂x3 ⎠ Solutions should also satisfy the relativistic energy momentum relation: E 2ψ = (pr 2 + m2 )ψ (Klein-Gordon Eq.) U. Uwer 1 Advanced Particle Physics: III. QED This is only the case if coefficients fulfill the relations: αiα j + α jαi = 2δij αi β + βα j = 0 β 2 = 1 Cannot be satisfied by scalar coefficients: Dirac proposed αi and β being 4×4 matrices working on 4 dim. vectors: ⎛ 0 σ ⎞ ⎛ 1 0 ⎞ σ are Pauli α = ⎜ i ⎟ and β = ⎜ ⎟ i 4×4 martices: i ⎜ ⎟ ⎜ ⎟ matrices ⎝σ i 0 ⎠ ⎝0 − 1⎠ ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ ⎟ ψ = 2 ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ ⎛ ∂ r ⎞ i⎜ β ψ + βαr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ ⎛ 0 ∂ r ⎞ i⎜γ ψ + γr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ 0 i where γ = β and γ = βα i , i = 1,2,3 Dirac Equation: µ i γ ∂µψ − mψ = 0 ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ 2 ⎟ Solutions ψ describe spin ½ (anti) particles: ψ = ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ Extremely 4 ⎛ µ ∂ ⎞ compressed j = 1...4 : ∑ ⎜∑ i ⋅ (γ ) jk µ − mδ jk ⎟ψ k description k =1⎝ µ ∂x ⎠ U. Uwer 2 Advanced Particle Physics: III. QED 1.1 γ Matrices 0 1 0 0 σ γ = β 0 ⎛ ⎞ i ⎛ i ⎞ γ = ⎜ ⎟ γ = ⎜ ⎟ , i = 1...3 i ⎝0 − 1⎠ ⎝− σ i 0 ⎠ γ = βα i , i = 1,2,3 5 0 1 2 2 3 γ = iγ γ γ γ γ 5 ⎛0 1⎞ γ = ⎜ ⎟ ⎝1 0⎠ Rules γ µγ ν + γ νγ µ = 2g µν (γ µ )+ = γ 0γ µγ 0, (γ 0 )+ = γ 0, (γ k )+ = −γ k , k = 1..3 γ 0γ 0 = I, γ kγ k = −I , k = 1..3 γ 0γ k = −γ kγ 0 γ 5γ µ + γ µγ 5 = 0 , (γ 5 )+ = γ 5 1.2 Adjoint Equation (hermitian conjugated form) ⎛ 0 ∂ r ⎞ Dirac eq. : i⎜γ ψ + γr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ hermitian conjugate + ⎛ ∂ + 0 r + ⎞ + (Dirac eq) : i⎜ ψ γ + ∇ ⋅ψ (−γr)⎟ + m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ Introducing the adjoint spinorψ =ψ +γ 0 allows to write the hermitian conjugate of the Dirac-Eq. in the covariant form: µ (i∂µγ + m)ψ = 0 → can be used to derive a continuity equation for a 4-vector current U. Uwer 3 Advanced Particle Physics: III. QED 1.3 Fermion currents and continuity equation Define fermion current here : j µ = (ψγ µψ ) ρ = j 0 =ψγ 0ψ =ψ +γ 0γ 0ψ µ µ + ψγ ∂ µψ + (∂ µψ )γ ψ = 0 =ψ ψ > 0 µ ⇒ ∂ µ (ψγ ψ ) = 0 Instead of the probability current the charge current is often used: µ µ Electron current: je = (−e) ⋅(ψγ ψ ) µ µ Boson current: j = (−e) ⋅ 2p (reminder: Kl-G-Eq) 1.4 Free particle solutions for Dirac Eq. µ i γ ∂µψ − mψ = 0 Ansatz: 2 2 ψ (x) = u(p) ⋅ exp(mipx) for E = ± p + m ⎛ϕ(p)⎞ 4-comp. spinor: u(p) = ⎜ ⎟ and ϕ,χ 2 - comp. spinors ⎝ χ(p)⎠ µ µ ⎛ϕ ⎞ (i γ ∂µ − m)ψ (x) = (±γ pµ − m)⎜ ⎟exp(mipx) = 0 ⎝ χ ⎠ r r µ 0 r r ⎛ I 0⎞ ⎛ 0 σ p⎞ γ pµ = γ p0 − γ p = E ⎜ ⎟ − ⎜ r r ⎟ ⎝0 I ⎠ ⎝− σ p 0 ⎠ U. Uwer 4 Advanced Particle Physics: III. QED One obtains two coupled equations for the spinors ϕ and χ: r r (E m m)ϕ − (σ p)χ = 0 (∗) (E ± m)χ − (σr pr)ϕ = 0 (∗∗) 2 2 Solutions for positive energy: E = + p + m (upper sign) In this case E+m ≥ 2m, while (E-m)→0 for non relativistic case ⇒ use eq. (∗∗) r r σ p r ⎛ pz px − ipy ⎞ χ = ϕ with σr p = ⎜ ⎟ E + m ⎜ ⎟ ⎝ px + ipy − pz ⎠ ⎛ 1⎞ ⎛0⎞ The spinor ϕ can be freely selected: ϕ1 = N⋅ ⎜ ⎟ and ϕ2 = N⋅ ⎜ ⎟ ⎝0⎠ ⎝ 1⎠ (σr pr)2 pr 2 Eq. (∗) is automatically fulfilled: (σr pr)χ = ϕ = ϕ = (E − m)ϕ E + m E + m Solutions for positive energy: E = + p2 + m2 solution spin ↑ ⎛ 1 ⎞ solution spin ↓ ⎛ 0 ⎞ ⎜ ⎟ ⎜ ⎟ ⎛ ϕ ⎞ ⎜ 0 ⎟ ⎛ ϕ ⎞ ⎜ 1 ⎟ ⎜ 1 ⎟ p ⎜ 2 ⎟ p − ip u (p) = N ⋅ σr ⋅ pr = N ⋅ ⎜ z ⎟ u (p) = N ⋅ σr ⋅ pr = N ⋅ ⎜ x y ⎟ 1 ⎜ ⎟ ⎜ ⎟ 2 ⎜ ⎟ ⎜ ⎟ ⎜ ϕ1 ⎟ E + m ⎜ ϕ2 ⎟ E + m ⎝ E + m ⎠ ⎜ p + ip ⎟ ⎝ E + m ⎠ ⎜ − p ⎟ ⎜ x y ⎟ ⎜ z ⎟ ⎝ E + m ⎠ ⎝ E + m ⎠ N = E + m (norm.) u +u = 2E U. Uwer 5 Advanced Particle Physics: III. QED 1.5 Spin and helicity •u1 and u2 are both solutions to the same energy value • operator to distinguish the 2 solutions: σr ⋅ pr ⎛ ⎞ r r r ⎜ r 0 ⎟ ⎡Σ ⋅ pr ⎤ 1 Σ ⋅ p 1 ⎜ p ⎟ ⎢ ,H⎥ = 0 Helicity r = r r r 2 p 2 ⎜ σ ⋅ p ⎟ ⎣⎢ p ⎦⎥ 0 r r ⎜ r ⎟ ⎛ m σ ⋅ p⎞ p H = ⎜ r r ⎟ ⎝ ⎠ ⎝σ ⋅ p m ⎠ r 1 Σ ⋅ pr •u1 and u2 are eigenstates of with eigenvalues ±½ 2 pr ⎛1⎞ ⎛ 0 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜0⎟ ⎜ 1 ⎟ •u and u for highly relativistic particles u = E ⋅ and u = E ⋅ 1 2 1 ⎜1⎟ 2 ⎜ 0 ⎟ ⎜ ⎟ ⎜ ⎟ E ≈ pz ⎜ ⎟ ⎜ ⎟ ⎝0⎠ ⎝− 1⎠ px, py ≈ 0 U. Uwer 6.
Recommended publications
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • What Is the Dirac Equation?
    What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c .
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • The Critical Casimir Effect in Model Physical Systems
    University of California Los Angeles The Critical Casimir Effect in Model Physical Systems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Jonathan Ariel Bergknoff 2012 ⃝c Copyright by Jonathan Ariel Bergknoff 2012 Abstract of the Dissertation The Critical Casimir Effect in Model Physical Systems by Jonathan Ariel Bergknoff Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Joseph Rudnick, Chair The Casimir effect is an interaction between the boundaries of a finite system when fluctua- tions in that system correlate on length scales comparable to the system size. In particular, the critical Casimir effect is that which arises from the long-ranged thermal fluctuation of the order parameter in a system near criticality. Recent experiments on the Casimir force in binary liquids near critical points and 4He near the superfluid transition have redoubled theoretical interest in the topic. It is an unfortunate fact that exact models of the experi- mental systems are mathematically intractable in general. However, there is often insight to be gained by studying approximations and toy models, or doing numerical computations. In this work, we present a brief motivation and overview of the field, followed by explications of the O(2) model with twisted boundary conditions and the O(n ! 1) model with free boundary conditions. New results, both analytical and numerical, are presented. ii The dissertation of Jonathan Ariel Bergknoff is approved. Giovanni Zocchi Alex Levine Lincoln Chayes Joseph Rudnick, Committee Chair University of California, Los Angeles 2012 iii To my parents, Hugh and Esther Bergknoff iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 1.1 The Casimir Effect .
    [Show full text]
  • 13 the Dirac Equation
    13 The Dirac Equation A two-component spinor a χ = b transforms under rotations as iθn J χ e− · χ; ! with the angular momentum operators, Ji given by: 1 Ji = σi; 2 where σ are the Pauli matrices, n is the unit vector along the axis of rotation and θ is the angle of rotation. For a relativistic description we must also describe Lorentz boosts generated by the operators Ki. Together Ji and Ki form the algebra (set of commutation relations) Ki;Kj = iεi jkJk − ε Ji;Kj = i i jkKk ε Ji;Jj = i i jkJk 1 For a spin- 2 particle Ki are represented as i Ki = σi; 2 giving us two inequivalent representations. 1 χ Starting with a spin- 2 particle at rest, described by a spinor (0), we can boost to give two possible spinors α=2n σ χR(p) = e · χ(0) = (cosh(α=2) + n σsinh(α=2))χ(0) · or α=2n σ χL(p) = e− · χ(0) = (cosh(α=2) n σsinh(α=2))χ(0) − · where p sinh(α) = j j m and Ep cosh(α) = m so that (Ep + m + σ p) χR(p) = · χ(0) 2m(Ep + m) σ (pEp + m p) χL(p) = − · χ(0) 2m(Ep + m) p 57 Under the parity operator the three-moment is reversed p p so that χL χR. Therefore if we 1 $ − $ require a Lorentz description of a spin- 2 particles to be a proper representation of parity, we must include both χL and χR in one spinor (note that for massive particles the transformation p p $ − can be achieved by a Lorentz boost).
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • A Peek Into Spin Physics
    A Peek into Spin Physics Dustin Keller University of Virginia Colloquium at Kent State Physics Outline ● What is Spin Physics ● How Do we Use It ● An Example Physics ● Instrumentation What is Spin Physics The Physics of exploiting spin - Spin in nuclear reactions - Nucleon helicity structure - 3D Structure of nucleons - Fundamental symmetries - Spin probes in beyond SM - Polarized Beams and Targets,... What is Spin Physics What is Spin Physics ● The Physics of exploiting spin : By using Polarized Observables Spin: The intrinsic form of angular momentum carried by elementary particles, composite particles, and atomic nuclei. The Spin quantum number is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. What is Spin Physics What Quantum Numbers? What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize These numbers describe values of conserved quantities in the dynamics of a quantum system What is Spin Physics But a particle is not a sphere and spin is solely a quantum-mechanical phenomena What is Spin Physics Stern-Gerlach: If spin had continuous values like the classical picture we would see it What is Spin Physics Stern-Gerlach: Instead we see spin has only two values in the field with opposite directions: or spin-up and spin-down What is Spin Physics W. Pauli (1925)
    [Show full text]
  • On the Schott Term in the Lorentz-Abraham-Dirac Equation
    Article On the Schott Term in the Lorentz-Abraham-Dirac Equation Tatsufumi Nakamura Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan; t-nakamura@fit.ac.jp Received: 06 August 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: The equation of motion for a radiating charged particle is known as the Lorentz–Abraham–Dirac (LAD) equation. The radiation reaction force in the LAD equation contains a third time-derivative term, called the Schott term, which leads to a runaway solution and a pre-acceleration solution. Since the Schott energy is the field energy confined to an area close to the particle and reversibly exchanged between particle and fields, the question of how it affects particle motion is of interest. In here we have obtained solutions for the LAD equation with and without the Schott term, and have compared them quantitatively. We have shown that the relative difference between the two solutions is quite small in the classical radiation reaction dominated regime. Keywords: radiation reaction; Loretnz–Abraham–Dirac equation; schott term 1. Introduction The laser’s focused intensity has been increasing since its invention, and is going to reach 1024 W/cm2 and beyond in the very near future [1]. These intense fields open up new research in high energy-density physics, and researchers are searching for laser-driven quantum beams with unique features [2–4]. One of the important issues in the interactions of these intense fields with matter is the radiation reaction, which is a back reaction of the radiation emission on the charged particle which emits a form of radiation.
    [Show full text]
  • 2 Quantum Theory of Spin Waves
    2 Quantum Theory of Spin Waves In Chapter 1, we discussed the angular momenta and magnetic moments of individual atoms and ions. When these atoms or ions are constituents of a solid, it is important to take into consideration the ways in which the angular momenta on different sites interact with one another. For simplicity, we will restrict our attention to the case when the angular momentum on each site is entirely due to spin. The elementary excitations of coupled spin systems in solids are called spin waves. In this chapter, we will introduce the quantum theory of these excita- tions at low temperatures. The two primary interaction mechanisms for spins are magnetic dipole–dipole coupling and a mechanism of quantum mechanical origin referred to as the exchange interaction. The dipolar interactions are of importance when the spin wavelength is very long compared to the spacing between spins, and the exchange interaction dominates when the spacing be- tween spins becomes significant on the scale of a wavelength. In this chapter, we focus on exchange-dominated spin waves, while dipolar spin waves are the primary topic of subsequent chapters. We begin this chapter with a quantum mechanical treatment of a sin- gle electron in a uniform field and follow it with the derivations of Zeeman energy and Larmor precession. We then consider one of the simplest exchange- coupled spin systems, molecular hydrogen. Exchange plays a crucial role in the existence of ordered spin systems. The ground state of H2 is a two-electron exchange-coupled system in an embryonic antiferromagnetic state.
    [Show full text]