Measurement in the De Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran

Total Page:16

File Type:pdf, Size:1020Kb

Measurement in the De Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran To cite this version: Michel Gondran, Alexandre Gondran. Measurement in the de Broglie-Bohm interpretation: Double- slit, Stern-Gerlach and EPR-B. Physics Research International, Hindawi, 2014, 2014. hal-00862895v3 HAL Id: hal-00862895 https://hal.archives-ouvertes.fr/hal-00862895v3 Submitted on 24 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran University Paris Dauphine, Lamsade, 75 016 Paris, France∗ Alexandre Gondran École Nationale de l’Aviation Civile, 31000 Toulouse, Francey We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B. First, we demonstrate the conditions in which the de Broglie-Bohm interpretation can be assumed to be valid through continuity with classical mechanics. Second, we present a numerical simulation of the double-slit experiment performed by Jönsson in 1961 with electrons. It demonstrates the continuity between classical mechanics and quantum mechanics: evolution of the probability density at various distances and convergence of the quantum trajectories to the classical trajectories when h tends to 0. Third, we present an analytic expression of the wave function in the Stern-Gerlach experiment. This explicit solution requires the calculation of a Pauli spinor with a spatial extension. This solution enables to demonstrate the decoherence of the wave function and the three postulates of quantum measurement: quantization, the Born interpretation and wave function reduction. The spinor spatial extension also enables the introduction of the de Broglie-Bohm trajectories, which gives a very simple explanation of the particles’ impact and of the measurement process. Finally, we study the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen ex- periment. Its theoretical resolution in space and time shows that a causal interpretation exists where each atom has a position and a spin. This interpretation avoids the flaw of the previous causal interpretation. We recall that a physical explanation of non-local influences is possible. I. INTRODUCTION question "how reality really is."4 And in 1987, Bell wonders about his teachers’ silence "I saw the impossible done".1 This is how John Bell concerning the Broglie-Bohm pilot-wave: describes his inexpressible surprise in 1952 upon the pub- "But why then had Born not told me of this ’pilot lication of an article by David Bohm2. The impossibility wave’? If only to point out what was wrong with it? Why came from a theorem by John von Neumann outlined in did von Neumann not consider it? More extraordinarily, 1932 in his book The Mathematical Foundations of Quan- why did people go on producing "impossibility" proofs af- tum Mechanics,3 which seemed to show the impossibil- ter 1952, and as recently as 1978? While even Pauli, ity of adding "hidden variables" to quantum mechanics. Rosenfeld, and Heisenberg could produce no more devas- This impossibility, with its physical interpretation, be- tating criticism of Bohm’s version than to brand it as came almost a postulate of quantum mechanics, based "metaphysical" and "ideological"? Why is the pilot-wave on von Neumann’s indisputable authority as a mathe- picture ignored in text books? Should it not be taught, matician. As Bernard d’Espagnat notes in 1979: not as the only way, but as an antidote to the prevailing "At the university, Bell had, like all of us, received complacency? To show that vagueness, subjectivity and indeterminism are not forced on us by experimental facts, from his teachers a message which, later still, Feynman 5 would brilliantly state as follows: "No one can explain but through a deliberate theoretical choice?" more than we have explained here [...]. We don’t have More than thirty years after John Bell’s questions, the the slightest idea of a more fundamental mechanism from interpretation of the de Broglie-Bohm pilot wave is still which the former results (the interference fringes) could ignored by both the international community and the follow". If indeed we are to believe Feynman (and Banesh textbooks. Hoffman, and many others, who expressed the same idea What is this pilot wave theory? For de Broglie, a quan- in many books, both popular and scholarly), Bohm’s the- tum particle is not only defined by its wave function. He ory cannot exist. Yet it does exist, and is even older than assumes that the quantum particle also has a position Bohm’s papers themselves. In fact, the basic idea behind which is piloted by the wave function.6 However only the it was formulated in 1927 by Louis de Broglie in a model probability density of this position is known. The posi- he called "pilot wave theory". Since this theory provides tion exists in itself (ontologically) but is unknown to the explanations of what, in "high circles", is declared in- observer. It only becomes known during the measure- explicable, it is worth consideration, even by physicists ment. [...] who do not think it gives us the final answer to the The goal of the present paper is to present the Broglie- 2 Bohm pilot-wave through the study of the three most @ρ~(x; t) rS~(x; t) + div ρ~(x; t) = 0 (4) important experiments of quantum measurement: the @t m double-slit experiment which is the crucial experiment of the wave-particle duality, the Stern and Gerlach experi- with initial conditions: ment with the measurement of the spin, and the EPR-B ~ ~ ~ ~ experiment with the problem of non-locality. ρ (x; 0) = ρ0 (x) and S (x; 0) = S0 (x): (5) The paper is organized as follows. In section II, we demonstrate the conditions in which the de Broglie-Bohm Madelung equations correspond to a set of non- interpretation can be assumed to be valid through con- interacting quantum particles all prepared in the same ~ ~ tinuity with classical mechanics. This involves the de way (same ρ0 (x) and S0 (x)). Broglie-Bohm interpretation for a set of particles pre- A quantum particle is said to be statistically prepared ~ pared in the same way. In section III, we present a if its initial probability density ρ0 (x) and its initial action ~ numerical simulation of the double-slit experiment per- S0 (x) converge, when ~ ! 0, to non-singular functions formed by Jönsson in 1961 with electrons15. The method ρ0(x) and S0(x). It is the case of an electronic or C60 of Feynman path integrals allows to calculate the time- beam in the double slit experiment or an atomic beam in dependent wave function. The evolution of the proba- the Stern and Gerlach experiment. We will seen that it bility density just outside the slits leads one to consider is also the case of a beam of entrangled particles in the EPR-B experiment. Then, we have the following theo- the dualism of the wave-particle interpretation. And the 8,9 de Broglie-Bohm trajectories provide an explanation for rem: the impact positions of the particles. Finally, we show For statistically prepared quantum particles, the proba- the continuity between classical and quantum trajecto- bility density ρ~(x; t) and the action S~(x; t), solutions to ries with the convergence of these trajectories to classi- the Madelung equations (3)(4)(5), converge, when ~ ! 0, cal trajectories when h tends to 0. In section IV, we to the classical density ρ(x; t) and the classical action present an analytic expression of the wave function in S(x; t), solutions to the statistical Hamilton-Jacobi equa- the Stern-Gerlach experiment. This explicit solution re- tions: quires the calculation of a Pauli spinor with a spatial @S (x; t) 1 + (rS(x; t))2 + V (x; t) = 0 (6) extension. This solution enables to demonstrate the de- @t 2m coherence of the wave function and the three postulates S(x; 0) = S0(x) (7) of quantum measurement: quantization, Born interpre- @ρ (x; t) rS (x; t) tation and wave function reduction. The spinor spatial + div ρ (x; t) = 0 (8) extension also enables the introduction of the de Broglie- @t m Bohm trajectories which gives a very simple explanation ρ(x; 0) = ρ0(x): (9) of the particles’ impact and of the measurement pro- cess. In section V, we study the EPR-B experiment, We give some indications on the demonstration of this the Bohm version of the Einstein-Podolsky-Rosen exper- theorem when the wave function Ψ(x; t) is written as a iment. Its theoretical resolution in space and time shows function of the initial wave function Ψ0(x) by the Feyn- 10 that a causal interpretation exists where each atom has man paths integral : a position and a spin. Finally, we recall that a physical Z i explanation of non-local influences is possible. Ψ(x; t) = F (t; ~) exp Scl(x; t; x0 Ψ0(x0)dx0 ~ (10) II. THE DE BROGLIE-BOHM where F (t; ~) is an independent function of x INTERPRETATION and of x0.
Recommended publications
  • Lecture 32 Relevant Sections in Text: §3.7, 3.9 Total Angular Momentum
    Physics 6210/Spring 2008/Lecture 32 Lecture 32 Relevant sections in text: x3.7, 3.9 Total Angular Momentum Eigenvectors How are the total angular momentum eigenvectors related to the original product eigenvectors (eigenvectors of Lz and Sz)? We will sketch the construction and give the results. Keep in mind that the general theory of angular momentum tells us that, for a 1 given l, there are only two values for j, namely, j = l ± 2. Begin with the eigenvectors of total angular momentum with the maximum value of angular momentum: 1 1 1 jj = l; j = ; j = l + ; m = l + i: 1 2 2 2 j 2 Given j1 and j2, there is only one linearly independent eigenvector which has the appro- priate eigenvalue for Jz, namely 1 1 jj = l; j = ; m = l; m = i; 1 2 2 1 2 2 so we have 1 1 1 1 1 jj = l; j = ; j = l + ; m = l + i = jj = l; j = ; m = l; m = i: 1 2 2 2 2 1 2 2 1 2 2 To get the eigenvectors with lower eigenvalues of Jz we can apply the ladder operator J− = L− + S− to this ket and normalize it. In this way we get expressions for all the kets 1 1 1 1 1 jj = l; j = 1=2; j = l + ; m i; m = −l − ; −l + ; : : : ; l − ; l + : 1 2 2 j j 2 2 2 2 The details can be found in the text. 1 1 Next, we consider j = l − 2 for which the maximum mj value is mj = l − 2.
    [Show full text]
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • Macroscopic Oil Droplets Mimicking Quantum Behavior: How Far Can We Push an Analogy?
    Macroscopic oil droplets mimicking quantum behavior: How far can we push an analogy? Louis Vervoort1, Yves Gingras2 1Institut National de Recherche Scientifique (INRS), and 1Minkowski Institute, Montreal, Canada 2Université du Québec à Montréal, Montreal, Canada 29.04.2015, revised 20.10.2015 Abstract. We describe here a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid-mechanical equations (the Navier-Stokes equation and the continuity equation), we discuss the relation with the de Broglie-Bohm theory. This allows to make a direct link with the droplet experiments. It is argued that the fluid-mechanical interpretation of quantum mechanics, if it can be extended to the general N-particle case, would have an advantage over the Bohm interpretation: it could rid Bohm’s theory of its strongly non-local character. 1. Introduction Historically analogies have played an important role in understanding or deriving new scientific results. They are generally employed to make a new phenomenon easier to understand by comparing it to a better known one. Since the beginning of modern science different kinds of analogies have been used in physics as well as in natural history and biology (for a recent historical study, see Gingras and Guay 2011). With the growing mathematization of physics, mathematical (or formal) analogies have become more frequent as a tool for understanding new phenomena; but also for proposing new interpretations and theories for such new discoveries.
    [Show full text]
  • Foundations of Quantum Mechanics (ACM30210) Set 3
    Foundations of Quantum Mechanics (ACM30210) Set 3 Dr Lennon O´ N´araigh 20th February 2020 Instructions: This is a graded assignment. • Put your name and student number on your homework. • The assignment is to be handed in on Monday March 9th before 13:00. • Hand in your assignment by putting it into the homework box marked ‘ACM 30210’ • outside the school office (G03, Science North). Model answers will be made available online in due course. • For environmental reasons, please do not place your homework in a ‘polly pocket’ • – use a staple instead. Preliminaries In these exercises, let ψ(x, t) be the wavefunction of for a single-particle system satisfying Schr¨odinger’s equation, ∂ψ ~2 i~ = 2 + U(x) ψ, (1) ∂t −2m∇ where all the symbols have their usual meaning. 1 Quantum Mechanics Madelung Transformations 1. Write ψ in ‘polar-coordinate form’, ψ(x, t) = R(x, t)eiθ(x,t), where R and θ are both functions of space and time. Show that: ∂R ~ + R2 θ =0. (2) ∂t 2mR∇· ∇ Hint: Use the ‘conservation law of probability’ in Chapter 9 of the lecture notes. 2. Define 2 R = ρm/m mR = ρm, (3a) ⇐⇒ and: p 1 θ = S/~ S = θ~, u = S. (3b) ⇐⇒ m∇ Show that Equation (4) can be re-written as: ∂ρm + (uρm)=0. (4) ∂t ∇· 3. Again using the representation ψ = Reiθ, show that S = θ~ satisfies the Quantum Hamilton–Jacobi equation: ∂S 1 ~2 2R + S 2 + U = ∇ . (5) ∂t 2m|∇ | 2m R 4. Starting with Equation (5), deduce: ∂u 1 + u u = UQ, (6) ∂t ·∇ −m∇ where UQ is the Quantum Potential, 2 2 ~ √ρm UQ = U ∇ .
    [Show full text]
  • Gaussian Wave Packets
    The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the {|x i} and {|p i} basis representations are simple analytic functions and for which the time evolution in either representation can be calculated in closed analytic form. It thus serves as an excellent example to get some intuition about the Schr¨odinger equation. We define the {|x i} representation of the initial state to be 2 „ «1/4 − x 1 i p x 2 ψ (x, t = 0) = hx |ψ(0) i = e 0 e 4 σx (5.10) x 2 ~ 2 π σx √ The relation between our σx and Shankar’s ∆x is ∆x = σx 2. As we shall see, we 2 2 choose to write in terms of σx because h(∆X ) i = σx . Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 292 The Free Particle (cont.) Before doing the time evolution, let’s better understand the initial state. First, the symmetry of hx |ψ(0) i in x implies hX it=0 = 0, as follows: Z ∞ hX it=0 = hψ(0) |X |ψ(0) i = dx hψ(0) |X |x ihx |ψ(0) i −∞ Z ∞ = dx hψ(0) |x i x hx |ψ(0) i −∞ Z ∞ „ «1/2 x2 1 − 2 = dx x e 2 σx = 0 (5.11) 2 −∞ 2 π σx because the integrand is odd. 2 Second, we can calculate the initial variance h(∆X ) it=0: 2 Z ∞ „ «1/2 − x 2 2 2 1 2 2 h(∆X ) i = dx `x − hX i ´ e 2 σx = σ (5.12) t=0 t=0 2 x −∞ 2 π σx where we have skipped a few steps that are similar to what we did above for hX it=0 and we did the final step using the Gaussian integral formulae from Shankar and the fact that hX it=0 = 0.
    [Show full text]
  • Lecture 4 – Wave Packets
    LECTURE 4 – WAVE PACKETS 1.2 Comparison between QM and Classical Electrons Classical physics (particle) Quantum mechanics (wave) electron is a point particle electron is wavelike * * motion described by F =ma for energy E, motion described by wavefunction & F = -∇ V (r) * − jωt Ψ()r,t = Ψ ()r e !ω = E * !2 & where V()r − potential energy - ∇2Ψ+V()rΨ=EΨ & 2m typically F due to electric fields from other - differential equation governing Ψ charges & V()r - (potential energy) - this is where the forces acting on the electron are taken into account probability density of finding electron at position & & Ψ()r ⋅ Ψ * ()r 1 p = mv,E = mv2 E = !ω, p = !k 2 & & & We shall now consider "free" electrons : F = 0 ∴ V()r = const. (for simplicity, take V ()r = 0) Lecture 4: Wave Packets September, 2000 1 Wavepackets and localized electrons For free electrons we have to solve Schrodinger equation for V(r) = 0 and previously found: & & * ()⋅ −ω Ψ()r,t = Ce j k r t - travelling plane wave ∴Ψ ⋅ Ψ* = C2 everywhere. We can’t conclude anything about the location of the electron! However, when dealing with real electrons, we usually have some idea where they are located! How can we reconcile this with the Schrodinger equation? Can it be correct? We will try to represent a localized electron as a wave pulse or wavepacket. A pulse (or packet) of probability of the electron existing at a given location. In other words, we need a wave function which is finite in space at a given time (i.e. t=0).
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Galaxy Formation with Ultralight Bosonic Dark Matter
    GALAXY FORMATION WITH ULTRALIGHT BOSONIC DARK MATTER Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universit¨atG¨ottingen im Promotionsstudiengang Physik der Georg-August University School of Science (GAUSS) vorgelegt von Jan Veltmaat aus Bietigheim-Bissingen G¨ottingen,2019 Betreuungsausschuss Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Steffen Schumann, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Mitglieder der Pr¨ufungskommission Referent: Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Korreferent: Prof. Dr. David Marsh, Institut f¨urAstrophysik, Universit¨atG¨ottingen Weitere Mitglieder der Pr¨ufungskommission: Prof. Dr. Fabian Heidrich-Meisner, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Wolfram Kollatschny, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Steffen Schumann, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Dr. Michael Wilczek, Max-Planck-Institut f¨urDynamik und Selbstorganisation, G¨ottingen Tag der m¨undlichen Pr¨ufung:12.12.2019 Abstract Ultralight bosonic particles forming a coherent state are dark matter candidates with distinctive wave-like behaviour on the scale of dwarf galaxies and below. In this thesis, a new simulation technique for ul- tralight bosonic dark matter, also called fuzzy dark matter, is devel- oped and applied in zoom-in simulations of dwarf galaxy halos. When gas and star formation are not included in the simulations, it is found that halos contain solitonic cores in their centers reproducing previous results in the literature. The cores exhibit strong quasi-normal oscil- lations, which are possibly testable by observations. The results are inconclusive regarding the long-term evolution of the core mass.
    [Show full text]
  • The Theory of (Exclusively) Local Beables
    The Theory of (Exclusively) Local Beables Travis Norsen Marlboro College Marlboro, VT 05344 (Dated: June 17, 2010) Abstract It is shown how, starting with the de Broglie - Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot- wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain what is described, in ordinary quantum theory, as “entanglement.” The theory allows some interesting new perspective on the kind of causation involved in pilot-wave theories in general. And it provides also a concrete example of an empirically viable quantum theory in whose formulation the wave function (on configuration space) does not appear – i.e., it is a theory according to which nothing corresponding to the configuration space wave function need actually exist. That is the theory’s raison d’etre and perhaps its only virtue. Its vices include the fact that it only reproduces the empirical predictions of the ordinary pilot-wave theory (equivalent, of course, to the predictions of ordinary quantum theory) for spinless non-relativistic particles, and only then for wave functions that are everywhere analytic. The goal is thus not to recommend the TELB proposed here as a replacement for ordinary pilot-wave theory (or ordinary quantum theory), but is rather to illustrate (with a crude first stab) that it might be possible to construct a plausible, empirically arXiv:0909.4553v3 [quant-ph] 17 Jun 2010 viable TELB, and to recommend this as an interesting and perhaps-fruitful program for future research.
    [Show full text]
  • On the Foundations of Eurhythmic Physics: a Brief Non Technical Survey
    International Journal of Philosophy 2017; 5(6): 50-53 http://www.sciencepublishinggroup.com/j/ijp doi: 10.11648/j.ijp.20170506.11 ISSN: 2330-7439 (Print); ISSN: 2330-7455 (Online) On the Foundations of Eurhythmic Physics: A Brief Non Technical Survey Paulo Castro 1, José Ramalho Croca 1, 2, Rui Moreira 1, Mário Gatta 1, 3 1Center for Philosophy of Sciences of the University of Lisbon (CFCUL), Lisbon, Portugal 2Department of Physics, University of Lisbon, Lisbon, Portugal 3Centro de Investigação Naval (CINAV), Portuguese Naval Academy, Almada, Portugal Email address: To cite this article: Paulo Castro, José Ramalho Croca, Rui Moreira, Mário Gatta. On the Foundations of Eurhythmic Physics: A Brief Non Technical Survey. International Journal of Philosophy . Vol. 5, No. 6, 2017, pp. 50-53. doi: 10.11648/j.ijp.20170506.11 Received : October 9, 2017; Accepted : November 13, 2017; Published : February 3, 2018 Abstract: Eurhythmic Physics is a new approach to describe physical systems, where the concepts of rhythm, synchronization, inter-relational influence and non-linear emergence stand out as major concepts. The theory, still under development, is based on the Principle of Eurhythmy, the assertion that all systems follow, on average, the behaviors that extend their existence, preserving and reinforcing their structural stability. The Principle of Eurhythmy implies that all systems in Nature tend to harmonize or cooperate between themselves in order to persist, giving rise to more complex structures. This paper provides a brief non-technical introduction to the subject. Keywords: Eurhythmic Physics, Principle of Eurhythmy, Non-Linearity, Emergence, Complex Systems, Cooperative Evolution among a wider range of interactions.
    [Show full text]
  • Path Integrals, Matter Waves, and the Double Slit Eric R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Herman Batelaan Publications Research Papers in Physics and Astronomy 2015 Path integrals, matter waves, and the double slit Eric R. Jones University of Nebraska-Lincoln, [email protected] Roger Bach University of Nebraska-Lincoln, [email protected] Herman Batelaan University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/physicsbatelaan Jones, Eric R.; Bach, Roger; and Batelaan, Herman, "Path integrals, matter waves, and the double slit" (2015). Herman Batelaan Publications. 2. http://digitalcommons.unl.edu/physicsbatelaan/2 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Herman Batelaan Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. European Journal of Physics Eur. J. Phys. 36 (2015) 065048 (20pp) doi:10.1088/0143-0807/36/6/065048 Path integrals, matter waves, and the double slit Eric R Jones, Roger A Bach and Herman Batelaan Department of Physics and Astronomy, University of Nebraska–Lincoln, Theodore P. Jorgensen Hall, Lincoln, NE 68588, USA E-mail: [email protected] and [email protected] Received 16 June 2015, revised 8 September 2015 Accepted for publication 11 September 2015 Published 13 October 2015 Abstract Basic explanations of the double slit diffraction phenomenon include a description of waves that emanate from two slits and interfere. The locations of the interference minima and maxima are determined by the phase difference of the waves.
    [Show full text]
  • Singlet NMR Methodology in Two-Spin-1/2 Systems
    Singlet NMR Methodology in Two-Spin-1/2 Systems Giuseppe Pileio School of Chemistry, University of Southampton, SO17 1BJ, UK The author dedicates this work to Prof. Malcolm H. Levitt on the occasion of his 60th birthaday Abstract This paper discusses methodology developed over the past 12 years in order to access and manipulate singlet order in systems comprising two coupled spin- 1/2 nuclei in liquid-state nuclear magnetic resonance. Pulse sequences that are valid for different regimes are discussed, and fully analytical proofs are given using different spin dynamics techniques that include product operator methods, the single transition operator formalism, and average Hamiltonian theory. Methods used to filter singlet order from byproducts of pulse sequences are also listed and discussed analytically. The theoretical maximum amplitudes of the transformations achieved by these techniques are reported, together with the results of numerical simulations performed using custom-built simulation code. Keywords: Singlet States, Singlet Order, Field-Cycling, Singlet-Locking, M2S, SLIC, Singlet Order filtration Contents 1 Introduction 2 2 Nuclear Singlet States and Singlet Order 4 2.1 The spin Hamiltonian and its eigenstates . 4 2.2 Population operators and spin order . 6 2.3 Maximum transformation amplitude . 7 2.4 Spin Hamiltonian in single transition operator formalism . 8 2.5 Relaxation properties of singlet order . 9 2.5.1 Coherent dynamics . 9 2.5.2 Incoherent dynamics . 9 2.5.3 Central relaxation property of singlet order . 10 2.6 Singlet order and magnetic equivalence . 11 3 Methods for manipulating singlet order in spin-1/2 pairs 13 3.1 Field Cycling .
    [Show full text]