Perturbation Theory and Exact Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Perturbation Theory and Exact Solutions PERTURBATION THEORY AND EXACT SOLUTIONS by J J. LODDER R|nhtdnn Report 76~96 DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS J J. LODOER ASSOCIATIE EURATOM-FOM Jun»»76 FOM-INST1TUUT VOOR PLASMAFYSICA RUNHUIZEN - JUTPHAAS - NEDERLAND DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS by JJ LODDER R^nhuizen Report 76-95 Thisworkwat performed at part of th«r«Mvchprogmmncof thcHMCiattofiafrccmentof EnratoniOTd th« Stichting voor FundtmenteelOiutereoek der Matctk" (FOM) wtihnnmcWMppoft from the Nederhmdie Organiutic voor Zuiver Wetemchap- pcigk Onderzoek (ZWO) and Evntom It it abo pabHtfMd w a the* of Ac Univenrty of Utrecht CONTENTS page SUMMARY iii I. INTRODUCTION 1 II. GENERALIZED FUNCTIONS DEFINED ON DISCONTINUOUS TEST FUNC­ TIONS AND THEIR FOURIER, LAPLACE, AND HILBERT TRANSFORMS 1. Introduction 4 2. Discontinuous test functions 5 3. Differentiation 7 4. Powers of x. The partie finie 10 5. Fourier transforms 16 6. Laplace transforms 20 7. Hubert transforms 20 8. Dispersion relations 21 III. PERTURBATION THEORY 1. Introduction 24 2. Arbitrary potential, momentum coupling 24 3. Dissipative equation of motion 31 4. Expectation values 32 5. Matrix elements, transition probabilities 33 6. Harmonic oscillator 36 7. Classical mechanics and quantum corrections 36 8. Discussion of the Pu strength function 38 IV. EXACTLY SOLVABLE MODELS FOR DISSIPATIVE MOTION 1. Introduction 40 2. General quadratic Kami1tonians 41 3. Differential equations 46 4. Classical mechanics and quantum corrections 49 5. Equation of motion for observables 51 V. SPECIAL QUADRATIC HAMILTONIANS 1. Introduction 53 2. Hamiltcnians with coordinate coupling 53 3. Double coordinate coupled Hamiltonians 62 4. Symmetric Hamiltonians 63 i page VI. DISCUSSION 1. Introduction 66 ?. Table of results and discussion 66 3. Discussion of the Pauli equation 68 4. Discussion of the Randan Phase Approximation 69 5. Dissipative equation of notion for arbitrary systems 70 VII. LANGEVIN FORCES AND NYQUIST'S THEOREM 1. Langevin forces 71 2. Transient times 74 3. Nyquist's theorem 74 VIII. THE H-ATOM 76 IX. LITERATURE 81 REFERENCES 83 APPENDICES A. Commutator and trace properties 86 B. Harmonic oscillator, boson operators 87 C. Translation operators 88 D. Coherent states 90 E. Normal ordering, special operators 91 F. Canonical transformations and diffusion 93 G. Phase functions 98 H. Characteristic functions 103 J. Strength functions of the radiation field 105 K. Continuum limit with coordinate coupling 106 L. Continuum limit with symmetrical coupling 111 ACKNOWLEDGEMENTS 117 il SUMMARY The subject of this report is the description of dissipative notion of classical and quantum systems. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divergencies associated with the radiation field are eliminated by the application of a new theory of generalized 1 unctions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equation of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltonian the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically the Pokker-Planck equation is found without any approximations, and quan­ tum mechanically the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no tran­ sient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero- point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Lange­ vin force is exactly 6-correlated, while the quantum Langevin force is not 6-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion. iii CHAPTER X INTRODUCTION The subject of this dissertation is the description of the motion of dissipative systems, both classically and quantua-mechani- cally. in view of the difficulty of this subject, the best-tint could be done was to obtain dissipative equations of notion for a number of simple systems. These examples provide model equations that can be used to introduce damping in more general systems. We use the term "dissipative equation of motion* in a very general sense which in­ cludes all differential equations describing the behaviour in time of a small system coupled to a heat bath after the bath variables have been eliminated from the description. Dissipation is r. subject that deserves study by its own right. A great many problems in plasma physics (e.g. Landau damping, quasi- linear theory, and radiation from a turbulent plasma) involve dissi­ pation. The aim of the present work is to contribute to understanding dissipation in general. The examples that will be solved are chosen to be both manageable and representative of practical problems. The starting point of the present work was the point of view expressed by Harris and others {see chapter IX for references). These authors demonstrated that the usual formulation of quasi-linear theory is mathematically very similar to the time-dependent perturba­ tion theory as used in quantum mechanics. There are a number of dif­ ficulties with this approach. The most obvious difficulty is that it is necessary to derive the classical dispersion relation of the sys­ tem by taking the classical limit of a quantum-mechanical result. Then, the dispersion relation is quantized again and perturbation theory is used to find the damping of the quasi-partides. This procedure of deriving the quasi-linear theory is not straightforward. The objection can be raised that the classical dis­ persion relation should contain the damping of the waves. In the quantization process the damping has to be neglected. It is reintro­ duced by means of perturbation theory. If attempts are made to extend the theory to higher order in the perturbation, the usual difficul­ ties, which are familiar from their appearance in quantum electro- l dynaai.es, occur. All this raises the question how a quantum•mechanical system with damping should be described or how a yjawpuwl classical system should be quantised. in classical mechanics it is usually not difficult to add damping to the description of a conservative system. Friction forces can be added» either directly to the equation of motion» or indirect­ ly» in the form of Rayleigh's dissipation function to the Lagrangian. This procedure cannot be used in quantum mechanics. The reason is that» regardless of the initial state» the damping violates the uncertainty relations if we wait long enough. There axe a number of incorrect ways to circumvent this» using time dependent Hamiltonians» non-Hermitian Hamiltonians» or non-linear Schxödinger equations» which still recur in the literature. A step in the right direction is made by realizing that a dis- sipative equation of motion cannot be factorizable. If it were f ac­ tor izable, then x -• 0 and p + 0 implies fx,p) * 0 and AxAp •* 0» which is a violation of the uncertainty relation. This shows that in quan­ tum mechanics damping and a factorizable evolution are mutually ex­ clusive. This means that a dissipative equation of motion is neces­ sarily an equation for the density operator of the system. Even if the density operator is a product of the form {$><?[ at one instant in time» it will not be of this form at other times. A SchrOdinger equation or any other equation for the wave function of a dissipative system is impossible. When this point has been understood, it is simple to write dis­ sipative equations of motion for the density operator of a spin or a harmonic oscillator with given phenomenological damping coefficients. For instance the Bloch equations for a spin can be produced in this way. It is simple to write these equations in a representation-free way. This leads to the question of the validity of these phenomeno- logical equations of motion» which amounts to the question: Is there a microscopic model which will produce a given macroscopic damping? At this point we come into contact with the large body of theory developed in the past twenty years to describe spin-resonance experiments or lasers. In this field many authors (see chapter IX) derived dissipative equations of motion, using perturbation theory. On the other hand, exactly solvable models for Brownian motion were developed by Ullersma and others, fie will combine these developments. The present exposition is a generalization with respect to Ullersma. More general Hamiltonians are considered and the off-diago­ nal elements of the density operator are investigated. The exact solv­ ability is an improvement on the perturbation theory. On the other 2 hand* the perturbation theory is applicable to more general systems. The different derivations of the same final results sake it possible to compare perturbation theory with exact solutions, this can be used to demonstrate the validity of the approximations that have to be made in perturbation theory. The perturbation theory can be used for systems consisting of a particle in an arbitrary potential coupled to the radiation field. As a special case, the H-atom was investigated. This has some experi­ mental interest, as it would be useful to give a calculation of the radiation from an H-atom in a turbulent electric field.
Recommended publications
  • Quantum Field Theory with No Zero-Point Energy
    Published for SISSA by Springer Received: March 16, 2018 Revised: May 20, 2018 Accepted: May 27, 2018 Published: May 30, 2018 JHEP05(2018)191 Quantum field theory with no zero-point energy John R. Klauder Department of Physics, University of Florida, Gainesville, FL 32611-8440, U.S.A. Department of Mathematics, University of Florida, Gainesville, FL 32611-8440, U.S.A. E-mail: [email protected] Abstract: Traditional quantum field theory can lead to enormous zero-point energy, which markedly disagrees with experiment. Unfortunately, this situation is built into con- ventional canonical quantization procedures. For identical classical theories, an alternative quantization procedure, called affine field quantization, leads to the desirable feature of having a vanishing zero-point energy. This procedure has been applied to renormalizable and nonrenormalizable covariant scalar fields, fermion fields, as well as general relativity. Simpler models are offered as an introduction to affine field quantization. Keywords: Nonperturbative Effects, Renormalization Regularization and Renormalons, Models of Quantum Gravity ArXiv ePrint: 1803.05823 Open Access, c The Authors. 3 https://doi.org/10.1007/JHEP05(2018)191 Article funded by SCOAP . Contents 1 Introduction 1 2 Nonrenormalizable models exposed 2 3 Ultralocal scalar model: a nonrenormalizable example 3 4 Additional studies using affine variables 5 JHEP05(2018)191 1 Introduction The source of zero-point energy for a free scalar field is readily canceled by normal order- ing of the Hamiltonian operator, which leaves every term with an annihilation operator. Unfortunately, for a non-free scalar field, say with a quartic potential term, normal order- ing cannot eliminate the zero-point energy since there is always a term composed only of creation operators.
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Quantum Trajectories: Real Or Surreal?
    entropy Article Quantum Trajectories: Real or Surreal? Basil J. Hiley * and Peter Van Reeth * Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK * Correspondence: [email protected] (B.J.H.); [email protected] (P.V.R.) Received: 8 April 2018; Accepted: 2 May 2018; Published: 8 May 2018 Abstract: The claim of Kocsis et al. to have experimentally determined “photon trajectories” calls for a re-examination of the meaning of “quantum trajectories”. We will review the arguments that have been assumed to have established that a trajectory has no meaning in the context of quantum mechanics. We show that the conclusion that the Bohm trajectories should be called “surreal” because they are at “variance with the actual observed track” of a particle is wrong as it is based on a false argument. We also present the results of a numerical investigation of a double Stern-Gerlach experiment which shows clearly the role of the spin within the Bohm formalism and discuss situations where the appearance of the quantum potential is open to direct experimental exploration. Keywords: Stern-Gerlach; trajectories; spin 1. Introduction The recent claims to have observed “photon trajectories” [1–3] calls for a re-examination of what we precisely mean by a “particle trajectory” in the quantum domain. Mahler et al. [2] applied the Bohm approach [4] based on the non-relativistic Schrödinger equation to interpret their results, claiming their empirical evidence supported this approach producing “trajectories” remarkably similar to those presented in Philippidis, Dewdney and Hiley [5]. However, the Schrödinger equation cannot be applied to photons because photons have zero rest mass and are relativistic “particles” which must be treated differently.
    [Show full text]
  • Hamiltonian Perturbation Theory on a Lie Algebra. Application to a Non-Autonomous Symmetric Top
    Hamiltonian Perturbation Theory on a Lie Algebra. Application to a non-autonomous Symmetric Top. Lorenzo Valvo∗ Michel Vittot Dipartimeno di Matematica Centre de Physique Théorique Università degli Studi di Roma “Tor Vergata” Aix-Marseille Université & CNRS Via della Ricerca Scientifica 1 163 Avenue de Luminy 00133 Roma, Italy 13288 Marseille Cedex 9, France January 6, 2021 Abstract We propose a perturbation algorithm for Hamiltonian systems on a Lie algebra V, so that it can be applied to non-canonical Hamiltonian systems. Given a Hamil- tonian system that preserves a subalgebra B of V, when we add a perturbation the subalgebra B will no longer be preserved. We show how to transform the perturbed dynamical system to preserve B up to terms quadratic in the perturbation. We apply this method to study the dynamics of a non-autonomous symmetric Rigid Body. In this example our algebraic transform plays the role of Iterative Lemma in the proof of a KAM-like statement. A dynamical system on some set V is a flow: a one-parameter group of mappings associating to a given element F 2 V (the initial condition) another element F (t) 2 V, for any value of the parameter t. A flow on V is determined by a linear mapping H from V to itself. However, the flow can be rarely computed explicitly. In perturbation theory we aim at computing the flow of H + V, where the flow of H is known, and V is another linear mapping from V to itself. In physics, the set V is often a Lie algebra: for instance in classical mechanics [4], fluid dynamics and plasma physics [20], quantum mechanics [24], kinetic theory [18], special and general relativity [17].
    [Show full text]
  • 1 Introduction 2 Classical Perturbation Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Classical and Quantum Perturbation Theory for two Non–Resonant Oscillators with Quartic Interaction Luca Salasnich Dipartimento di Matematica Pura ed Applicata, Universit`a di Padova, Via Belzoni 7, I–35131 Padova, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, I–35131 Padova, Italy Istituto Nazionale per la Fisica della Materia, Unit`a di Milano, Via Celoria 16, I–20133 Milano, Italy Abstract. We study the classical and quantum perturbation theory for two non–resonant oscillators coupled by a nonlinear quartic interaction. In particular we analyze the question of quantum corrections to the torus quantization of the classical perturbation theory (semiclassical mechanics). We obtain up to the second order of perturbation theory an explicit analytical formula for the quantum energy levels, which is the semiclassical one plus quantum corrections. We compare the ”exact” quantum levels obtained numerically to the semiclassical levels studying also the effects of quantum corrections. Key words: Classical Perturbation Theory; Quantum Mechanics; General Mechanics 1 Introduction Nowadays there is considerable renewed interest in the transition from classical mechanics to quantum mechanics, a powerful motivation behind that being the problem of the so–called quantum chaos [1–3]. An important aspect is represented by the semiclassical quantization formula of the (regular) energy levels for quasi–integrable systems [4–6], the so–called torus quantization, initiated by Einstein [7] and completed by Maslov [8]. It has been recently shown [9,10] that, for perturbed non–resonant harmonic oscillators, the algorithm of classical perturbation theory can be used to formulate the quantum mechanical perturbation theory as the semiclassically quantized classical perturbation theory equipped with the quantum corrections in powers of ¯h ”correcting” the classical Hamiltonian that appears in the classical algorithm.
    [Show full text]
  • Chapter 8 Stability Theory
    Chapter 8 Stability theory We discuss properties of solutions of a first order two dimensional system, and stability theory for a special class of linear systems. We denote the independent variable by ‘t’ in place of ‘x’, and x,y denote dependent variables. Let I ⊆ R be an interval, and Ω ⊆ R2 be a domain. Let us consider the system dx = F (t, x, y), dt (8.1) dy = G(t, x, y), dt where the functions are defined on I × Ω, and are locally Lipschitz w.r.t. variable (x, y) ∈ Ω. Definition 8.1 (Autonomous system) A system of ODE having the form (8.1) is called an autonomous system if the functions F (t, x, y) and G(t, x, y) are constant w.r.t. variable t. That is, dx = F (x, y), dt (8.2) dy = G(x, y), dt Definition 8.2 A point (x0, y0) ∈ Ω is said to be a critical point of the autonomous system (8.2) if F (x0, y0) = G(x0, y0) = 0. (8.3) A critical point is also called an equilibrium point, a rest point. Definition 8.3 Let (x(t), y(t)) be a solution of a two-dimensional (planar) autonomous system (8.2). The trace of (x(t), y(t)) as t varies is a curve in the plane. This curve is called trajectory. Remark 8.4 (On solutions of autonomous systems) (i) Two different solutions may represent the same trajectory. For, (1) If (x1(t), y1(t)) defined on an interval J is a solution of the autonomous system (8.2), then the pair of functions (x2(t), y2(t)) defined by (x2(t), y2(t)) := (x1(t − s), y1(t − s)), for t ∈ s + J (8.4) is a solution on interval s + J, for every arbitrary but fixed s ∈ R.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Chapter 5 Angular Momentum and Spin
    Chapter 5 Angular Momentum and Spin I think you and Uhlenbeck have been very lucky to get your spinning electron published and talked about before Pauli heard of it. It appears that more than a year ago Kronig believed in the spinning electron and worked out something; the first person he showed it to was Pauli. Pauli rediculed the whole thing so much that the first person became also the last ... – Thompson (in a letter to Goudsmit) The first experiment that is often mentioned in the context of the electron’s spin and magnetic moment is the Einstein–de Haas experiment. It was designed to test Amp`ere’s idea that magnetism is caused by “molecular currents”. Such circular currents, while generating a magnetic field, would also contribute to the angular momentum of a ferromagnet. Therefore a change in the direction of the magnetization induced by an external field has to lead to a small rotation of the material in order to preserve the total angular momentum. For a quantitative understanding of the effect we consider a charged particle of mass m and charge q rotating with velocity v on a circle of radius r. Since the particle passes through its orbit v/(2πr) times per second the resulting current I = qv/(2πr), which encircles an area A = r2π, generates a magnetic dipole moment µ = IA/c, qv IA qv r2π qvr q q I = µ = = = = L = γL, γ = , (5.1) 2πr ⇒ c 2πr c 2c 2mc 2mc where L~ = m~r ~v is the angular momentum. Now the essential observation is that the × gyromagnetic ratio γ = µ/L is independent of the radius of the motion.
    [Show full text]
  • ATTRACTORS: STRANGE and OTHERWISE Attractor - in Mathematics, an Attractor Is a Region of Phase Space That "Attracts" All Nearby Points As Time Passes
    ATTRACTORS: STRANGE AND OTHERWISE Attractor - In mathematics, an attractor is a region of phase space that "attracts" all nearby points as time passes. That is, the changing values have a trajectory which moves across the phase space toward the attractor, like a ball rolling down a hilly landscape toward the valley it is attracted to. PHASE SPACE - imagine a standard graph with an x-y axis; it is a phase space. We plot the position of an x-y variable on the graph as a point. That single point summarizes all the information about x and y. If the values of x and/or y change systematically a series of points will plot as a curve or trajectory moving across the phase space. Phase space turns numbers into pictures. There are as many phase space dimensions as there are variables. The strange attractor below has 3 dimensions. LIMIT CYCLE (OR PERIODIC) ATTRACTOR STRANGE (OR COMPLEX) ATTRACTOR A system which repeats itself exactly, continuously, like A strange (or chaotic) attractor is one in which the - + a clock pendulum (left) Position (right) trajectory of the points circle around a region of phase space, but never exactly repeat their path. That is, they do have a predictable overall form, but the form is made up of unpredictable details. Velocity More important, the trajectory of nearby points diverge 0 rapidly reflecting sensitive dependence. Many different strange attractors exist, including the Lorenz, Julian, and Henon, each generated by a Velocity Y different equation. 0 Z The attractors + (right) exhibit fractal X geometry. Velocity 0 ATTRACTORS IN GENERAL We can generalize an attractor as any state toward which a Velocity system naturally evolves.
    [Show full text]
  • Polarization Fields and Phase Space Densities in Storage Rings: Stroboscopic Averaging and the Ergodic Theorem
    Physica D 234 (2007) 131–149 www.elsevier.com/locate/physd Polarization fields and phase space densities in storage rings: Stroboscopic averaging and the ergodic theorem✩ James A. Ellison∗, Klaus Heinemann Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, United States Received 1 May 2007; received in revised form 6 July 2007; accepted 9 July 2007 Available online 14 July 2007 Communicated by C.K.R.T. Jones Abstract A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion coupled to the orbital dynamics is then defined, resulting in a class of spin–orbit motions which are important for storage rings. Phase space densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization fields and phase space densities. Due to the 2π time periodicity of the spin–orbit equations of motion the polarization field, taken at a sequence of increasing time values θ,θ 2π,θ 4π,... , gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the + + Birkhoff ergodic theorem, that under very general conditions the Cesaro` averages of that sequence converge almost everywhere on phase space to a polarization field which is 2π-periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded.
    [Show full text]
  • Conformal Invariance and Quantum Integrability of Sigma Models on Symmetric Superspaces
    Physics Letters B 648 (2007) 254–261 www.elsevier.com/locate/physletb Conformal invariance and quantum integrability of sigma models on symmetric superspaces A. Babichenko a,b a Racah Institute of Physics, the Hebrew University, Jerusalem 91904, Israel b Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel Received 7 December 2006; accepted 2 March 2007 Available online 7 March 2007 Editor: L. Alvarez-Gaumé Abstract We consider two dimensional nonlinear sigma models on few symmetric superspaces, which are supergroup manifolds of coset type. For those spaces where one loop beta function vanishes, two loop beta function is calculated and is shown to be zero. Vanishing of beta function in all orders of perturbation theory is shown for the principal chiral models on group supermanifolds with zero Killing form. Sigma models on symmetric (super) spaces on supergroup manifold G/H are known to be classically integrable. We investigate a possibility to extend an argument of absence of quantum anomalies in nonlocal current conservation from nonsuper case to the case of supergroup manifolds which are asymptotically free in one loop. © 2007 Elsevier B.V. All rights reserved. 1. Introduction super coset PSU(2, 2|4)/SO(1, 4) × SO(5). Hyperactivity in at- tempts to exploit integrability and methods of Bethe ansatz as a Two dimensional (2d) nonlinear sigma models (NLSM) on calculational tool in checks of ADS/CFT correspondence (see, supermanifolds, with and without WZ term, seemed to be ex- e.g., reviews [12] and references therein), also supports this in- otic objects, when they appeared in condensed matter physics terest, since both spin chains (on the gauge theory side) and 2d twenty years ago as an elegant calculational tool in problems NLSM (on the ADS side) appearing there, usually have a su- of self avoiding walks [1] and disordered metals [2].
    [Show full text]