Notes on Statistical Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Statistical Field Theory Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)........................... 32 4.4 Renormalization Group (Formal)............................. 34 4.5 The Gaussian Model.................................... 36 4.6 ∗ Appendix......................................... 38 5 Perturbative Renormalization Group 42 5.1 Expectation Values..................................... 42 5.2 Perturbative RG...................................... 44 5.3 Wilson{Fisher Fixed Point................................. 47 6 Lattice Models 51 6.1 Introduction......................................... 51 6.2 Ising Model in d = 1.................................... 52 6.3 Ising Model in d = 2.................................... 55 6.4 Series Expansions...................................... 59 6.5 Duality in the Ising Model................................. 61 6.6 Summing over Phantom Loops.............................. 64 6.7 Monte Carlo......................................... 67 7 Continuous Spins 70 7.1 The Nonlinear σ Model.................................. 70 7.2 ∗ The Nonlinear σ Model, Redux............................. 72 7.3 The XY Model....................................... 78 7.4 The Coulomb Gas..................................... 81 7.5 ∗ The Sine-Gordan Model................................. 83 3 1. Introduction 1 Introduction We've learned to use statistical mechanics to go between microscopic properties of matter (i.e. the degrees of freedom for each particle) and macroscopic thermodynamic variables, such as pressure and temperature. We were able to handle noninteracting systems exactly, and account for weak interactions using perturbation theory. In statistical field theory, we investigate situations where the perturbative approach breaks down, often at a phase transition. We would like to answer the following questions: 1. In the thermodynamic limit, how do distinct macroscopic phases emerge from microscopic dynamics? What are the thermodynamic variables that describe the macroscopic state of these phases, and what are their identifying signatures in the measurement of bulk response functions (e.g. heat capacity, susceptibility)? 2. What are the characteristic low energy excitations of the system? In many cases, such as phonons in solids or superfluid helium, they are collective modes which involve the motion of many microscopic degrees of freedom. These low-lying modes are easily excited by thermal fluctuations, and probed by scattering experiments. In general, a true ab initio calculation is intractable. However, in some cases, the description may be simplified by averaging over many particles in the thermodynamic limit. At long wavelengths, we may coarse-grain the system into a field (the `hydrodynamic limit'), and apply classical field theory techniques. 1.1 Phonons As a first example, we calculate the phonon contribution to the specific heat capacity of a solid using both approaches. First, consider an ab initio approach. The steps are as follows. • Starting with the Schrodinger equation, we perform approximations (i.e. density functional theory) to yield a many-body potential V (q1;:::; qN ). • We find the lattice ion positions at zero temperature by minimizing V . Typically, we find a Bravais lattice with ∗ ∗ q (l; m; n) = la + mb + nc = qr; r = (l; m; n): • We expand the potential to second order about this minimum. If the displacements are u(r), 1 X @2V ∆V = uα(r)uβ(r) 2 @qr,α@qr,β where α and β are spatial components. The full Hamiltonian for small deformations is found P 2 by adding pα(r) =2m where pα(r) is the conjugate momentum to uα(r). • By applying translational symmetry, 2 @ V 0 = Kαβ(r − r ) @qr,α@qr,β 4 1. Introduction the Fourier transform of the Hamiltonian becomes 2 X pα(k) H = + K (k)u (k)u (k)∗ m αβ α β k,α,β where the sum in k is over the Brillouin zone. • The matrix Kαβ(k) can now be diagonalized separately for each k, which can be done with the help of the crystal symmetry. This decomposes the Hamiltonian into 3N independent harmonic oscillators. • Quantizing each oscillator, we find X 1 H = ! (k) n (k) + ~ α α 2 k,α where the !α(k) are the three normal mode frequencies for each k. • Therefore the average energy at a temperature T is given by X 1 1 E(T ) = ~!α(k) hnα(k)i + ; hnα(k)i = 2 exp( !α=kT ) − 1 k,α ~ where we applied the Bose{Einstein distribution. We see that E(T ) has complex behavior, dependent on microscopic details through the !α. However, it is possible to extract universal behavior in the long-wavelength limit. To see this, we switch to a chain of particles in one dimension. • The most general quadratic translationally invariant potential energy for deformations is K1 X K2 X V = (u − u )2 + (u − u )2 + ··· : 2 n+1 n 2 n+2 n n n • The normal modes are just the Fourier components, with Z π=a −ikna X ikna un = d¯k e u(k); u(k) = a e un −π=a n where a is the equilibrium separation between the particles. • Plugging in the Fourier transform, doing the sum over n to get a delta function, and using ∗ u(−k) = u (k), which follows from un being real, we have Z π=a 1 2 V / d¯k (K1(1 − cos ka) + K2(1 − cos 2ka) + ··· ) ju(k)j : a −π=a • We thus find the frequency of the normal modes to be p !(k) / K1(1 − cos ka) + K2(1 − cos 2ka) + ···: In the limit k ! 0, the dispersion relation becomes !(k) = vjkj. While further neighbor interactions change the value of v, they don't change this fundamental feature. 5 1. Introduction • At low temperatures, only this part of the excitation spectrum is important, so Z 1 vjkj π2 E(T ) ≈ Na d¯k ~ = Na (kT )2: −∞ exp(~vjkj=kT ) − 1 6~v Therefore the heat capacity is linear in T . This is a universal property, independent of the detailed interatomic interactions. We can arrive at this conclusion without ever looking at microscopic details, using a phenomenological (field) approach. Since we only want to look at long-wavelength excitations, we ignore variations in the field on the scale of a, allowing us to replace the displacements un with a displacement field u(x). The kinetic energy term becomes ρ R dx u_(x)2=2, where ρ = m=a is the density. We now use general principles to constrain the form of the potential functional V [u]. • Locality: in most situations, interactions between particles are short-ranged, so we may write Z V [u] = dx Φ(u; du=dx; : : :) where Φ is a local potential energy density. • The above form isn't strong enough, since if we allow infinitely many derivatives, we can construct nonlocal interactions like u(x)u(x + a) by Taylor series. In general, higher derivative terms are `less local' (in a discrete lattice setup, the dnu=dxn takes n+1 lattice sites to compute), so locality really implies that higher derivative terms are less significant. • Translational symmetry: we have Φ[u(x) + c] = Φ[u(x)], so Φ cannot depend directly on u. • Stability: since the fluctuations are about an equilibrium position, there can be no linear term in u or its derivatives. Moreover, the quadratic part of V [u] must be positive definite. As a result, the most general allowed potential can be expanded as a power series. Each term is n1 2 n2 of the form (@xu) (@xu) :::. By locality and translational symmetry, the Fourier transform has `conservation of momentum', with derivatives becoming factors of k, e.g. Z Z 2 2 2 dx (@xu) (@xu) ! d¯k1d¯k2 k1k2(k1 + k2) u(k1)u(k2)u(−k1 − k2): In the limit k ! 0, higher order derivative terms become unimportant. Moreover, for small 2 deformations we may neglect terms beyond second order in u. Then we are left with only the (@xu) term, giving ρ Z H = dx (@ u)2 + v2(@ u)2 : 2 t x This is the Hamiltonian of a one-dimensional elastic string; its equation of motion is the wave equation. Thus ! = vjkj for small k, as seen earlier. Note. In higher dimensions, the result is slightly more complicated. In Fourier space, rotational invariance now allows dependence on k2, u2, and k · u. The final quantity allows us to distinguish longitudinal modes and transverse modes, which may have different velocities. In d dimensions, we find the universal result E(T ) / T d+1, giving a heat capacity proportional to T d.
Recommended publications
  • Renormalization Group Flows from Holography; Supersymmetry and a C-Theorem
    © 1999 International Press Adv. Theor. Math. Phys. 3 (1999) 363-417 Renormalization Group Flows from Holography; Supersymmetry and a c-Theorem D. Z. Freedmana, S. S. Gubser6, K. Pilchc and N. P. Warnerd aDepartment of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 b Department of Physics, Harvard University, Cambridge, MA 02138, USA c Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA d Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We obtain first order equations that determine a super symmetric kink solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- lates between an exterior anti-de Sitter region with maximal supersymme- try and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed cor- respondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new Af = 4 gauged supergravity theory holographically dual to a sector of Af = 2 gauge theories based on quiver diagrams. e-print archive: http.y/xxx.lanl.gov/abs/hep-th/9904017 *On leave from Department of Physics and Astronomy, USC, Los Angeles, CA 90089 364 RENORMALIZATION GROUP FLOWS We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory.
    [Show full text]
  • Characterization of a Subclass of Tweedie Distributions by a Property
    Characterization of a subclass of Tweedie distributions by a property of generalized stability Lev B. Klebanov ∗, Grigory Temnov † December 21, 2017 Abstract We introduce a class of distributions originating from an exponential family and having a property related to the strict stability property. Specifically, for two densities pθ and p linked by the relation θx pθ(x)= e c(θ)p(x), we assume that their characteristic functions fθ and f satisfy α(θ) fθ(t)= f (β(θ)t) t R, θ [a,b] , with a and b s.t. a 0 b . ∀ ∈ ∈ ≤ ≤ A characteristic function representation for this family is obtained and its properties are investigated. The proposed class relates to stable distributions and includes Inverse Gaussian distribution and Levy distribution as special cases. Due to its origin, the proposed distribution has a sufficient statistic. Besides, it combines stability property at lower scales with an exponential decay of the distri- bution’s tail and has an additional flexibility due to the convenient parametrization. Apart from the basic model, certain generalizations are considered, including the one related to geometric stable distributions. Key Words: Natural exponential families, stability-under-addition, characteristic func- tions. 1 Introduction Random variables with the property of stability-under-addition (usually called just stabil- ity) are of particular importance in applied probability theory and statistics. The signifi- arXiv:1006.2070v1 [stat.ME] 10 Jun 2010 cance of stable laws and related distributions is due to their major role in the Central limit problem and their link with applied stochastic models used in e.g. physics and financial mathematics.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Arxiv:1910.05796V2 [Math-Ph] 26 Oct 2020 5
    Towards a conformal field theory for Schramm-Loewner evolutions Eveliina Peltola [email protected] Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany We discuss the partition function point of view for chordal Schramm-Loewner evolutions and their relation- ship with correlation functions in conformal field theory. Both are closely related to crossing probabilities and interfaces in critical models in two-dimensional statistical mechanics. We gather and supplement previous results with different perspectives, point out remaining difficulties, and suggest directions for future studies. 1. Introduction 2 2. Schramm-Loewner evolution in statistical mechanics and conformal field theory4 A. Schramm-Loewner evolution (SLE) 5 B. SLE in critical models – the Ising model6 C. Conformal field theory (CFT) 7 D. Martingale observables for interfaces 9 3. Multiple SLE partition functions and applications 12 A. Multiple SLEs and their partition functions 12 B. Definition of the multiple SLE partition functions 13 C. Properties of the multiple SLE partition functions 16 D. Relation to Schramm-Loewner evolutions and critical models 18 4. Fusion and operator product expansion 20 A. Fusion and operator product expansion in conformal field theory 21 B. Fusion: analytic approach 22 C. Fusion: systematic algebraic approach 23 D. Operator product expansion for multiple SLE partition functions 26 arXiv:1910.05796v2 [math-ph] 26 Oct 2020 5. From OPE structure to products of random distributions? 27 A. Conformal bootstrap 27 B. Random tempered distributions 28 C. Bootstrap construction? 29 Appendix A. Representation theory of the Virasoro algebra 31 Appendix B. Probabilistic construction of the pure partition functions 32 Appendix C.
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • 2D Potts Model Correlation Lengths
    KOMA Revised version May D Potts Mo del Correlation Lengths Numerical Evidence for = at o d t Wolfhard Janke and Stefan Kappler Institut f ur Physik Johannes GutenbergUniversitat Mainz Staudinger Weg Mainz Germany Abstract We have studied spinspin correlation functions in the ordered phase of the twodimensional q state Potts mo del with q and at the rstorder transition p oint Through extensive Monte t Carlo simulations we obtain strong numerical evidence that the cor relation length in the ordered phase agrees with the exactly known and recently numerically conrmed correlation length in the disordered phase As a byproduct we nd the energy moments o t t d in the ordered phase at in very go o d agreement with a recent large t q expansion PACS numbers q Hk Cn Ha hep-lat/9509056 16 Sep 1995 Introduction Firstorder phase transitions have b een the sub ject of increasing interest in recent years They play an imp ortant role in many elds of physics as is witnessed by such diverse phenomena as ordinary melting the quark decon nement transition or various stages in the evolution of the early universe Even though there exists already a vast literature on this sub ject many prop erties of rstorder phase transitions still remain to b e investigated in detail Examples are nitesize scaling FSS the shap e of energy or magnetization distributions partition function zeros etc which are all closely interrelated An imp ortant approach to attack these problems are computer simulations Here the available system sizes are necessarily
    [Show full text]
  • Full and Unbiased Solution of the Dyson-Schwinger Equation in the Functional Integro-Differential Representation
    PHYSICAL REVIEW B 98, 195104 (2018) Full and unbiased solution of the Dyson-Schwinger equation in the functional integro-differential representation Tobias Pfeffer and Lode Pollet Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany (Received 17 March 2018; revised manuscript received 11 October 2018; published 2 November 2018) We provide a full and unbiased solution to the Dyson-Schwinger equation illustrated for φ4 theory in 2D. It is based on an exact treatment of the functional derivative ∂/∂G of the four-point vertex function with respect to the two-point correlation function G within the framework of the homotopy analysis method (HAM) and the Monte Carlo sampling of rooted tree diagrams. The resulting series solution in deformations can be considered as an asymptotic series around G = 0 in a HAM control parameter c0G, or even a convergent one up to the phase transition point if shifts in G can be performed (such as by summing up all ladder diagrams). These considerations are equally applicable to fermionic quantum field theories and offer a fresh approach to solving functional integro-differential equations beyond any truncation scheme. DOI: 10.1103/PhysRevB.98.195104 I. INTRODUCTION was not solved and differences with the full, exact answer could be seen when the correlation length increases. Despite decades of research there continues to be a need In this work, we solve the full DSE by writing them as a for developing novel methods for strongly correlated systems. closed set of integro-differential equations. Within the HAM The standard Monte Carlo approaches [1–5] are convergent theory there exists a semianalytic way to treat the functional but suffer from a prohibitive sign problem, scaling exponen- derivatives without resorting to an infinite expansion of the tially in the system volume [6].
    [Show full text]
  • Renormalization Group Flows and Continual Lie Algebras
    hep–th/0307154 July 2003 Renormalization group flows and continual Lie algebras Ioannis Bakas Department of Physics, University of Patras GR-26500 Patras, Greece [email protected] Abstract We study the renormalization group flows of two-dimensional metrics in sigma models us- ing the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt; 1), with anti-symmetric G Cartan kernel K(t, t′) = δ′(t t′); as such, it coincides with the Cartan matrix of the − superalgebra sl(N N + 1) in the large N limit. The resulting Toda field equation is a | non-linear generalization of the heat equation, which is integrable in target space and arXiv:hep-th/0307154v1 17 Jul 2003 shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via B¨acklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten’s two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormal- ization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region.
    [Show full text]
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Scale Without Conformal Invariance in Membrane Theory
    Scale without conformal invariance in membrane theory Achille Mauria,∗, Mikhail I. Katsnelsona aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Abstract We investigate the relation between dilatation and conformal symmetries in the statistical mechanics of flex- ible crystalline membranes. We analyze, in particular, a well-known model which describes the fluctuations of a continuum elastic medium embedded in a higher-dimensional space. In this theory, the renormalization group flow connects a non-interacting ultraviolet fixed point, where the theory is controlled by linear elas- ticity, to an interacting infrared fixed point. By studying the structure of correlation functions and of the energy-momentum tensor, we show that, in the infrared, the theory is only scale-invariant: the dilatation symmetry is not enhanced to full conformal invariance. The model is shown to present a non-vanishing virial current which, despite being non-conserved, maintains a scaling dimension exactly equal to D − 1, even in presence of interactions. We attribute the absence of anomalous dimensions to the symmetries of the model under translations and rotations in the embedding space, which are realized as shifts of phonon fields, and which protect the renormalization of several non-invariant operators. We also note that closure of a sym- metry algebra with both shift symmetries and conformal invariance would require, in the hypothesis that phonons transform as primary fields, the presence of new shift symmetries which are not expected to hold on physical grounds. We then consider an alternative model, involving only scalar fields, which describes effective phonon-mediated interactions between local Gaussian curvatures.
    [Show full text]
  • Hamiltonian Perturbation Theory on a Lie Algebra. Application to a Non-Autonomous Symmetric Top
    Hamiltonian Perturbation Theory on a Lie Algebra. Application to a non-autonomous Symmetric Top. Lorenzo Valvo∗ Michel Vittot Dipartimeno di Matematica Centre de Physique Théorique Università degli Studi di Roma “Tor Vergata” Aix-Marseille Université & CNRS Via della Ricerca Scientifica 1 163 Avenue de Luminy 00133 Roma, Italy 13288 Marseille Cedex 9, France January 6, 2021 Abstract We propose a perturbation algorithm for Hamiltonian systems on a Lie algebra V, so that it can be applied to non-canonical Hamiltonian systems. Given a Hamil- tonian system that preserves a subalgebra B of V, when we add a perturbation the subalgebra B will no longer be preserved. We show how to transform the perturbed dynamical system to preserve B up to terms quadratic in the perturbation. We apply this method to study the dynamics of a non-autonomous symmetric Rigid Body. In this example our algebraic transform plays the role of Iterative Lemma in the proof of a KAM-like statement. A dynamical system on some set V is a flow: a one-parameter group of mappings associating to a given element F 2 V (the initial condition) another element F (t) 2 V, for any value of the parameter t. A flow on V is determined by a linear mapping H from V to itself. However, the flow can be rarely computed explicitly. In perturbation theory we aim at computing the flow of H + V, where the flow of H is known, and V is another linear mapping from V to itself. In physics, the set V is often a Lie algebra: for instance in classical mechanics [4], fluid dynamics and plasma physics [20], quantum mechanics [24], kinetic theory [18], special and general relativity [17].
    [Show full text]
  • 1 Introduction 2 Classical Perturbation Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Classical and Quantum Perturbation Theory for two Non–Resonant Oscillators with Quartic Interaction Luca Salasnich Dipartimento di Matematica Pura ed Applicata, Universit`a di Padova, Via Belzoni 7, I–35131 Padova, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, I–35131 Padova, Italy Istituto Nazionale per la Fisica della Materia, Unit`a di Milano, Via Celoria 16, I–20133 Milano, Italy Abstract. We study the classical and quantum perturbation theory for two non–resonant oscillators coupled by a nonlinear quartic interaction. In particular we analyze the question of quantum corrections to the torus quantization of the classical perturbation theory (semiclassical mechanics). We obtain up to the second order of perturbation theory an explicit analytical formula for the quantum energy levels, which is the semiclassical one plus quantum corrections. We compare the ”exact” quantum levels obtained numerically to the semiclassical levels studying also the effects of quantum corrections. Key words: Classical Perturbation Theory; Quantum Mechanics; General Mechanics 1 Introduction Nowadays there is considerable renewed interest in the transition from classical mechanics to quantum mechanics, a powerful motivation behind that being the problem of the so–called quantum chaos [1–3]. An important aspect is represented by the semiclassical quantization formula of the (regular) energy levels for quasi–integrable systems [4–6], the so–called torus quantization, initiated by Einstein [7] and completed by Maslov [8]. It has been recently shown [9,10] that, for perturbed non–resonant harmonic oscillators, the algorithm of classical perturbation theory can be used to formulate the quantum mechanical perturbation theory as the semiclassically quantized classical perturbation theory equipped with the quantum corrections in powers of ¯h ”correcting” the classical Hamiltonian that appears in the classical algorithm.
    [Show full text]