Aircraft Parts Glossary

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Parts Glossary AIRCRAFT PARTS GLOSSARY Aileron - The moveable areas of a wing that control the aircraft’s ability to bank / roll / turn. Alclad - Trademark name (Alcoa) for high strength sheet aluminum clad with a layer (approx. 5.5% thickness per side) of high purity aluminum. Alclad is popularly used in the manufacture of aircraft. A.P.U. - Auxiliary Power Unit .. A device on an aircraft (or remote to the aircraft when on ground) to provide energy for functions other than propulsion. Avionics - The electronic systems, equipment and other devices used in air (or space) flight. Includes devices used for navigation, communication, performance indicators, instruments used for steering / controlling the aircraft, radar, collision avoidance, monitoring weather conditions, etc…. Beam - A transverse (crosswise) structural member of an aircraft’s frame used to support the flooring and brace the sides against stress. Bladder Cell - A tank formed by a flexible bag which is contained within a rigid cavity. Often found encased within the wings of an aircraft. Canopy - A large clear window / blister on small aircraft, (esp. fighter jets and gliders) that also serves as the means for entering and exiting the aircraft. Cargo Pit - Area for the storage and transport of cargo. On large commercial aircraft there are multiple locations. Cargo pits are broken down into stations which are marked on the inside walls of the aircraft. It is up-most importance that cargo be weighed prior to loading and center of gravity marked prior to assigning each load to the proper station. Also called Cargo Hold or Cargo Bay Cockpit - The section where the pilot sits and flies the aircraft. On larger aircraft this area accommodates two or more personnel. Control Surface - A movable airfoil, especially a rudder, aileron, or elevator used to control or guide an aircraft, rocket or missile. Cowl - A circular, removable fairing around an aircraft’s engine for the purposes of streamlining or cooling. (also called a Cowling) Dorsal Fin - A lateral fin / rudder extension on the top of a fuselage. (Opposite of a Ventral Fin). Elevator - The moveable part of a horizontal airfoil (wing) which controls the pitch (vertical movement) of an aircraft. The fixed part is called the STABILIZER. Empennage - An aircraft’s tail group which includes the rudder and fin, and stabilizer and elevator. Fairing - An added streamlining structure, non-load bearing, usually made of light metal, whose only purpose is to reduce drag. Fin - The fixed part of a vertical airfoil that controls the yaw (side-to-side) movement of an aircraft; the moveable part being the RUDDER, sometimes referred to as the Vertical Stabilizer. Flap - A moveable, usually hinged airfoil set in the trailing edge of an aircraft wing designed to increase lift or drag by changing the camber (curvature) of the wing - used to slow the aircraft during landing by increasing lift. AIRCRAFT PARTS GLOSSARY Floor Boards - A grid of closely joined lightweight / rigid panels resting atop beams to form a separation between the cargo and on-board mechanical workings of an aircraft from the area used by flight crews and passengers. The flooring allows for mobility within the cabin and accommodates the mounting of seats and/or other apparatus. The panels can be removed to allow workmen access to the many components beneath such as cables, wire harnesses, ductwork, hydraulic pumps, etc… Fuel Bladder - See BLADDER CELL Fuselage - The main body structure of an aircraft that connects all the other parts (wings, tail, etc.). The fuselage houses the flight crew, passengers or cargo (payload). On smaller aircraft the engine is commonly enclosed. On larger aircraft, engines are attached using pylons to either the wings or the fuselage. Galley - The kitchen of an airliner, ship or camper. Horizontal Stabilizer - Airfoils (wings) located on the tail of an aircraft that help maintain a straight, horizontal path through the air. Landing Gear - The wheels on an aircraft that allow it to land and taxi. Also called the undercarriage. Lavatory - An on-board (aircraft) bathroom with a toilet and a sink. Leading Edge - The front-most edge of an aircraft’s propeller blade, rotor blade or wing. Nose - The front of an aircraft. Propeller - Two or more twisted blades that most typically pull an airplane forward as they turn. Blades have the same basic shape as wings. On some light aircraft the blades are attached to a rear mounted engine and designed to push the aircraft through the air. Pylon - A device externally installed either under the wings or to the side of fuselage; it is aerodynamically designed so as to create the least amount of drag; it provides a means of attaching engines … also fuel tanks, bombs, gun pods, etc… Radome - A domelike shell that’s transparent to radio frequency radiation used to house a radar antenna and other communication gear. On large commercial aircraft is typically the ‘nose’ section. Can also be housed in a ‘blister’ on top and/or beneath the fuselage. Rivet - A metal fastener or pin having a manufactured head on one end, that when inserted through pre-aligned holes in the pieces to be joined is then hammered on the plain end so-as to form a second head to hold the parts together permanently. Rotor - A hub with a number of rotating airfoils rotating at high speed in an approximately horizontal plane to provide the lift for a rotary-wing aircraft. Rudder - The moveable part of a vertical airfoil which controls the ‘yaw’ (side-to –side) movement of an aircraft, the fixed part being the FIN. Spar - Structural member intended to resist the bending and twisting and shearing loads taken on by the outer skin of the aircraft, esp. wings. AIRCRAFT PARTS GLOSSARY Stabilizer - The fixed part of a horizontal airfoil that controls the pitch (up and down) movement of an aircraft, the moveable part being the ELEVATOR. Tail - The rear part of the aircraft. Undercarriage - See LANDING GEAR. Ventral Fins - Small, vertical surface that attaches to the bottom of the fuselage near the tail. Vertical Stabilizer - Airfoils located on the tail of the aircraft that help maintain a straight upright path through the air. Wing - The part of the aircraft shaped in a way to provide lift when air flows over it. Wing Box - The wing box includes the structural members of the wing such as spars, ribs, braces, struts, etc. and is enclosed by the upper and lower skins of the wing. Winglet - A small, stabilizing, rudder-like addition to the tips of a wing to control or employ air movement. Wiring Harness - An array of insulated conductors (wires) bound together by lacing cord, metal bands, conduit or other binding (including tape), in an arrangement suitable and intended for use in the specific electronic unit for which the harness was designed; often include pre-affixed terminations (connectors) on one or both ends. .
Recommended publications
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018
    12/14/18 Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • Effects of air compressibility on flight stability • Variable sweep-angle wings • Aero-mechanical stability augmentation • Altitude/airspeed instability Flight Dynamics 470-480 Airplane Stability and Control Chapter 11 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 http://www.princeton.edu/~stengel/FlightDynamics.html Outrunning Your Own Bullets • On Sep 21, 1956, Grumman test pilot Tom Attridge shot himself down, moments after this picture was taken • Test firing 20mm cannons of F11F Tiger at M = 1 • The combination of events – Decay in projectile velocity and trajectory drop – 0.5-G descent of the F11F, due in part to its nose pitching down from firing low-mounted guns – Flight paths of aircraft and bullets in the same vertical plane – 11 sec after firing, Attridge flew through the bullet cluster, with 3 hits, 1 in engine • Aircraft crashed 1 mile short of runway; Attridge survived 2 1 12/14/18 Effects of Air Compressibility on Flight Stability 3 Implications of Air Compressibility for Stability and Control • Early difficulties with compressibility – Encountered in high-speed dives from high altitude, e.g., Lockheed P-38 Lightning • Thick wing center section – Developed compressibility burble, reducing lift-curve slope and downwash • Reduced downwash – Increased horizontal stabilizer effectiveness – Increased static stability – Introduced
    [Show full text]
  • Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability
    MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability Horizontal Stabilizer Parameters: 1. Ratio of horizontal tail-wing aerodynamic centers distance with respect to fuselage length 푙푎푐 /푙푓 2. Overall fuselage length 푙푓 3. Horizontal tail-wing aerodynamic centers distance 푙푎푐 4. Horizontal tail volume coefficient 푉퐻 5. Center of gravity location 푥푐푔 6. Horizontal tail arm 푙푡 7. Horizontal tail planform area 푆푡 8. Horizontal tail airfoil 9. Horizontal tail aspect ratio 퐴푅푡 10. Horizontal tail taper ratio 휆푡 11. Additional geometric parameters (Sweep Angle, Twist Angle, Dihedral) 12. Incidence Angle 푖푡 13. Neutral Point 푥푁푃 14. Static Margin 15. Overall Horizontal Stabilizer Geometry 16. Overall Aircraft Static Longitudinal Stability 17. Elevator (TBD in Control Surfaces Design) Vertical Stabilizer Parameters: 18. Vertical tail volume coefficient 푉푣 19. Vertical tail arm 푙푣 20. Vertical tail planform area 푆푉 21. Vertical tail aspect ratio 퐴푅푣 22. Vertical tail span 푏푣 23. Vertical tail sweep angle Λ푣 24. Vertical tail minimum lift curve slope 퐶 퐿훼 푣 25. Vertical tail airfoil 26. Overall Vertical Stabilizer Geometry 27. Overall Aircraft Static Direction Stability 28. Rudder (TBD in Control Surfaces Design) 1. l/Lf Ratio: 0.6 The table below shows statistical ratios between the distance between the wing aerodynamic center and the horizontal tail aerodynamic center 푙푎푐 with respect to the overall fuselage length (Lf). 2. Fuselage Length (Lf): 60.00 in Choosing this value is an iterative process to meet longitudinal and vertical static stability, internal storage, and center of gravity requirements, but preliminarily choose 푙푓 = 60.00 푖푛 3.
    [Show full text]
  • Chapter 55 Stabilizers
    EXTRA - FLUGZEUGBAU GmbH SERVICE MANUAL EXTRA 200 Chapter 55 Stabilizers PAGE DATE: 1. July 1996 CHAPTER 55 PAGE 1 EXTRA - FLUGZEUGBAU GmbH SERVICE MANUAL EXTRA 200 Table of Contents Chapter Title 55-00-00 GENERAL . 3 55-21-00 MAINTENANCE PRACTICES . 8 55-21-01 Horizontal Stabilizer . 8 55-21-02 Vertical Stabilizer . 10 PAGE DATE: 1. July 1996 CHAPTER 55 PAGE 2 EXTRA - FLUGZEUGBAU GmbH SERVICE MANUAL EXTRA 200 55-00-00 GENERAL The EXTRA 200 has a conventional empennage with stabilizers and moveable control surfaces. The spars con- sist of carbon roving caps, carbon fibre webs and PVC foam cores. The shells are built of honeycomb sandwich with glass fibre or optional carbon fibre laminate. Also buckling is prevented by plywood ribs. Deviating from this, the elevator is constructed in the same manner as the ailerons (refer to Chapter 57). On the R/H elevator half a trim tab is fitted with a piano hinge. The layer sequences of the stabilizers, the elevator and the rudder are shown in Figures 1-2. All composite parts, as protection against moisture and UV radiation, are coated with an unsaturated polyester gel- coat, an acrylic filler and finally with an acrylic paint. For repair of composite parts refer to Chapter 51. PAGE DATE: 1. July 1996 CHAPTER 55 PAGE 3 EXTRA - FLUGZEUGBAU GmbH GENERAL SERVICE MANUAL EXTRA 200 Layer Sequence Horizontal Tail Figure 1, Sheet 1 PAGE DATE: 1. July 1996 CHAPTER 55 PAGE 4 EXTRA - FLUGZEUGBAU GmbH GENERAL SERVICE MANUAL EXTRA 200 Layer Sequence Horizontal Tail Figure 1, Sheet 2 PAGE DATE: 1.
    [Show full text]
  • A Historical Overview of Flight Flutter Testing
    tV - "J -_ r -.,..3 NASA Technical Memorandum 4720 /_ _<--> A Historical Overview of Flight Flutter Testing Michael W. Kehoe October 1995 (NASA-TN-4?20) A HISTORICAL N96-14084 OVEnVIEW OF FLIGHT FLUTTER TESTING (NASA. Oryden Flight Research Center) ZO Unclas H1/05 0075823 NASA Technical Memorandum 4720 A Historical Overview of Flight Flutter Testing Michael W. Kehoe Dryden Flight Research Center Edwards, California National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1995 SUMMARY m i This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, Maximum digital data preprocessing, and parameter identification response algorithms (for frequency and damping estimates from the amplltude response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, com- i ments regarding the direction of future developments and Ii needs are presented. 0 Vflutte r Airspeed _c_7_ INTRODUCTION Figure 1. Von Schlippe's flight flutter test method. Aeroelastic flutter involves the unfavorable interaction of aerodynamic, elastic, and inertia forces on structures to and response data analysis. Flutter testing, however, is still produce an unstable oscillation that often results in struc- a hazardous test for several reasons. First, one still must fly tural failure. High-speed aircraft are most susceptible to close to actual flutter speeds before imminent instabilities flutter although flutter has occurred at speeds of 55 mph on can be detected. Second, subcritical damping trends can- home-built aircraft. In fact, no speed regime is truly not be accurately extrapolated to predict stability at higher immune from flutter.
    [Show full text]
  • Wing, Fuselage and Tail • Mainplane: Airfoil Cross-Section Shape, Taper Ratio Selection, Sweep Angle Selection, Wing Drag Estimation
    Design Of Structural Components - Wing, Fuselage and Tail • Mainplane: Airfoil cross-section shape, taper ratio selection, sweep angle selection, wing drag estimation. Spread sheet for wing design. • Fuselage: Volume consideration, quantitative shapes, air inlets, wing attachments; Aerodynamic considerations and drag estimation. Spread sheets. • Tail arrangements: Horizontal and vertical tail sizing. Tail planform shapes. Airfoil selection type. Tail placement. Spread sheets for tail design Main Wing Design 1. Introduction: Airfoil Geometry: • Wing is the main lifting surface of the aircraft. • Wing design is the next logical step in the conceptual design of the aircraft, after selecting the weight and the wing-loading that match the mission requirements. • The design of the wing consists of selecting: i) the airfoil cross-section, ii) the average (mean) chord length, iii) the maximum thickness-to-chord ratio, iv) the aspect ratio, v) the taper ratio, and Wing Geometry: vi) the sweep angle which is defined for the leading edge (LE) as well as the trailing edge (TE) • Another part of the wing design involves enhanced lift devices such as leading and trailing edge flaps. • Experimental data is used for the selection of the airfoil cross-section shape. • The ultimate “goals” for the wing design are based on the mission requirements. • In some cases, these goals are in conflict and will require some compromise. Main Wing Design (contd) 2. Airfoil Cross-Section Shape: • Effect of ( t c ) max on C • The shape of the wing cross-section determines lmax for a variety of the pressure distribution on the upper and lower 2-D airfoil sections is surfaces of the wing.
    [Show full text]
  • C-130J Super Hercules Whatever the Situation, We'll Be There
    C-130J Super Hercules Whatever the Situation, We’ll Be There Table of Contents Introduction INTRODUCTION 1 Note: In general this document and its contents refer RECENT CAPABILITY/PERFORMANCE UPGRADES 4 to the C-130J-30, the stretched/advanced version of the Hercules. SURVIVABILITY OPTIONS 5 GENERAL ARRANGEMENT 6 GENERAL CHARACTERISTICS 7 TECHNOLOGY IMPROVEMENTS 8 COMPETITIVE COMPARISON 9 CARGO COMPARTMENT 10 CROSS SECTIONS 11 CARGO ARRANGEMENT 12 CAPACITY AND LOADS 13 ENHANCED CARGO HANDLING SYSTEM 15 COMBAT TROOP SEATING 17 Paratroop Seating 18 Litters 19 GROUND SERVICING POINTS 20 GROUND OPERATIONS 21 The C-130 Hercules is the standard against which FLIGHT STATION LAYOUTS 22 military transport aircraft are measured. Versatility, Instrument Panel 22 reliability, and ruggedness make it the military Overhead Panel 23 transport of choice for more than 60 nations on six Center Console 24 continents. More than 2,300 of these aircraft have USAF AVIONICS CONFIGURATION 25 been delivered by Lockheed Martin Aeronautics MAJOR SYSTEMS 26 Company since it entered production in 1956. Electrical 26 During the past five decades, Lockheed Martin and its subcontractors have upgraded virtually every Environmental Control System 27 system, component, and structural part of the Fuel System 27 aircraft to make it more durable, easier to maintain, Hydraulic Systems 28 and less expensive to operate. In addition to the Enhanced Cargo Handling System 29 tactical airlift mission, versions of the C-130 serve Defensive Systems 29 as aerial tanker and ground refuelers, weather PERFORMANCE 30 reconnaissance, command and control, gunships, Maximum Effort Takeoff Roll 30 firefighters, electronic recon, search and rescue, Normal Takeoff Distance (Over 50 Feet) 30 and flying hospitals.
    [Show full text]
  • Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV)
    International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 ISSN 2250-3153 Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV) Lasantha Kurukularachchi*; Rajeeve Prince*; S.R. Munasinghe* *Department of Electronic and telecommunication Engineering; University of Moratuwa, Sri Lanka [email protected] 2 [email protected] [email protected] Abstract- Flying and handling qualities are substantially dependent on, and this paper is described it, in terms of the stability and control characteristics of UAV. It is essential to be able to describe and quantify the stability and control parameters completely. It is absolutely essential to understand the relationship between the aerodynamics of the airframe and its stability characteristics to prolong the flight endurance and effective deployment. And this paper is described the stability analysis based on the dynamic model of the twin boom double vertical stabilizer UAV. Key words – Stability and control, UAV, Dynamic stability, dynamic model Fig.1 Structure of methodology I. INTRODUCTION And also the results were compared with the stability norms and the theories in aerodynamic. When it was confusing with the The purpose of Stability and Control Analysis is to evaluate the stability and control standard the airframe structure and input dynamic stability and time response of the UAV for such a commands have also been changed and adjusted to fulfill the perturbation in open loop behavior and Static stability analysis stability requirements. This exercise was repeated till the results enables the control displacement and the control force were optimal and stable to the best flying qualities.
    [Show full text]
  • Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators
    https://ntrs.nasa.gov/search.jsp?R=20130003329 2019-08-26T18:28:24+00:00Z Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators Roman Seele*, Emilio Graff† California Institute of Technology, Pasadena, CA, 91125, USA John Lin‡ NASA Langley Research Center, Hampton, Virginia, 23681, USA Israel Wygnanski§ The University of Arizona, Tucson, AZ, 85721, USA Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (Cµ) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even Cµ = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent. Nomenclature
    [Show full text]
  • F-16 Characteristics: 32.8 Feet Wing Area - 300 Sq.Ft W/Missiles Leading Edge Sweep 40 Degrees
    AIRCRAFT DIMENSIONS WING SPAN F-16 CHARACTERISTICS: 32.8 FEET WING AREA - 300 SQ.FT W/MISSILES LEADING EDGE SWEEP 40 DEGREES WING SPAN 31.0 FEET (W/O MISSILES) TAIL SPAN 18.3FEET WHEEL BASE 7.8 FEET HEIGHT HEIGHT 16.7FEET 16.7FEET F-16A/C SINGLE-PLACE FIGHTER LENGTH F-16B/D TWO-PLACE FIGHTER LENGTH 49.5 FEET 49.5 FEET 13.1 FEET 13.1 FEET AIRCRAFT SKIN PENETRATION POINTS F-16 AND FIRE ACCESS LOCATIONS REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH AFT ENGINE UPPER LANDING GEAR DOORS FWD PORTION OF PANEL 4305 (EACH SIDE) GUN BAY, AFT 2/3 UPPER PORTION AFT ENGINE BAY PANEL NOTE: OF PANEL 3409 4411/4413 LEFT SIDE Avoid hitting frame. LEFT HAND SIDE JET FUEL STARTER AFT OF JFS EXHAUST DOOR PANEL 3303 AFT ENGINE BAY PANEL AMMUNITION BAY 4412/4414 RIGHT SIDE LOWER CENTER PANEL 3401 (EACH SIDE) RIGHT HAND SIDE FWD ENGINE BAY PANEL 3316 AND 3314 NOTE: Panels can be opened by hand. AIRCRAFT HAZARDS AND ACCESS PANELS F-16 REMOVABLE STRUCTURAL COVERS (180) PANELS=6-62 MIN EACH HINGED DOORS WITH QUICK (13) PANELS=3-6 MIN EACH ACTING STRUCTURAL FASTENERS (6) PANELS=8-10 MIN EACH QUICK-ACCESS HINGED DOORS (29) LESS THAN 1 MIN EACH LANDING GEAR DOORS HYDRAULIC SYSTEM B 3.46 GAL. ACCESS PANEL 3415 LEFT HAND SIDE GUN PORT CHAFF AND JFS INLET TAIL HOOK FLARE JFS EXHAUST DISPENSER EPU FUEL (HYDRAZINE) 6.8 GAL.
    [Show full text]
  • Materials Examination of the Vertical Stabilizer from American Airlines Flight 587
    https://ntrs.nasa.gov/search.jsp?R=20050238475 2019-08-29T21:09:55+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server Materials Examination of the Vertical Stabilizer from American Airlines Flight 587 Matthew R. Fox1, Carl R. Schultheisz1, James R. Reeder2, and Brian J. Jensen2 1National Transportation Safety Board, 490 L’Enfant Plaza, SW, Washington, DC 20594 2NASA Langley Research Center, Hampton, VA 23681 Keywords: Failure analysis, CFRP, composites, American Airlines Flight 587 Abstract The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed. Introduction On November 12, 2001, shortly after taking off from Kennedy International Airport, the composite vertical stabilizer and rudder separated from the fuselage of American Airlines Flight 587, rendering the airplane uncontrollable. The Airbus A300-600 airplane crashed into a neighborhood in Belle Harbor, New York, killing all 260 persons aboard the airplane and 5 persons on the ground. This accident was unique partly in that it was the first time a primary structural component fabricated out of composite material failed in flight on a commercial airplane.
    [Show full text]
  • Aviation for Kids: a Mini Course for Students in Grades 2-5 Adopted from Avkids for Use by the EAA
    Aviation For Kids: A Mini Course For Students in Grades 2-5 Adopted from AvKids for use by the EAA The AvKids Program developed by the National Business Aviation Association (NBAA) represents what may be the best short course in aviation science for students in grades 2-5. The following pages represent a slightly modified version of the program, with additions and deletions to provide the best activities for the development of the four forces of flight. In addition, follow up activities included involve team work problem solving in geography, writing, and mathematics. In addition, what may be the best aviation glossary for young students has been included. Topics Covered in The Mini-Course 1. The Four Forces of Flight 2. Thrust 3. Weight 4. Drag 5. Lift 6. The Main Parts of a Plane 7. Business Aviation: An Extension of General Aviation 8. Additional Aviation Projects 9. Aviation Terms Revised Dec. 2015 The Four Forces of Flight An aircraft in straight and level, constant velocity flight is acted upon by four forces: lift, weight, thrust, and drag. The opposing forces balance each other; in the vertical direction, lift opposes weight, in the horizontal direction, thrust opposes drag. Any time one force is greater than the other force along either of these directions, an acceleration will result in the direction of the larger force. This acceleration will occur until the two forces along the direction of interest again become balanced. Drag: The air resistance that tends to slow the forward movement of an airplane due to the collisions of the aircraft with air molecules.
    [Show full text]