The Story of Self-Repairing Flight Control Systems

Total Page:16

File Type:pdf, Size:1020Kb

The Story of Self-Repairing Flight Control Systems The Story of Self-Repairing Flight Control Systems By James E. Tomayko Edited by Christian Gelzer Dryden Historical Study No. 1 The Story of Self-Repairing Flight Control Systems By James E. Tomayko Dryden Historical Study No. 1 Edited by Christian Gelzer i ii The Story of Self-Repairing Flight Control Systems By James E. Tomayko Edited by Christian Gelzer Dryden Historical Study No. 1 On the Cover: On the front cover is a NASA photo (EC 88203-6), which shows an Air Force F-15 flying despite the absence of one of its wings. The image was modified to illustrate why self-repairing flight control systems might play a vital role in aircraft control. Between the front and rear covers, the lattice pattern represents an electronic model of a neural net, essen- tial to the development of self-repairing aircraft. On the back cover is the F-15 Advanced Control Technology for Integrated Vehicles, or ACTIVE, (EC96 43780-1), which was the primary testbed for self-repairing flight control systems. Book and cover design by Jay Levine, NASA Dryden Flight Research Center iii Table of Contents Acknowledgments .......................................................................................................................................... VI Sections Section 1: A Brief History of Flight Control and Previous Self-Repairing Systems..................................... 1 Section 2: The Self-Repairing Flight Control System................................................................................... 12 Section 3: The Intelligent Flight Control System .......................................................................................... 29 Epilogue: The Future of Intelligent Flight Control ................................................................................ 45 Glossary ............................................................................................................................................................ 52 Abbreviations .................................................................................................................................................. 54 Bibliography .................................................................................................................................................... 55 Appendices Appendix A: SRFCS Flight Log.................................................................................................................... 60 Appendix B: Flight Test Summary, SRFCS F-15A No. 8 RTO: NASA Ames-Dryden ................................ 61 Appendix C: SRFCR Progress Report, April 5, 1990 ................................................................................... 72 iv Appendix D: SRFCR Progress Report, March 29, 1990 ............................................................................... 75 Appendix E: SRFCR Progress Report, March 22, 1990 ............................................................................... 77 Appendix F: SRFCR Progress Report, March 15, 1990................................................................................ 79 Appendix G: SRFCR Progress Report, March 8, 1990 ................................................................................. 80 Appendix H: SRFCR Progress Report, March 1, 1990 ................................................................................. 83 Appendix I: SRFCR Progress Report, February 15, 1990............................................................................. 85 Appendix J: SRFCR Progress Report, February 8, 1990 .............................................................................. 87 Appendix K: SRFCR Progress Report, February 1, 1990 ............................................................................. 89 Appendix L: IFCS FRR, Structures (February 1999 Review) ...................................................................... 91 Appendix M: IFCS FRR (February 1999 Review)........................................................................................ 93 Appendix N: IFCS FRR, System Operation (February 1999 Review) ......................................................... 102 Appendix O: Report WL-TR-91-3025, Vol I Self-Repairing Flight Control, August 1991 .......................... 106 Appendix P: Pilot Reports (Boeing Company 99P0040) Intelligent Flight Control Final Report ................ 109 Appendix Q: Flight Test Matrix (Boeing Company 99P0040) Intelligent Flight Control Final Report ....... 138 v Acknowledgments My deepest thanks to J. D. “Dill” Hunley, who was the chief historian at Dryden while I was writing this monograph. He is one of the best historians, inside or outside the government, with whom I have had the pleasure to work. Michael Gorn, who succeeded Dill when this manuscript was between preparation and publishing, has my thanks for his revisions of the manuscript and other efforts. Also, an important thank you to Jim Stewart, who sponsored this history of the continuing Intelligent Flight Control System. He has a keen awareness of the value of history. I would also like to express my appreciation to those who shared precious time for an interview or patiently answered extensive questions. Their information and insights led to a more accurate publication. From NASA Ames Research Center: Chuck Jorgenson, John Kaneshige and Joe Totah. From NASA Dryden Flight Research Center: Bill Burcham, John Carter, Jerry Henry, Wilt Lock, Gerard Schkolnik, Jim Smolka, and, of course, Jim Stewart. From NASA Langley Research Center: Aaron Ostroff. From the Boeing Phantom Works: Jim Urnes, Sr. Lastly, from the U. S. Air Force’s Wright Laboratory: Bob Quaglieri. I would have been lost without my student assistant, Sara Lechleitner, whose word processing skills are almost frightening. She also has a work ethic that enables her to play intercollegiate volleyball, pursue a mechanical engineering degree with an outstanding academic record, and (incidentally) help me. She did much of the glossary, acronym list, footnotes, as well as some insightful editing. Thanks to my wife, Laura Lallement Tomayko, who scanned the line drawings, and to Dryden’s Carla Thomas, for scanning the photographs. Also thanks to Dryden layout wizard Jay Levine. Finally, to Allison Xingbi Tomayko, whose adoption focused my efforts on telling this story, I gratefully dedicate it. – James E. Tomayko April 2003 vi Section 1: A Brief History of Flight Control and Previous Self-Repairing Systems Introduction The ochre desert floor was a blur beneath the streaking Israeli Air Force F-15. From 12,000 feet, the pilot and his back-seat instructor could barely make out the haze of the Mediterranean to the west, and the teeming cities to the north. The two-ship formation was simulating the defense of his air base against two pairs of agile A-4s. Even though his plane represented technology 20 years newer than the A-4s, he had great respect for the small, maneuverable jet (which later earned notice by the public as the Navy’s aggressor plane of choice at the Top Gun School, in the movie of the same name). The pilot came up from behind the trailing pair of A-4s, looking for the classic Sidewinder missile shot. The F-15s ran with their radars off so as not to radiate electronic emissions and give away their position to the “enemy”, only now-and-again turning them on for a sweep. The subsequent snapshot of their adversaries’ position was all the F-15s had to go on, since the relatively tiny, camouflaged A-4s were difficult to acquire visually from more than a few hundred meters away. The A-4s, meanwhile, ran in on the deck, hoping to be invisible against the ground clutter from the lookdown radar of the F-15s. Suddenly one of the A-4s started a “pop-up” maneuver in which it quickly gained altitude to unmask the radar hunting it. As he climbed, the pilot of the A-4 rolled his plane inverted, allowing him to see clearly beneath him; this also meant his wings blocked any upward view. Assuming his “adversary” was now beneath him, the A-4 driver did not see the F-15 that was now, in fact, right above him, and he collided with the F-15’s right wing, destroying his own airplane. The A-4 pilot ejected as his plane exploded into a ball of fire. After the F-15 pilot recovered from the sudden and literal shock, he saw from his instruments that his jet was venting fuel at an alarming rate, emptying one entire wing tank in no time at all. The F-15 then entered a slow roll to the right at about 350 knots, and began to lose altitude, heading into a spiraling dive. The Israeli pilot had the fleeting notion of ejecting, (his back-seat instructor was telling him to do just that) but he added power instead and stomped hard left rudder in order to pull out. He managed to arrest the spin and then to regain altitude, meanwhile calling for vectors to the nearby F-16 base at Ramon. Declaring an emergency, he began reducing the big plane’s airspeed and losing altitude for landing. When the F-15 approached 260 knots, roughly twice its usual approach speed, it went into another spin. Again the 1 pilot successfully fought the urge to eject, and again he managed to stop the spin using control surface inputs and resorting to the afterburners. Approaching the runway, the F-15 touched down at 250 knots—the pilot dared go no slower for fear of losing control again. The runway at Ramon was equipped with arresting gear like that found on aircraft carriers, put there for use in emergencies. The F-15 caught an arresting wire with its tailhook, which promptly ripped away from the plane due to its
Recommended publications
  • Albatross Can Soar at Sea for Days and Even Weeks at a Time
    Executive Summary April 28, 2021 Sean Berger • Ryan Casterline • Jonathan Detwiler • Joshua Forrest Zackary Long • JR Sciple • Daniel Szallai • Xinpeng Zhao Introduction Out in the remote costal cliffs of the North Pacific Ocean, the Great Albatross can soar at sea for days and even weeks at a time. With a wingspan of more than 10 feet, this magnificent bird can stay aloft for free by utilizing dynamic soaring. Its maneuverability and flight longevity allow it to be unrivaled by any other sea bird. Inspired by this bird, the aerospace engineering undergraduate team from Penn State University designed the UQ-9 Albatross: an autonomous medical supply delivery VTOL aircraft in response to the 2020- 2021 VFS Student Design Competition sponsored by Boeing. Albatross is a hybrid 4-bladed quad rotor VTOL aircraft with folding wing capabilities, designed to deliver packages at high speed to local delivery centers and logistics sites. Its variable geometry and autonomous, compact package unloading system makes it an effective delivery vehicle. It was also designed to be multiply redundant to maximize safety. These features allow Albatross to operate in environments that are void of conventional runwayswith the advantagesof a fixed wing aircraft. Vehicle Overview The Albatross is a cargo aircraft that is capable of vertical takeoff and landing during the Fall semester. Our group decided upon a vehicle that changes the configuration of its wings between vertical and horizontal flight. The folding wing concept is a design that attempts to trade‐off the advantages and disadvantages of a conventional vertical take‐off and landing vehicle with a conventional fixed‐wing aircraft configuration.
    [Show full text]
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • Pilot Stories
    PILOT STORIES DEDICATED to the Memory Of those from the GREATEST GENERATION December 16, 2014 R.I.P. Norm Deans 1921–2008 Frank Hearne 1924-2013 Ken Morrissey 1923-2014 Dick Herman 1923-2014 "Oh, I have slipped the surly bonds of earth, And danced the skies on Wings of Gold; I've climbed and joined the tumbling mirth of sun-split clouds - and done a hundred things You have not dreamed of - wheeled and soared and swung high in the sunlit silence. Hovering there I've chased the shouting wind along and flung my eager craft through footless halls of air. "Up, up the long delirious burning blue I've topped the wind-swept heights with easy grace, where never lark, or even eagle, flew; and, while with silent, lifting mind I've trod the high untrespassed sanctity of space, put out my hand and touched the face of God." NOTE: Portions Of This Poem Appear On The Headstones Of Many Interred In Arlington National Cemetery. TABLE OF CONTENTS 1 – Dick Herman Bermuda Triangle 4 Worst Nightmare 5 2 – Frank Hearne Coming Home 6 3 – Lee Almquist Going the Wrong Way 7 4 – Mike Arrowsmith Humanitarian Aid Near the Grand Canyon 8 5 – Dale Berven Reason for Becoming a Pilot 11 Dilbert Dunker 12 Pride of a Pilot 12 Moral Question? 13 Letter Sent Home 13 Sense of Humor 1 – 2 – 3 14 Sense of Humor 4 – 5 15 “Poopy Suit” 16 A War That Could Have Started… 17 Missions Over North Korea 18 Landing On the Wrong Carrier 19 How Casual Can One Person Be? 20 6 – Gardner Bride Total Revulsion, Fear, and Helplessness 21 7 – Allan Cartwright A Very Wet Landing 23 Alpha Strike
    [Show full text]
  • Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018
    12/14/18 Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • Effects of air compressibility on flight stability • Variable sweep-angle wings • Aero-mechanical stability augmentation • Altitude/airspeed instability Flight Dynamics 470-480 Airplane Stability and Control Chapter 11 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 http://www.princeton.edu/~stengel/FlightDynamics.html Outrunning Your Own Bullets • On Sep 21, 1956, Grumman test pilot Tom Attridge shot himself down, moments after this picture was taken • Test firing 20mm cannons of F11F Tiger at M = 1 • The combination of events – Decay in projectile velocity and trajectory drop – 0.5-G descent of the F11F, due in part to its nose pitching down from firing low-mounted guns – Flight paths of aircraft and bullets in the same vertical plane – 11 sec after firing, Attridge flew through the bullet cluster, with 3 hits, 1 in engine • Aircraft crashed 1 mile short of runway; Attridge survived 2 1 12/14/18 Effects of Air Compressibility on Flight Stability 3 Implications of Air Compressibility for Stability and Control • Early difficulties with compressibility – Encountered in high-speed dives from high altitude, e.g., Lockheed P-38 Lightning • Thick wing center section – Developed compressibility burble, reducing lift-curve slope and downwash • Reduced downwash – Increased horizontal stabilizer effectiveness – Increased static stability – Introduced
    [Show full text]
  • A “Short Course” on Ice and the TBM
    A “Short Course” on Ice and the TBM. Icing is topical at the present time as a result of a recent accident in a TBM. I have had a number of conversations with pilots who I would consider knowledgeable and it is apparent that there is a lot of confusion surrounding this subject. Also noting on line posts this confusion is not limited to owner pilots. I have had occasion to be a victim of my own stupidity in a serious icing condition years ago and I can vouch that icing is a deadly serious situation in more ways than one. Before going on with the subject we want to stipulate that the data we are about to provide is a summary of information that is to be found on line, along with narrative and data provided from knowledgeable instructors, if any of the data provided conflicts with anything you have been taught we urge you to satisfy yourself as to which data is correct. TBM operators fly in the same airspace where we find Part 25 aircraft (Commercial Category) aircraft. There is a big difference in how these two categories of aircraft are affected by icing conditions. A 767 will often be climbing at over 300 kts and 4000+ ft/min at typical icing altitudes. This creates two very distinct advantages for the 767: first, their icing exposure time may be less than 1/3 of ours. Second, icing conditions are a function of TAT (Total Air Temperature), not SAT (static air temp). TAT is warmer than SAT because of the effects of compressibility as the airplane operates at faster and faster speeds.
    [Show full text]
  • Experience Early Aviation with Fully
    REVIEW Maxford’s vintage- themed models look extremely authentic when they are in the air, although pilots EXPERIENCE EARLY will probably want to spring for the available optional pilot figures to more AVIATION WITH capably create a convincing scalelike profile. FULLY FUNCTIONING WATCH A VIDEO! WING WARPING Access additional Maxford USA 1/9 Rumpler Taube EP 64-Inch ARF content by visiting By Jon Barnes | [email protected] www.ModelAviation. Photos by the author com/bonuscontent. THERE IS NO DENYING the surfaces, which would in the the Etrich Taube. Why the logic behind man’s eager efforts future become the standard for seeming disparity? It is primarily to take to the sky in a flying almost all aircraft, was the yaw because, with no licensing fees, machine. Engineers of the early axis. at least 14 companies built vari- 20th century understandably Designed by Igo Etrich in 1909, ations of the initial design. The attempted to mimic the methods the Taube first flew in 1910. It two-seat Rumpler Taube ulti- used by birds to change direction would become the first mass-pro- mately proved to be the most and altitude. At least one early duced aircraft in Germany, and common type and thus most effort to imitate the eminently go on to be used for military pur- appropriately the subject of flexible tail and wing feathers of poses by several of the nations Maxford’s attention. a bird can be seen in a mono- embroiled that were in World Maxford USA’s propensity to plane known as the Taube. War I.
    [Show full text]
  • Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform
    International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 1, January 2016 Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Şeyma Akyürek, Gizem Sezin Özden, Emre Atlas, and Coşku Kasnakoğlu Electrical & Electronics Engineering, TOBB University of Economics & Technology, Ankara, Turkey Email: {seymaakyurek , sezin.ozden, emreatlas90, kasnakoglu}@gmail.com Ünver Kaynak Mechanical Engineering, TOBB University of Economics & Technology, Ankara, Turkey Email: [email protected] Abstract—In this paper a Hardware-In-the-Loop (HIL) test Both manual calibration and MATLAB’s automated platform is used to design a flight stabilization system for design tools are used to determine the PID coefficients. Unmanned Aerial Vehicles (UAV). Controllers are first designed and tested separately for lateral and longitudinal II. DESIGN STAGES axes using numerical simulations, and later these controllers are merged on the HIL platform. It is observed that the A. Controller Design resulting controller successfully stabilizes the aircraft to A general treatment of the stability and control of achieve straight and level flight. airplanes requires a study of the dynamics of flight [4]. Much useful information can be obtained, however, from Index Terms—UAV, autopilot, PID controller, Hardware-In- a more limited view, in which we consider not the motion the-Loop, flight control, SISO, MIMO of the airplane, but only its equilibrium states. This is the approach in what is commonly known as static stability and control analysis [4]. I. INTRODUCTION Elevators and ailerons are flight control surfaces. Elevators are surfaces on the tailplane (the horizontal part Aeronautics has recently gained great importance in of the tail assembly).
    [Show full text]
  • The Bleriot Xi: a Study in Aerodynamics by Robert G
    THE BLERIOT XI: A STUDY IN AERODYNAMICS BY ROBERT G. WALDVOGEL If you wished to study aerodynamics, you would only need to look at the very early aircraft designs, such as the Bleriot XI. There are no high bypass ratio turbofans, nor upper deck lounges, nor global positioning systems. Instead, the aircraft is a sheer expression of the design solutions needed to overcome the four forces of flight: lift, weight, thrust, and drag. One of these “studies” can be made at Cole Palen’s Old Rhinebeck Aerodrome in Rhinebeck, New York. The culmination of ten previous configurations built by Louis Bleriot, who had reinvested 60,000 French francs amassed during an automobile lamp manufacturing venture to develop a technologically successful airplane in a race with such names as the Wright Brothers, Henri Farman, Santos Dumont, and Glenn Curtiss, the Bleriot XI itself had become the world’s first practical monoplane. The Bleriot VII, providing its initial foundation, had appeared with a partially enclosed fuselage to house its single pilot; wings braced to a tubular cabane framework over the cockpit; a four-bladed, 50-hp Antoinette engine; a large, dual-elevon horizontal tail; a small rudder; and swivelable, independently-sprung wheels. Although it crashed on December 18, 1907, it had nevertheless provided the foundation for a later, definitive design. The Bleriot VIII, rapidly following, had retained the low-wing configuration, but had featured pivoting, wing tip ailerons and a tricycle undercarriage, each comprised of single wheels. Although the Bleriot IX had been a larger variant of the VIII, and the Bleriot X had introduced a pusher-propeller arrangement with triple canard rudders, these intermediate steps had offered little to the ultimate design and therefore had been quickly discarded.
    [Show full text]
  • Using Redundant Effectors to Trim a Compound Helicopter with Damaged Main Rotor Controls
    Using Redundant Effectors to Trim a Compound Helicopter with Damaged Main Rotor Controls Jean-Paul Reddinger Farhan Gandhi Ph.D. Candidate Professor Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute Troy, NY Troy, NY ABSTRACT Control of a helicopter’s main rotor is typically accomplished through use of three hydraulic actuators that act on the non-rotating swashplate and position it to achieve any combination of collective and cyclic blade pitch. Failure of one of these servos can happen through loss of hydraulic pressure or by impingement of the piston within the hydraulic cylinder. For a compound helicopter with an articulated main rotor, a range of failed servo states (by piston impingement) are simulated in RCAS at hover, 100 kts, and 200 kts, to show the extent to which the compound effectors can generate additional forces and moments to maintain trimmed flight. After the loss of control of any of the three main rotor actuators in hover, the compound helicopter is capable of trimming with little change to the state of the vehicle by replacing control of the locked servo with control of rotor speed. This strategy can be used to maintain trim over 6 – 12% of the total servo ranges. At forward flight speeds, each of the three actuators produces a different result on the trimmed aircraft due to the non-axisymmetry of the rotor. Reconfiguration is accomplished through use of the ailerons, stabilator pitch, wings, and wing-mounted propellers to trim rotor produced roll moments, pitch moments, lift, and drag, respectively. The additional effectors in forward flight increases the range of tolerable failures to 20 – 63% of the maximum actuation limits.
    [Show full text]
  • Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability
    MSD : SAE Aero Aircraft Design & Build Preliminary Horizontal and Vertical Stabilizer Design, Longitudinal and Directional Static Stability Horizontal Stabilizer Parameters: 1. Ratio of horizontal tail-wing aerodynamic centers distance with respect to fuselage length 푙푎푐 /푙푓 2. Overall fuselage length 푙푓 3. Horizontal tail-wing aerodynamic centers distance 푙푎푐 4. Horizontal tail volume coefficient 푉퐻 5. Center of gravity location 푥푐푔 6. Horizontal tail arm 푙푡 7. Horizontal tail planform area 푆푡 8. Horizontal tail airfoil 9. Horizontal tail aspect ratio 퐴푅푡 10. Horizontal tail taper ratio 휆푡 11. Additional geometric parameters (Sweep Angle, Twist Angle, Dihedral) 12. Incidence Angle 푖푡 13. Neutral Point 푥푁푃 14. Static Margin 15. Overall Horizontal Stabilizer Geometry 16. Overall Aircraft Static Longitudinal Stability 17. Elevator (TBD in Control Surfaces Design) Vertical Stabilizer Parameters: 18. Vertical tail volume coefficient 푉푣 19. Vertical tail arm 푙푣 20. Vertical tail planform area 푆푉 21. Vertical tail aspect ratio 퐴푅푣 22. Vertical tail span 푏푣 23. Vertical tail sweep angle Λ푣 24. Vertical tail minimum lift curve slope 퐶 퐿훼 푣 25. Vertical tail airfoil 26. Overall Vertical Stabilizer Geometry 27. Overall Aircraft Static Direction Stability 28. Rudder (TBD in Control Surfaces Design) 1. l/Lf Ratio: 0.6 The table below shows statistical ratios between the distance between the wing aerodynamic center and the horizontal tail aerodynamic center 푙푎푐 with respect to the overall fuselage length (Lf). 2. Fuselage Length (Lf): 60.00 in Choosing this value is an iterative process to meet longitudinal and vertical static stability, internal storage, and center of gravity requirements, but preliminarily choose 푙푓 = 60.00 푖푛 3.
    [Show full text]
  • Design and Flight Testing of Inflatable Wings with Wing Warping
    05WAC-61 Design and Flight Testing of Inflatable Wings with Wing Warping Jamey D. Jacob, Andrew Simpson, and Suzanne Smith University of Kentucky, Lexington, KY 40506 Copyright c 2005 Society of Automotive Engineers, Inc. ABSTRACT The paper presents work on testing of inflatable wings for unmanned aerial vehicles (UAVs). Inflatable wing his- tory and recent research is discussed. Design and con- struction of inflatable wings is then covered, along with ground and flight testing. Discussions include predictions and correlations of the forces required to warp (twist) the wings to a particular shape and the aerodynamic forces generated by that shape change. The focus is on charac- terizing the deformation of the wings and development of a model to accurately predict deformation. Relations be- Figure 1: Goodyear Model GA-468 Inflatoplane. tween wing stiffness and internal pressure and the impact of external loads are presented. Mechanical manipula- tion of the wing shape on a test vehicle is shown to be an effective means of roll control. Possible benefits to aero- craft was developed as a military rescue plane that could dynamic efficiency are also discussed. be dropped behind enemy lines to rescue downed pilots. Technology development, including delivery of dozens of INFLATABLE WINGS aircraft, continued until the early 1970s. PREVIOUS WORK While the concept of inflatable The Apteron unmanned aerial vehicle with inflatable structures for flight originated centuries ago, inflatable wings was developed in the 1970s by ILC Dover, Inc. wings were only conceived and developed within the last The Apteron (Figure 2) had a 1.55 m (5.1 ft) wingspan, few decades.
    [Show full text]
  • The Wright Stuff
    1203cent.qxd 11/13/03 2:19 PM Page 1 n a chilly North Carolina edge. It is likely that this informa- Omorning 100 years ago, two tion became the basis for the design brothers from Dayton, Ohio, at- of their early gliders. It also led them tempted a feat others considered im- to contact Octave Chanute, an possible, and their success changed American engineer who was the world. leading the way for experiments in Today we take air travel for aeronautics. granted, and rarely give a second thought to our capability to fly liter- Three problems ally anywhere in the world. But one The Wrights realized from the be- hundred years ago, the endeavors ginning that they had to solve three of the Wrights and other aeronau- problems: tical pioneers were widely viewed • Balance and control. as foolhardy. Although some of the THE WRIGHT • Wing shape and resulting lift. world’s most creative minds were • Application of power to the converging on a solution to the flight structure. problem, well-respected scientists STUFF: Of the three, they correctly recog- such as Lord Kelvin thought flight Materials in the Wright Flyer nized that balance and control were impossible. the least understood and probably In fact, Simon Newcomb, pro- The flight of the Wright Flyer was the most critical. To solve that fessor of mathematics and as- the “first in the history of the world problem, they turned to gliding ex- tronomy at Johns Hopkins Univer- periments. sity and vice-president of the in which a machine carrying a man National Academy of Sciences, had had raised itself by its own power The 1900 glider declared only 18 months before the into the air in full flight, had sailed After a few preliminary experi- successful flight at Kitty Hawk, forward without reduction of speed, ments with small kites, they built “Flight by machines heavier than air and had finally landed at a point as their first glider in 1900.
    [Show full text]