Description Airplane and System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Aviation Managing Sumped Aviation Gas (Avgas)
DEPARTMENT OF ENVIRONMENTAL HEALTH HAZARDOUS MATERIALS DIVISION P.O. BOX 129261, SAN DIEGO, CA 92112-9261 Phone: (858) 505-6700 or (800) 253-9933 Fax: (858) 505-6786 www.sdcdeh.org GENERAL AVIATION MANAGING SUMPED AVIATION GAS (AVGAS) County of San Diego Pollution Prevention Summary: Small amounts of AvGas fuel are “sumped” (sampled) during pre-flight safety inspections If safe to do so, clean AvGas may be returned to the aircraft fuel tank AvGas may be recycled by filtering with devices such as the GATS jar AvGas may be repurposed for use in certain motorized ground equipment If not recycled, waste AvGas must be disposed of lawfully as a hazardous waste Any water sumped from a fuel tank must be disposed of lawfully as a hazardous waste If you sump AvGas you must have a legal means of hazardous waste disposal readily available California law prohibits disposing of aviation gasoline (AvGas) to the ground, sewer, or storm drain. Violators are subject to fines up to $25,000 per incident. Refer to the California Health and Safety Code [HSC §25100] for more details. INTRODUCTION According to Federal Aviation Administration (FAA) data, there were approximately 140,000 active piston-powered General Aviation (GA) aircraft in the United States with over 12.9 million hours flown in 2014. Each of those aircraft rely on aviation gas (AvGas) to fuel their engines. AvGas is a highly flammable liquid containing organic lead and is a hazardous material. During the mandatory pre-flight safety inspection, pilots sample the fuel in the aircraft and inspect the fuel for contaminants. -
Aviation Maintenance Alerts
ADVISORY CIRCULAR 43-16A AVIATION MAINTENANCE ALERTS ALERT SEPTEMBER NUMBER 2007 350 CONTENTS AIRPLANES BEECH ........................................................................................................................................1 CESSNA ......................................................................................................................................3 MAULE .......................................................................................................................................7 HELICOPTERS EUROCOPTER ...........................................................................................................................7 SIKORSKY..................................................................................................................................7 ACCESSORIES AEROTECH ALTERNATOR.....................................................................................................9 ECI CYLINDER........................................................................................................................10 WIPAIRE...................................................................................................................................10 AIR NOTES INTERNET SERVICE DIFFICULTY REPORTING (iSDR) WEB SITE...............................10 IF YOU WANT TO CONTACT US.........................................................................................11 AVIATION SERVICE DIFFICULTY REPORTS ...................................................................12 September -
Albatross Can Soar at Sea for Days and Even Weeks at a Time
Executive Summary April 28, 2021 Sean Berger • Ryan Casterline • Jonathan Detwiler • Joshua Forrest Zackary Long • JR Sciple • Daniel Szallai • Xinpeng Zhao Introduction Out in the remote costal cliffs of the North Pacific Ocean, the Great Albatross can soar at sea for days and even weeks at a time. With a wingspan of more than 10 feet, this magnificent bird can stay aloft for free by utilizing dynamic soaring. Its maneuverability and flight longevity allow it to be unrivaled by any other sea bird. Inspired by this bird, the aerospace engineering undergraduate team from Penn State University designed the UQ-9 Albatross: an autonomous medical supply delivery VTOL aircraft in response to the 2020- 2021 VFS Student Design Competition sponsored by Boeing. Albatross is a hybrid 4-bladed quad rotor VTOL aircraft with folding wing capabilities, designed to deliver packages at high speed to local delivery centers and logistics sites. Its variable geometry and autonomous, compact package unloading system makes it an effective delivery vehicle. It was also designed to be multiply redundant to maximize safety. These features allow Albatross to operate in environments that are void of conventional runwayswith the advantagesof a fixed wing aircraft. Vehicle Overview The Albatross is a cargo aircraft that is capable of vertical takeoff and landing during the Fall semester. Our group decided upon a vehicle that changes the configuration of its wings between vertical and horizontal flight. The folding wing concept is a design that attempts to trade‐off the advantages and disadvantages of a conventional vertical take‐off and landing vehicle with a conventional fixed‐wing aircraft configuration. -
Aviation Investigation Report A06q0157 Engine Failure
AVIATION INVESTIGATION REPORT A06Q0157 ENGINE FAILURE CESSNA 172M C-FFRV MONTRÉAL, QUEBEC 10 SEPTEMBER 2006 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report Engine Failure Cessna 172M C-FFRV Montréal, Quebec 10 September 2006 Report Number A06Q0157 Summary A Cessna 172M, registration C-FFRV, serial number 17262394, with the pilot and two passengers on board, took off at 1545 eastern daylight time from Saint-Hubert Airport, Quebec, for a flight according to visual flight rules over Montréal, Quebec. About 15 minutes after take-off, when the aircraft was over the city, the engine (Lycoming O320-H2AD) lost power and stopped. The pilot tried to restart it, but without success. The pilot transmitted a distress message and quickly reported the situation to the control tower. The aircraft was approximately 1250 feet above ground level at the time. The pilot landed the aircraft on the northbound side of Parc Avenue, in Montréal. On landing, the left wing tip struck a traffic light post before the aircraft came to rest. The aircraft was substantially damaged, but there were no injuries. Ce rapport est également disponible en français. - 2 - Other Factual Information The pilot was certified and qualified for the flight in accordance with existing regulations. He had over 30 years of flying experience, including 22 years on this aircraft, and had about 5000 flying hours. The weather observation taken at 1600 eastern daylight time1 was as follows: visibility 9 statute miles, light winds and a few scattered clouds. -
Final Report RL 2017:10E
Final report RL 2017:10e Serious incident after take-off from Gothenburg/Landvetter Airport on 7 November 2016 involving SE-DSV an aeroplane of the model AVRO-RJ 100, operated by Braathens Regional Aviation AB. File no. L-112/16 7 December 2017 RL 2017:10e SHK investigates accidents and incidents from a safety perspective. Its investigations are aimed at preventing a similar event from occurring in the future, or limiting the effects of such an event. The investigations do not deal with issues of guilt, blame or liability for damages. The report is also available on SHK´s web site: www.havkom.se ISSN 1400-5719 This document is a translation of the original Swedish report. In case of discrepancies between this translation and the Swedish original text, the Swedish text shall prevail in the interpretation of the report. Photos and graphics in this report are protected by copyright. Unless other- wise noted, SHK is the owner of the intellectual property rights. With the exception of the SHK logo, and photos and graphics to which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 2.5 Sweden license. This means that it is allowed to copy, distribute and adapt this publication provided that you attribute the work. The SHK preference is that you attribute this publication using the following wording: “Source: Swedish Accident Investigation Authority”. Where it is noted in the report that a third party holds copyright to photos, graphics or other material, that party’s consent is needed for reuse of the material. -
Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype. -
Aircraft Winglet Design
DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2020 Aircraft Winglet Design Increasing the aerodynamic efficiency of a wing HANLIN GONGZHANG ERIC AXTELIUS KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES 1 Abstract Aerodynamic drag can be decreased with respect to a wing’s geometry, and wingtip devices, so called winglets, play a vital role in wing design. The focus has been laid on studying the lift and drag forces generated by merging various winglet designs with a constrained aircraft wing. By using computational fluid dynamic (CFD) simulations alongside wind tunnel testing of scaled down 3D-printed models, one can evaluate such forces and determine each respective winglet’s contribution to the total lift and drag forces of the wing. At last, the efficiency of the wing was furtherly determined by evaluating its lift-to-drag ratios with the obtained lift and drag forces. The result from this study showed that the overall efficiency of the wing varied depending on the winglet design, with some designs noticeable more efficient than others according to the CFD-simulations. The shark fin-alike winglet was overall the most efficient design, followed shortly by the famous blended design found in many mid-sized airliners. The worst performing designs were surprisingly the fenced and spiroid designs, which had efficiencies on par with the wing without winglet. 2 Content Abstract 2 Introduction 4 Background 4 1.2 Purpose and structure of the thesis 4 1.3 Literature review 4 Method 9 2.1 Modelling -
Effects of Aircraft Integration on Compact Nacelle Aerodynamics
Eects of Aircraft Integration on Compact Nacelle Aerodynamics Fernando Tejeroa,∗, Ioannis Goulosa, David G MacManusa, Christopher Sheafb aCentre for Propulsion Engineering, School of Aerospace, Transport and Manufacturing, Craneld University, Bedfordshire, MK43 0AL bRolls-Royce plc., P.O. box 31, Derby, United Kingdom, DE24 8BJ Abstract To reduce specic fuel consumption, it is expected that the next generation of aero-engines will operate with higher bypass-ratios, and therefore fan diame- ters, than current in-service architectures. These new propulsion systems will increase the nacelle size and incur in an additional overall weight and drag con- tribution to the aircraft. In addition, they will be installed more closely-coupled with the airframe, which may lead to an increase in adverse installation eects. As such, it is required to develop compact nacelles which will not counteract the benets obtained from the new engine cycles. A comprehensive investigation of the eects of nacelle design on the overall aircraft aerodynamic performance is required for a better understanding on the eects of aero-engine integration. This paper presents a method for the multi-objective optimisation of drooped and scarfed non-axisymmetric nacelle aero-engines. It uses intuitive Class Shape Tranformations (iCSTs) for the aero-engine geometry denition, multi-point aerodynamic simulation, a near-eld nacelle drag extraction method and the NSGA-II genetic algorithm. The process has been employed for the aerody- namic optimisation of a compact nacelle aero-engine as well as a conventional nacelle conguration. Subsequently, the designed architectures were installed on a conventional commercial transport aircraft and evaluated at dierent in- stallation positions. -
Glider Handbook, Chapter 2: Components and Systems
Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil. -
Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018
12/14/18 Problems of High Speed and Altitude Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • Effects of air compressibility on flight stability • Variable sweep-angle wings • Aero-mechanical stability augmentation • Altitude/airspeed instability Flight Dynamics 470-480 Airplane Stability and Control Chapter 11 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 http://www.princeton.edu/~stengel/FlightDynamics.html Outrunning Your Own Bullets • On Sep 21, 1956, Grumman test pilot Tom Attridge shot himself down, moments after this picture was taken • Test firing 20mm cannons of F11F Tiger at M = 1 • The combination of events – Decay in projectile velocity and trajectory drop – 0.5-G descent of the F11F, due in part to its nose pitching down from firing low-mounted guns – Flight paths of aircraft and bullets in the same vertical plane – 11 sec after firing, Attridge flew through the bullet cluster, with 3 hits, 1 in engine • Aircraft crashed 1 mile short of runway; Attridge survived 2 1 12/14/18 Effects of Air Compressibility on Flight Stability 3 Implications of Air Compressibility for Stability and Control • Early difficulties with compressibility – Encountered in high-speed dives from high altitude, e.g., Lockheed P-38 Lightning • Thick wing center section – Developed compressibility burble, reducing lift-curve slope and downwash • Reduced downwash – Increased horizontal stabilizer effectiveness – Increased static stability – Introduced -
ICE PROTECTION Incomplete
ICE PROTECTION GENERAL The Ice and Rain Protection Systems allow the aircraft to operate in icing conditions or heavy rain. Aircraft Ice Protection is provided by heating in critical areas using either: Hot Air from the Pneumatic System o Wing Leading Edges o Stabilizer Leading Edges o Engine Air Inlets Electrical power o Windshields o Probe Heat . Pitot Tubes . Pitot Static Tube . AOA Sensors . TAT Probes o Static Ports . ADC . Pressurization o Service Nipples . Lavatory Water Drain . Potable Water Rain removal from the Windshields is provided by two fully independent Wiper Systems. LEADING EDGE THERMAL ANTI ICE SYSTEM Ice protection for the wing and horizontal stabilizer leading edges and the engine air inlet lips is ensured by heating these surfaces. Hot air supplied by the Pneumatic System is ducted through perforated tubes, called Piccolo tubes. Each Piccolo tube is routed along the surface, so that hot air jets flowing through the perforations heat the surface. Dedicated slots are provided for exhausting the hot air after the surface has been heated. Each subsystem has a pressure regulating/shutoff valve (PRSOV) type of Anti-icing valve. An airflow restrictor limits the airflow rate supplied by the Pneumatic System. The systems are regulated for proper pressure and airflow rate. Differential pressure switches and low pressure switches monitor for leakage and low pressures. Each Wing's Anti Ice System is supplied by its respective side of the Pneumatic System. The Stabilizer Anti Ice System is supplied by the LEFT side of the Pneumatic System. The APU cannot provide sufficient hot air for Pneumatic Anti Ice functions. -
February 2002 Alerts
February 2002 FAA AC 43-16A CONTENTS AIRPLANES AERONCA ................................................................................................................................. 1 BEECH ........................................................................................................................................ 2 CESSNA ..................................................................................................................................... 6 EXTRA........................................................................................................................................ 9 MAULE..................................................................................................................................... 10 PIPER........................................................................................................................................ 10 SOCATA .................................................................................................................................. 13 HELICOPTERS BELL ......................................................................................................................................... 14 EUROCOPTER ......................................................................................................................... 14 MCDONNELL DOUGLAS ...................................................................................................... 15 AMATEUR, EXPERIMENTAL, AND SPORT AIRCRAFT AVID FLYER ...........................................................................................................................