Etude De La Méthylation De L'adn Chez La Bactérie Pathogène D'insectes

Total Page:16

File Type:pdf, Size:1020Kb

Etude De La Méthylation De L'adn Chez La Bactérie Pathogène D'insectes Etude de la méthylation de l’ADN chez la bactérie pathogène d’insectes Photorhabdus luminescens Amaury Payelleville To cite this version: Amaury Payelleville. Etude de la méthylation de l’ADN chez la bactérie pathogène d’insectes Photorhabdus luminescens. Bactériologie. Université Montpellier, 2018. Français. NNT : 2018MONTG063. tel-02045899 HAL Id: tel-02045899 https://tel.archives-ouvertes.fr/tel-02045899 Submitted on 22 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Biologie des Interactions - Mécanismes des Interactions Parasitaires Symbiotiques et Pathogènes École doctorale GAIA Unité de recherche 1333, DGIMI Titre de la thèse Étude de la méthylation de l’ADN chez Photorhabdus luminescens TT01 Présentée par Amaury PAYELLEVILLE Le 16 Novembre 2018 Sous la direction de Julien BRILLARD et Alain GIVAUDAN Devant le jury composé de Didier LERECLUS, DR, INRA Rapporteur Eric CASCALES, DR, CNRS Rapporteur Alice GUIDOT, CR, INRA Examinatrice Mathieu SICARD, PR, UM Examinateur Julien BRILLARD, CR, INRA Directeur de thèse Alain GIVAUDAN, DR, INRA Co-Directeur de thèse À mes chers parents, Monique VINOT et Alain PAYELLEVILLE Résumé : Photorhabdus luminescens est une entérobactérie retrouvée en symbiose avec les nématodes du genre Heterorhabditis . Dans les sols, ce complexe némato-bactérien est pathogène d’insectes ravageurs et est utilisé en contrôle biologique. Le nématode pénètre dans l’insecte et libère la bactérie dans l’hémolymphe. Photorhabdus va ensuite se multiplier et secréter divers facteurs de virulence comme des toxines. L’insecte meurt de septicémie puis le nématode et la bactérie vont se nourrir du cadavre. Une fois les ressources épuisées, le complexe némato-bactérien va se reformer et sortir du cadavre à la recherche d’une nouvelle cible. Plusieurs exemples d’hétérogénéité phénotypique ont été décrits chez cette bactérie amenant chacun à la présence de sous-populations dans une culture bactérienne. Cette hétérogénéité phénotypique peut-être causée par des mécanismes épigénétiques et plus précisément par la méthylation de l’ADN. Chez les entérobactéries, la méthyltransférase Dam est très conservée. Elle méthyle les adénines des sites GATC et est impliquée dans la réparation des erreurs lors de la réplication de l’ADN, la régulation du cycle cellulaire mais aussi la régulation de divers gènes. Cette méthyltransférase est en compétition avec certain régulateurs transcriptionnel. Selon qui de la méthyltransférase ou du régulateur se fixera en premier, le gène sera ou non exprimé donnant naissance à deux sous-populations. Cette thèse a pour objectif de mettre en évidence les rôles de la méthyltransférase Dam chez Photorhabdus luminescens . Dans un premier temps, j’ai montré que la surexpression de Dam (Dam+) amène une diminution de la mobil ité et du pouvoir pathogène de la bactérie mais à l’inverse augmente sa capacité à former des biofilms. Une analyse transcriptomique (RNAseq) a montré des différentiels d’expression de certains gènes impliqués dans les phénotypes observés. En recombinant l a souche de Photorhabdus Dam+ avec les nématodes hôtes, l’effet sur la pathogénicité a été augmenté en comparaison des résultats après injection de la bactérie seule. L’établissement de la symbiose némato-bactérienne avec cette souche Dam+ n’est pas signif icativement impacté par rapport à la souche sauvage. Enfin l’analyse du méthylome (détection de tous les sites méthylés sur le génome grâce à la technique SMRT) de Photorhabdus dans diverses phases de croissance nous a permis de déterminer que la méthylation par Dam semble être stable aux différents temps de la croissance bactérienne testés chez Photorhabdus . Le méthylome de la souche Dam+ a confirmé l’hypothèse que cette surexpression augmentait le taux de méthylation des sites GATC sur le génome. La comparaison combinée entre le RNAseq et les sites GATC différentiellement méthylés entre la souche contrôle et Dam+ a mis en évidence certains gènes candidats ressortant de ces deux analyses. En effet, certains gènes sont différentiellement exprimés dans les deux souches et ont un différentiel de méthylation au niveau de sites GATC dans leur région promotrice, l’étude détaillée de leur régulation par la méthylation fait maintenant partie des perspectives et permettront peut-être d’expliquer une partie des phénotypes observés chez Photorhabdus luminescens . Mots-clefs : Méthyltransférase, Virulence, Régulation de la transcription, Méthylome, RNAseq Abstract : Photorhabdus luminescens is an Enterobacteriaceae found in soils in symbiosis with a nematode from the genus Heterorhabditis . This nemato-bacterial complex is highly pathogenic against insect pest crops and so used in biocontrol. The nematode enters into the insect and releases Photorhabdus in the hemolymph of the insect. Photorhabdus multiplies and produces diverse virulence factors as toxins. Insect die from septicemia and both nematodes and bacteria feed on the nutrients in the cadaver. Once nutrients are lacking, the nematodes and the bacteria reassociate and exit from the cadaver to find new insects to infect. Photorhabdus is switching between pathogenic and symbiotic state. This bacterium displays phenotypic heterogeneity as we observe subpopulations coexisting in a same bacterial culture. Phenotypic heterogeneity can be explained by epigenetic mechanisms such as DNA methylation. In Enterobacteriaceae , Dam methyltransferase is broadly distributed. It methylates the adenine of GATC sites. Dam is involved in post-replicative mismatch repair, cell-cycle regulation and also gene transcription regulation. This methyltransferase can be in competition with some transcriptional regulators. Depending on which will bind first on the promoter region, gene will be expressed or not, leading to the rise of two subpopulations. This thesis aims to understand roles of Dam in Photorhabdus luminescens . Overexpression of the methyltransferase leads to a decrease in motility and pathogenicity of Photorhabdus Dam+ strain whereas it increases biofilms formation. A transcriptomic analysis (RNAseq) revealed differential expression of genes involved in the observed phenotypes. Symbiosis establishment does not seem to be strongly impacted in Dam+ strain as the only difference observed when compared to the nematode associated with the control strain is the same as with bacteria alone (a delayed virulence). A methylome analysis was also done (screening of all methylated sites in the genome using SMRT sequencing) in several growth conditions which revealed that DNA methylation is stable over growth kinetics. Dam+ strain methylome analysis confirmed the hypothesis that Dam overexpression increases GATC methylation over the genome. Comparative analysis of methylome and RNAseq experiments between control and Dam+ strains highlighted several common genes. In fact, some genes are differentially expressed between both strains and also have GATC sites differentially methylated in their promoter region. Their transcription regulation by methylation is a future aim and may give some explanation for a part of the phenotypes observed in Photorhabdus luminescens . Keywords: Methyltransferase, Virulence, Gene transcription regulation, Methylome, RNAseq Remerciements Je tiens tout d’abord à remercier Didier LERECLUS et Eric CASCALES pour avoir accepté d’être membres rapporteurs du jury de cette thèse. Je tiens tout autant à remercier les deux membres examinateurs de ce jury : Alice GUIDOT et Mathieu SICARD. Je tiens a ussi à remercier l’école doctorale GAIA pour m’avoir financé et permis de réaliser ces trois ans de thèse ainsi que l’Université de Montpellier pour la formation m’ayant été fournie. J’aimerais aussi remercier l’INRA et plus particulièrement le département SPE m’ayant permis l’aboutissement de cette thèse. Merci aux membres de mon comité de thèse, Josep CASADES US, Anne-Blanc POTARD et Guillaume CHARRIERE pour leur aide lors des choix difficile et leur point de vue sur l’avancée de mes travaux. J’ai forcément envie d’adresser un énorme remerciement à mes encadrants, Julien BRILLARD et Alain GIVAUDAN. Tout d’abord Julien po ur le temps que tu as pris pour me former et la patience dont tu as fait preuve. Tu m’as permis de m’épanouir dans une thèse ou tout n’a pas toujours été facile. Ta confiance en moi et les libertés que tu m’as laissé prendre m’ont poussé à avancer et donner le meilleur au travers de cette épopée. Alain pour ta disponibilité malgré tes responsabilités et la qualité de tes réflexions sur mon travail. Vous m’avez tout deux permis d’arriver au bout de cette thèse et à me donner une envie de continuer dans la recherche encore plus grande qu’à mon arrivée dans ce laboratoire. Je n’oublierais pas non plus le s nombreuses discussions œnologiques nous ayant rassemblé et permis de s’éclipser du cadre du travail. Encore un immense merci à vous deux ! J’ai une grande pensée pour Anne LANOIS qui m’a accompagné et guidé dans mes diverses péripéties de biologie moléculaire sans perdre espoir et en m’en redonnant quand je n’en avais plus ! Cette thèse n’aurait pas été la même sans ton expérience et ton investissement. Je tiens aussi grandement à remercier Sylvie PAGES pour ton aide durant les suivis de pathogénèse et ta gentillesse. Jean -Claude OGIER pour ta bonne humeur et ton aide précieuse sur la phylogénie. Bernard DUVIC pour ta précieuse aide en informatique quand rien ne marc hait ainsi que Sophie GAUDRIAULT pour ton point de vue et tes opinions originales si importantes en science. Comment ne pas remercier la « Dream team » du labo Magalie EYCHENNE, Marie FRAYSSINET et Pierre -Alain GIRARD vous avez apporté votre bonne humeur dans ce travail et en dehors.
Recommended publications
  • Roles of Methylation and Sequestration in the Mechanisms of DNA Replication in Some Members of the Enterobacteriaceae Family
    Chapter 12 Roles of Methylation and Sequestration in the Mechanisms of DNA Replication in some Members of the Enterobacteriaceae Family Amine Aloui, Alya El May, Saloua Kouass Sahbani and Ahmed Landoulsi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51724 1. Introduction When growing cells divide, they need to copy their genetic material and distribute it to en‐ sure that each daughter cell receives one copy. This is a challenging task especially when the enormous length of the DNA compared to the cell size is considered. During DNA replica‐ tion, organization of the chromosomes is even more demanding, since replication forks con‐ tinuously produce new DNA. This DNA contains all the information required to build the cells and tissues of a prokaryotic or an eukaryotic organism. The exact replication of this in‐ formation in any species assures its genetic continuity from generation to generation and is critical to the normal development of an individual. The information stored in DNA is ar‐ ranged in hereditary units known as genes that control the identifiable traits of an organism. Discovery of the structure of DNA and subsequent elucidation of how DNA directs synthe‐ sis of RNA, which then directs assembly of proteins -the so-called central dogma - were monumental achievements that marked the early days of molecular biology. However, the simplified representation of the central dogma as DNA → RNA → protein does not reflect the role of proteins in the synthesis of nucleic acids. Moreover, proteins are largely responsi‐ ble for regulating DNA replication and gene expression, the entire process whereby the in‐ formation encoded in DNA is decoded into the proteins that characterize various cell types.
    [Show full text]
  • Negative Control of Replication Initiation by a Novel Chromosomal Locus Exhibiting Exceptional Affinity for Escherichia Coli Dnaa Protein
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein Risa Kitagawa,1,3 Toru Ozaki,1 Shigeki Moriya,2 and Tohru Ogawa1,4 1Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602, Japan; 2Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho, Ikoma 630-0101, Japan Replication of the Escherichia coli chromosome is initiated at a unique site, oriC. Concurrent initiation occurs at all oriC sites present in a cell once, and only once, per cell cycle. A mechanism to ensure cyclic initiation events was found operating through the chromosomal site, datA, a 1-kb segment located at 94.7 min on the genetic map that titrates exceptionally large amounts of the bacterial initiator protein, DnaA. A strain lacking datA grew normally but exhibited an asynchronous initiation phenotype as a result of extra initiation events. This mutant phenotype was suppressed by DnaA-titrating plasmids. Furthermore, mutations in a 9-bp DnaA-binding sequence (the DnaA box) in datA were enough to induce the mutant phenotype. Thus, datA is a novel chromosomal element that appears to adjust a balance between free and bound DnaA for a single initiation event at a fixed time in the bacterial cell cycle. Titration of DnaA to newly duplicated datA during oriC sequestration, which is mediated by hemimethylated GATC sequences in oriC and the SeqA protein, would contribute to prevention of reinitiations when oriC is desequestered.
    [Show full text]
  • Exploring the Cell Cycle of Archaea
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 300 Exploring the Cell Cycle of Archaea MAGNUS LUNDGREN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-6881-1 2007 urn:nbn:se:uu:diva-7848 ! " # ! $%%& '( ) * * * + , - . , #, $%%&, / / * 0 , 0 , '%%, & , , 123 4&!54 5))657!! 5 , 0 * * , 1 * . , * * , - * * , . 5 * , " * . * 8 * 5 , 2 . 0 . . , 2 * 0 9 . * 5 , 0 * . , . * * . . , 0 , /7 . . 0 , -. /7 * . * , : . . * , 0 * ; . * / , 0 . . , < ; . * , - . . . 8 * , 1 , ! " 0 / : # / #$ % $ & $ ' ( )* $ $ %+,-./ $ ! = # $%%& 122 7) 57$ 6 123 4&!54 5))657!! 5 ( ((( 5&!6! > (?? ,,? @ A ( ((( 5&!6!B List of papers This thesis is based on the following papers, which are referred to in the text by their roman numerals. I Robinson NP, Dionne I*, Lundgren M*, Marsh VL, Bernander R, Bell SD. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell,
    [Show full text]
  • D'escherichia Coli
    Remerciements Après dix ans à l’université dont six à l’université Paul Sabatier, presque cinq ans au LMGM, quatre ans de thèse, trois mois et demi à rédiger ce manuscrit, un mois à préparer la soutenance, plus de deux heures à présenter mes travaux devant une salle comble… Je n’imaginais pas que la dernière étape avant l’impression de ma thèse, l’écriture des remerciements, allait me demander autant de temps, et allait être aussi dure émotionnellement parlant (et oui, il est temps de tourner la page !). Je remercie tout d’abord les membres de mon Jury, Madame Reverchon et Messieurs Boccard, Nollmann et Le Bourgeois, d’avoir accepté de juger mes travaux de thèse. Je tiens ensuite à remercier François, qui m’a accueilli dans son équipe lorsque je suis arrivée sur Toulouse, avec l’envie d’étudier le cycle cellulaire bactérien. Merci de m’avoir fait confiance, de m’avoir laissé beaucoup de liberté dans le choix et la conduite de mes différents projets, et de m’avoir encadré, avec patience, pendant toutes ces années. Pendant ces quelques années dans l’équipe Cornet, j’ai eu la chance de travailler aux côtés de personnes extraordinaires que je tiens à remercier : Philou, mon tout premier encadrant de stage, et mon voisin de bureau préféré… ; Mathieu, qui m’a tout appris en microscopie ; Carine, toujours disponible pour un conseil technique, un protocole… ; Luu, ma deuxième maman, toujours souriante, généreuse, disponible, prévenante… je ne peux pas me passer de toi ; Estelle, ma coéquipière de randonnés, qui a préféré le climat anglais à la
    [Show full text]
  • Zl55thesispdf.Pdf (4.442Mb)
    A MOLECULAR MECHANISM ALLOWING TRANSPOSON TN7 TO TARGET ACTIVE DNA REPLICATION A DISSERTATION PRESENTED TO THE FACULTY OF THE GRADUATE SCHOOL OF CORNELL UNIVERSITY IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY ZAOPING LI JANUARY 2012 ©2012 ZAOPING LI A MOLECULAR MECHANISM ALLOWING TRANSPOSON TN7 TO TARGET ACTIVE DNA REPLICATION Zaoping Li, PhD Cornell University 2012 Transposons are jumping genes that are ubiquitous and abundant in all domains of life. They can move between locations that lack homology within a genome. Transposons drive the evolution of genomes through gene inactivation, expression modulation, and genome rearrangement. The bacterial transposon Tn7 and its relatives are widespread in diverse bacteria, likely due to their ability to control the frequency and targeting of transposition. My work presented here focuses on understanding the molecular mechanism of the TnsABC+E pathway of Tn7 transposition that preferentially targets actively transferring mobile DNA. I was able to establish a sensitive in vitro system for this transposition reaction with purified proteins and gapped DNA substrates preloaded with the β-clamp. The transposition profile recapitulates that observed in vivo, indicating that the minimal features recognized by TnsE to target DNA replication are 3' recessed ends found in target DNA and the β-clamp processivity factor (DnaN). I further show that the TnsE-β interaction is largely conserved among Tn7-like elements; however, this interaction is also species specific. In a heterologous expression study, I found that TnsE homologs from Idiomarina loihiensis and Shewanella baltica only promoted transposition when DnaN from the same host was used in the cell.
    [Show full text]
  • Genetic Networks Controlled by the Bacterial Replication Initiator and Transcription Factor Dnaa in Bacillus Subtilis
    Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis By Tracy Washington B.S., Biochemistry University of Oklahoma, 2007 Submitted to the Computational and Systems Biology Graduate Program in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology September 2013 0 Tracy Washington All Rights Reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created Signature of Author: Tracy Wilshington Computational and Systems Biology Graduate Program August 13, 2013 Certified by: Alan D. Grossman Professor of Biology Thesis Supervisor Accepted by: Christopher -urge Professor of Biology Director, Computational and Systems Biology Graduate Program Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis By Tracy Washington Submitted to the Computational and Systems Biology Graduate Program on August 13, 2013 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ABSTRACT DnaA is the bacterial replication initiator, which also functions as a transcription factor to regulate gene expression. In B. subtilis, DnaA has previously been shown to repress its own transcription and has also been implicated in directing part of the transcriptional response to replication stress. Because dnaA is essential, most of DnaA's potential effects on gene expression have been determined through indirect methods, which have implemented perturbations in replication and sequence analyses to predict direct effects of DnaA transcriptional regulation. Below, I take a more direct approach to assay DnaA's effect on gene expression and specific transcriptional regulatory networks by deleting dnaA in an oriN+AoriC strain background, which renders dnaA non-essential.
    [Show full text]
  • Targeting the Bacterial Orisome in the Search for New Antibiotics
    fmicb-08-02352 November 27, 2017 Time: 11:26 # 1 PERSPECTIVE published: 27 November 2017 doi: 10.3389/fmicb.2017.02352 Targeting the Bacterial Orisome in the Search for New Antibiotics Julia E. Grimwade* and Alan C. Leonard Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States There is an urgent need for new antibiotics to combat drug resistant bacteria. Existing antibiotics act on only a small number of proteins and pathways in bacterial cells, and it seems logical that expansion of the target set could lead to development of novel antimicrobial agents. One essential process, not yet exploited for antibiotic discovery, is the initiation stage of chromosome replication, mediated by the bacterial orisome. In all bacteria, orisomes assemble when the initiator protein, DnaA, as well as accessory proteins, bind to a DNA scaffold called the origin of replication (oriC). Orisomes perform the essential tasks of unwinding oriC and loading the replicative helicase, and orisome assembly is tightly regulated in the cell cycle to ensure chromosome replication begins only once. Only a few bacterial orisomes have been fully characterized, and while this lack of information complicates identification of all features that could be targeted, Edited by: Tatiana Venkova, examination of assembly stages and orisome regulatory mechanisms may provide Fox Chase Cancer Center, direction for some effective inhibitory strategies. In this perspective, we review current United States knowledge about orisome assembly and regulation, and identify potential targets that, Reviewed by: Dhruba Chattoraj, when inhibited pharmacologically, would prevent bacterial chromosome replication. National Institutes of Health (NIH), Keywords: antibiotic discovery, orisome, oriC, DnaA, initiation of bacterial DNA replication United States Anders Løbner-Olesen, University of Copenhagen, Denmark INTRODUCTION *Correspondence: Julia E.
    [Show full text]
  • Role of Seqa and Dam in Escherichia Coli Gene Expression: a Global͞microarray Analysis
    Role of SeqA and Dam in Escherichia coli gene expression: A global͞microarray analysis Anders Løbner-Olesen*†‡, Martin G. Marinus§, and Flemming G. Hansen† *Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark; †Biocentrum, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark; and §Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue, Worcester, MA 01655 Communicated by John R. Roth, University of California, Davis, CA, December 31, 2002 (received for review September 19, 2002) High-density oligonucleotide arrays were used to monitor global proteins H-NS, Fis, IHF, HU, etc. (17), but a similar connection transcription patterns in Escherichia coli with various levels of Dam has never been postulated for the SeqA protein. and SeqA proteins. Cells lacking Dam methyltransferase showed a We have applied high-density oligonucleotide arrays to ana- modest increase in transcription of the genes belonging to the SOS lyze global gene expression in WT cells and in cells containing regulon. Bacteria devoid of the SeqA protein, which preferentially various levels of Dam and SeqA proteins. The results are binds hemimethylated DNA, were found to have a transcriptional discussed in relation to gene dosage and DNA structure. profile almost identical to WT bacteria overexpressing Dam meth- yltransferase. The latter two strains differed from WT in two ways. Materials and Methods First, the origin proximal genes were transcribed with increased Bacterial Strains. All strains are derived from E. coli K-12 frequency due to increased gene dosage. Second, chromosomal MG1655 (18) and are as follows: KS9921(⌬seqA); ALO1738 domains of high transcriptional activity alternate with regions of (dam13::Tn9); ALO1739(aroK17::cat͞pMS2); ALO1740- low activity, and our results indicate that the activity in each (pTP166); ALO1832(pMAK7); and ALO1834(pFH539).
    [Show full text]
  • Phenotypic Characterization of Self-Assembling
    PHENOTYPIC CHARACTERIZATION OF SELF-ASSEMBLING PROTEIN FRAGMENTS USING NEGATIVE DOMINANCE A Dissertation by ADRIENNE ELIZABETH ZWEIFEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Biochemistry PHENOTYPIC CHARACTERIZATION OF SELF-ASSEMBLING PROTEIN FRAGMENTS USING NEGATIVE DOMINANCE A Dissertation by ADRIENNE ELIZABETH ZWEIFEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, James C. Hu Committee Members, Michael Polymenis Donald W. Pettigrew Michael Benedik Head of Department, Gregory D. Reinhart May 2010 Major Subject: Biochemistry iii ABSTRACT Phenotypic Characterization of Self-Assembling Protein Fragments Using Negative Dominance. (May 2010) Adrienne Elizabeth Zweifel, B.S., University of Missouri-Columbia Chair of Advisory Committee: Dr. James C. Hu Protein oligomerization provides a way for cells to modulate function in vivo. In this study, self-assembling protein fragments from ParC, DnaX, and proteins of unknown function were used to generate phenotypes in a dominant negative manner. These fragments were expressed as Thioredoxin (TRX) fusions under the control of the inducible araBAD promoter. Fragments chosen contain only the oligomerization domain of the protein, lacking the regions necessary for catalytic function. Fragments of ParC, a subunit of Topoisomerase (Topo) IV, generated fragment-specific phenotypes. Regions that expressed both the oligomerization domain and CTD of ParC (ParC206-752 and ParC332-752) yielded filamentous cells with several different nucleoid segregation phenotypes. Another ParC fragment containing only the oligomerization domain of ParC (ranging from 333-485) yields a recA-dependent septation defect in a subset of the population.
    [Show full text]
  • Regulating DNA Replication in Bacteria
    Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Regulating DNA Replication in Bacteria Kirsten Skarstad1 and Tsutomu Katayama2 1Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway 2Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan Correspondence: [email protected] The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaAhas accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is con- served in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria. acteria typically contain few chromosomes, tion timing is maintained such that initiation Beach carrying a defined origin of replication occurs simultaneously at all origins once per (Messer 2002).
    [Show full text]
  • A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication
    A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Guo, Monica S. et al. "A bacterial chromosome structuring protein binds overtwisted DNA to stimulate type II topoisomerases and enable DNA replication" Cell 175, 2 (October 2018): P583-597.e23 © 2018 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.cell.2018.08.029 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125266 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell. Author Manuscript Author manuscript; Manuscript Author available in PMC 2019 October 04. Published in final edited form as: Cell. 2018 October 04; 175(2): 583–597.e23. doi:10.1016/j.cell.2018.08.029. A bacterial chromosome structuring protein binds overtwisted DNA to stimulate type II topoisomerases and enable DNA replication Monica S. Guo1,4, Diane L. Haakonsen1,4,‡, Wenjie Zeng3, Maria A. Schumacher3,*, and Michael T. Laub1,2,5,* 1Department of Biology 2Howard Hughes Medical Institute,Massachusetts Institute of Technology, Cambridge, MA 02139 3Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710 4Contributed equally, listed alphabetically 5Lead Contact Summary When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation.
    [Show full text]
  • Effects of Purified Seqa Protein on Oric-Dependent DNA Replication in Vitro
    The EMBO Journal Vol.17 No.14 pp.4158–4165, 1998 Effects of purified SeqA protein on oriC-dependent DNA replication in vitro Sture Wold, Erik Boye, Steven Slater1,2, elimination or SeqA overproduction in mutant strains com- Nancy Kleckner1 and Kirsten Skarstad3 promised for initiation. Subsequent studies specifically identified SeqA as a regulatory factor for initiation. In the Department of Cell Biology, Institute for Cancer Research, absence of SeqA, initiation occurs at a lower cell mass Montebello, 0310 Oslo, Norway and 1Department of Molecular and compared with wild-type cells and origins may be initiated Cellular Biology, Harvard University, Cambridge, MA 02138, USA twice in the same cell division period (Boye et al., 1996). 2Present address: Monsanto Company, 700 Chesterfield Parkway, Secondly, SeqA is essential for sequestration (Lu et al., N. St Louis, MO 63198, USA 1994). These two effects of SeqA are distinguished in part 3Corresponding author by the methylation status of GATC sites in oriC: initiation e-mail: [email protected] occurs on fully methylated DNA whereas sequestration affects oriC in the hemimethylated state that arises as a In vivo studies suggest that the Escherichia coli SeqA result of its replication. protein modulates replication initiation in two ways: by Biochemical analysis has shown that SeqA binds oriC in delaying initiation and by sequestering newly replicated a methylation-modulated fashion (Slater et al., 1995). SeqA origins from undergoing re-replication. As a first binds fully methylated oriC specifically via a highly co- approach towards understanding the biochemical bases operativebutrelativelylowaffinityinteraction.Thisbinding for these effects, we have examined the effects of requires multiple determinants throughout oriC (Slater purified SeqA protein on replication reactions per- et al., 1995), probably explaining why SeqA is reported not formed in vitro on an oriC plasmid.
    [Show full text]