Characterizing the DNA Methyltransferases of Haloferax Volcanii Via Bioinformatics, Gene Deletion, and SMRT Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soil Biology & Biochemistry
Soil Biology & Biochemistry 111 (2017) 66e77 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands Sizhong Yang a, b, 1, Susanne Liebner a, 1, Matthias Winkel a, Mashal Alawi a, Fabian Horn a, Corina Dorfer€ c, Julien Ollivier d, Jin-sheng He e, f, Huijun Jin b, Peter Kühn c, * Michael Schloter d, Thomas Scholten c, Dirk Wagner a, a GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany b State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China c University of Tübingen, Department of Geosciences, 72074 Tübingen, Germany d Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, 85764 Neuherberg, Germany e Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xi'ning, China f Peking University, Department of Ecology, College of Urban and Environmental Sciences, 100871, Beijing, China article info abstract Article history: The organic carbon of permafrost affected soils is receiving particular attention with respect to its fate Received 21 December 2016 and potential feedback to global warming. The structural and activity changes of methanogenic com- Accepted 15 March 2017 munities in the degrading permafrost-affected wetlands on the Tibetan Plateau can serve as fundamental elements for modelling feedback interaction of ecosystems to climate change. Hence, we aimed at anticipating if and how the rapid environmental changes occurring especially on the high altitude Ti- Keywords: betan platform will affect methanogenic communities. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Discovery of a Novel Methanogen Prevalent in Thawing Permafrost
ARTICLE Received 11 Jun 2013 | Accepted 7 Jan 2014 | Published 14 Feb 2014 DOI: 10.1038/ncomms4212 Discovery of a novel methanogen prevalent in thawing permafrost Rhiannon Mondav1,*,w, Ben J. Woodcroft1,*, Eun-Hae Kim2, Carmody K. McCalley3,w, Suzanne B. Hodgkins4, Patrick M. Crill5, Jeffrey Chanton4, Gregory B. Hurst6, Nathan C. VerBerkmoes6,w, Scott R. Saleska3, Philip Hugenholtz1, Virginia I. Rich2 & Gene W. Tyson1 Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus ‘Methanoflorens stordalenmirensis’ gen. nov. sp. nov., belonging to the uncultivated lineage ‘Rice Cluster II’ (Candidatus ‘Methanoflorentaceae’ fam. nov.). Metage- nomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, ‘Methanoflorentaceae’ are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus ‘M. stordalenmirensis’ appears to be a key mediator of methane-based positive feedback to climate warming. 1 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia. 2 Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, USA. 3 Ecology and Evolutionary Biology Department, University of Arizona, Tucson, Arizona 85721, USA. -
Motile Ghosts of the Halophilic Archaeon, Haloferax Volcanii
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899351; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Motile ghosts of the halophilic archaeon, 2 Haloferax volcanii 3 Yoshiaki Kinosita1,2,¶,*, Nagisa Mikami2, Zhengqun Li2, Frank Braun2, Tessa EF. Quax2, 4 Chris van der Does2, Robert Ishmukhametov1, Sonja-Verena Albers2 & Richard M. Berry1 5 1Department of Physics, University of Oxford, Park load OX1 3PU, Oxford, UK 6 2Institute for Biology II, University of Freiburg, Schaenzle strasse 1, 79104 Freiburg, 7 Germany 8 ¶Present address: Molecular Physiology Laboratory, RIKEN, Japan 9 *Correspondence should be addressed to [email protected] 10 Author Contributions: 11 Y.K. and R.M.B designed the research. Y.K. performed all experiments and 12 obtained all data; N.M. helped genetics, biochemistry, and preparation of figures; 13 Z.L, F.B., T.EF.Q., C.v.d.D and S.-V. A. helped genetics; R.I helped the ghost 14 experiments; N.M. and R.M.B helped microscope measurements; Y.K., and 15 R.M.B. wrote the paper. 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899351; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Roles of Methylation and Sequestration in the Mechanisms of DNA Replication in Some Members of the Enterobacteriaceae Family
Chapter 12 Roles of Methylation and Sequestration in the Mechanisms of DNA Replication in some Members of the Enterobacteriaceae Family Amine Aloui, Alya El May, Saloua Kouass Sahbani and Ahmed Landoulsi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51724 1. Introduction When growing cells divide, they need to copy their genetic material and distribute it to en‐ sure that each daughter cell receives one copy. This is a challenging task especially when the enormous length of the DNA compared to the cell size is considered. During DNA replica‐ tion, organization of the chromosomes is even more demanding, since replication forks con‐ tinuously produce new DNA. This DNA contains all the information required to build the cells and tissues of a prokaryotic or an eukaryotic organism. The exact replication of this in‐ formation in any species assures its genetic continuity from generation to generation and is critical to the normal development of an individual. The information stored in DNA is ar‐ ranged in hereditary units known as genes that control the identifiable traits of an organism. Discovery of the structure of DNA and subsequent elucidation of how DNA directs synthe‐ sis of RNA, which then directs assembly of proteins -the so-called central dogma - were monumental achievements that marked the early days of molecular biology. However, the simplified representation of the central dogma as DNA → RNA → protein does not reflect the role of proteins in the synthesis of nucleic acids. Moreover, proteins are largely responsi‐ ble for regulating DNA replication and gene expression, the entire process whereby the in‐ formation encoded in DNA is decoded into the proteins that characterize various cell types. -
Biology of Haloferax Volcanii
Hindawi Publishing Corporation Archaea Volume 2011, Article ID 602408, 14 pages doi:10.1155/2011/602408 Review Article Functional Genomic and Advanced Genetic Studies Reveal Novel Insights into the Metabolism, Regulation, and Biology of Haloferax volcanii Jorg¨ Soppa Institute for Molecular Biosciences, Goethe University Frankfurt, Biocentre, Max-Von-Laue-Straβe 9, 60438 Frankfurt, Germany Correspondence should be addressed to Jorg¨ Soppa, [email protected] Received 19 May 2011; Revised 4 July 2011; Accepted 6 September 2011 Academic Editor: Nitin S. Baliga Copyright © 2011 Jorg¨ Soppa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally- regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. -
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. -
The Nuts and Bolts of the Haloferax CRISPR-Cas System I-B
RNA Biology ISSN: 1547-6286 (Print) 1555-8584 (Online) Journal homepage: https://www.tandfonline.com/loi/krnb20 The nuts and bolts of the Haloferax CRISPR-Cas system I-B Lisa-Katharina Maier, Aris-Edda Stachler, Jutta Brendel, Britta Stoll, Susan Fischer, Karina A. Haas, Thandi S. Schwarz, Omer S. Alkhnbashi, Kundan Sharma, Henning Urlaub, Rolf Backofen, Uri Gophna & Anita Marchfelder To cite this article: Lisa-Katharina Maier, Aris-Edda Stachler, Jutta Brendel, Britta Stoll, Susan Fischer, Karina A. Haas, Thandi S. Schwarz, Omer S. Alkhnbashi, Kundan Sharma, Henning Urlaub, Rolf Backofen, Uri Gophna & Anita Marchfelder (2019) The nuts and bolts of the Haloferax CRISPR-Cas system I-B, RNA Biology, 16:4, 469-480, DOI: 10.1080/15476286.2018.1460994 To link to this article: https://doi.org/10.1080/15476286.2018.1460994 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 13 Apr 2018. Published online: 21 May 2018. Submit your article to this journal Article views: 547 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=krnb20 RNA BIOLOGY 2019, VOL. 16, NO. 4, 469–48?0 https://doi.org/10.1080/15476286.2018.1460994 REVIEW The nuts and bolts of the Haloferax CRISPR-Cas system I-B Lisa-Katharina Maiera, Aris-Edda Stachlera, Jutta Brendela, Britta Stolla, Susan Fischera, Karina A. Haasa,b, Thandi S. Schwarza, Omer S. Alkhnbashic, Kundan Sharmae,f, Henning Urlaube,g, Rolf Backofenc,d, -
Genome Sequence of an Extremely Halophilic Archaeon
Extremely Halophilic Archaeon Sequence 383 21 Genome Sequence of an Extremely Halophilic Archaeon Shiladitya DasSarma INTRODUCTION Extreme halophiles are novel microorganisms that require 5–10 times the salinity of seawater (ca. 3–5M NaCl) for optimal growth (1,2). They include diverse prokaryotic species, both archaeal and bacterial, and some eukaryotic organisms. Extreme halo- philes are found in hypersaline environments near the sea or salt deposits of marine or nonmarine origin. Two of the largest hypersaline lakes supporting a variety of halo- philic species are the Great Salt Lake in the western United States and the Dead Sea in the Middle East. Some of the most interesting hypersaline environments are small arti- ficial solar salterns used for producing salt from the sea, which are distributed through- out the world. Many hypersaline environments exhibit gradients of increasing salinity temporally and produce sequential growth of progressively more halophilic species, including complex microbial mats and spectacular blooms of bright red and red-orange colored species. These environments are important ecologically, frequently supporting entire populations of such exotic birds as pink flamingoes, which obtain their color from the pigmented halophilic microorganisms. A critical feature of halophilic microbes that prevents cell lysis in hypersaline environments is their high internal concentration of compatible solutes (e.g., amino acids, polyols, and salts), which act as osmoprotectants. Although a wide variety of halophiles has been cultured, the genome of only a single extreme halophile, Halobacterium sp NRC-1, has been completely sequenced thus far (3,4). This species is a typical halophile commonly found in many hypersaline environ- ments, including the Great Salt Lake and solar salterns. -
Mutations Affecting HVO 1357 Or HVO 2248 Cause Hypermotility in Haloferax Volcanii, Suggesting Roles in Motility Regulation
G C A T T A C G G C A T genes Article Mutations Affecting HVO_1357 or HVO_2248 Cause Hypermotility in Haloferax volcanii, Suggesting Roles in Motility Regulation Michiyah Collins 1 , Simisola Afolayan 1, Aime B. Igiraneza 1, Heather Schiller 1 , Elise Krespan 2, Daniel P. Beiting 2, Mike Dyall-Smith 3,4 , Friedhelm Pfeiffer 4 and Mechthild Pohlschroder 1,* 1 Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (M.C.); [email protected] (S.A.); [email protected] (A.B.I.); [email protected] (H.S.) 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (E.K.); [email protected] (D.P.B.) 3 Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville 3010, Australia; [email protected] 4 Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany; [email protected] * Correspondence: [email protected]; Tel.: +1-215-573-2283 Abstract: Motility regulation plays a key role in prokaryotic responses to environmental stimuli. Here, we used a motility screen and selection to isolate hypermotile Haloferax volcanii mutants from a transposon insertion library. Whole genome sequencing revealed that hypermotile mutants were predominantly affected in two genes that encode HVO_1357 and HVO_2248. Alterations of these genes comprised not only transposon insertions but also secondary genome alterations. HVO_1357 Citation: Collins, M.; Afolayan, S.; Igiraneza, A.B.; Schiller, H.; contains a domain that was previously identified in the regulation of bacteriorhodopsin transcription, Krespan, E.; Beiting, D.P.; as well as other domains frequently found in two-component regulatory systems. -
Analysis of Cell–Cell Bridges in Haloferax Volcanii Using Electron Cryo-Tomography Reveal a Continuous Cytoplasm and S-Layer
fmicb-11-612239 January 2, 2021 Time: 15:14 # 1 ORIGINAL RESEARCH published: 13 January 2021 doi: 10.3389/fmicb.2020.612239 Analysis of Cell–Cell Bridges in Haloferax volcanii Using Electron Cryo-Tomography Reveal a Continuous Cytoplasm and S-Layer Shamphavi Sivabalasarma1,2, Hanna Wetzel1, Phillip Nußbaum1, Chris van der Does1, Morgan Beeby3 and Sonja-Verena Albers1,2* 1 Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany, 2 Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany, 3 Department of Life Sciences, Imperial College London, London, United Kingdom Halophilic archaea have been proposed to exchange DNA and proteins using a fusion- based mating mechanism. Scanning electron microscopy previously suggested that mating involves an intermediate state, where cells are connected by an intercellular Edited by: bridge. To better understand this process, we used electron cryo-tomography (cryoET) John A. Fuerst, and fluorescence microscopy to visualize cells forming these intercellular bridges. The University of Queensland, CryoET showed that the observed bridges were enveloped by an surface layer (S-layer) Australia and connected mating cells via a continuous cytoplasm. Macromolecular complexes Reviewed by: Aharon Oren, like ribosomes and unknown thin filamentous helical structures were visualized in the Hebrew University of Jerusalem, Israel cytoplasm inside the bridges, demonstrating that these bridges can facilitate exchange Reinhard Rachel, University of Regensburg, Germany of cellular components. We followed formation of a cell–cell bridge by fluorescence time- *Correspondence: lapse microscopy between cells at a distance of 1.5 mm. These results shed light on the Sonja-Verena Albers process of haloarchaeal mating and highlight further mechanistic questions. -
Negative Control of Replication Initiation by a Novel Chromosomal Locus Exhibiting Exceptional Affinity for Escherichia Coli Dnaa Protein
Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein Risa Kitagawa,1,3 Toru Ozaki,1 Shigeki Moriya,2 and Tohru Ogawa1,4 1Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602, Japan; 2Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho, Ikoma 630-0101, Japan Replication of the Escherichia coli chromosome is initiated at a unique site, oriC. Concurrent initiation occurs at all oriC sites present in a cell once, and only once, per cell cycle. A mechanism to ensure cyclic initiation events was found operating through the chromosomal site, datA, a 1-kb segment located at 94.7 min on the genetic map that titrates exceptionally large amounts of the bacterial initiator protein, DnaA. A strain lacking datA grew normally but exhibited an asynchronous initiation phenotype as a result of extra initiation events. This mutant phenotype was suppressed by DnaA-titrating plasmids. Furthermore, mutations in a 9-bp DnaA-binding sequence (the DnaA box) in datA were enough to induce the mutant phenotype. Thus, datA is a novel chromosomal element that appears to adjust a balance between free and bound DnaA for a single initiation event at a fixed time in the bacterial cell cycle. Titration of DnaA to newly duplicated datA during oriC sequestration, which is mediated by hemimethylated GATC sequences in oriC and the SeqA protein, would contribute to prevention of reinitiations when oriC is desequestered.