Wet Tropics, Queensland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is Direct Seeding a Biologically Viable Strategy for Restoring Forest Ecosystems? Evidences from a Meta–Analysis
IS DIRECT SEEDING A BIOLOGICALLY VIABLE STRATEGY FOR RESTORING FOREST ECOSYSTEMS? EVIDENCES FROM A META–ANALYSIS 1* 2 2 Eliane Ceccon , Edgar J. González , Carlos Martorell 1 * Correspondence author: Centro Regional de Investigaciones Multidisciplinarias - Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Circuito 2, 62210, Col. Chamilpa, Cuernavaca, Morelos, Ciudad Universitaria de la UAEM, México. [email protected] 2 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, D.F. México. [email protected], [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ldr.2421 This article is protected by copyright. All rights reserved. Summary Ecological restoration has become an important technique for mitigating the human impacts on natural vegetation. Planting seedlings is the most common approach to regain lost forest cover. However, these activities require a large economic investment. Direct-seeding is considered a cheaper and easier alternative technique, in which tree seeds are introduced directly on the site rather than transplanting seedlings from nurseries. To evaluate the effectiveness of direct seeding, we conducted a comprehensive search of the literature using ―restoration‖, ―direct seeding‖ and ―sowing‖ as keywords, and we performed a meta-analysis using 30 papers and 89 species. We used two different measures of restoration success: seed germination probability and success probability (the chance that a seed germinates and survives until the end of the experiment). -
Brooklyn, Cloudland, Melsonby (Gaarraay)
BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge. -
Acacia Fimbriata Dwarf Crimson Blush 8 Eye on It During the Conference, Please Let Me Know
Australian Native Plants Society (Australia) Inc. ACACIA STUDY GROUP NEWSLETTER Group Leader and Newsletter Editor Seed Bank Curator Bill Aitchison Victoria Tanner 13 Conos Court, Donvale, Vic 3111 Phone (03) 98723583 Email: [email protected] No. 129 June 2015 ISSN 1035-4638 Contents Page From The Leader Dear Members From the Leader 1 It is now only a few months until the ANPSA Biennial Welcome 2 Conference being held in Canberra from 15-20 November. From Members and Readers 2 This is a great opportunity to catch up with some other Some Notes From Yallaroo 3 members of our Study Group, and of course to take part in Wattles With Minni Ritchi Bark 5 the great program put together by the organisers. Introduction of Australian Acacias Information relating to the Conference and details regarding to South America 6 registration are available on the Conference website Max’s Interesting Wattles 7 http://anpsa.org.au/conference2015. Our Study Group will An Acacia dealbata question from have a display at the Conference. If any Study Group Sweden 7 member who will be at the Conference could help with the Pre-treatment of Acacia Seeds 8 display, either in setting it up, or just in helping to keep an Acacia fimbriata dwarf Crimson Blush 8 eye on it during the Conference, please let me know. Books 9 Seed Bank 9 I am sure that many of our members will be aware of the Study Group Membership 10 Wattle Day Association, and the great work that it does in promoting National Wattle Day each year on 1 September. -
Phylogenetic Relationships of Discyphus Scopulariae
Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony -
Creating Jobs, Protecting Forests?
Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4. -
Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5
Int. J. Biol. Sci. 2009, 5 727 International Journal of Biological Sciences 2009; 5(7):727-735 © Ivyspring International Publisher. All rights reserved Research Paper Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 1. Institute of Medicinal Plant Development, Beijing Union Medical College/Chinese Academy of Medicinal Sciences, Beijing 100193, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. Institute of Beijing Pharmacochemistry, Beijing 102205, China; 4. Central Laboratory of 306 Hospital of PLA, Beijing 100083, China; 5. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Corresponding authors: [email protected] (Guo SX); [email protected] (Shao HB). Posting address: Dr. Professor Shao Hongbo, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Received: 2009.08.28; Accepted: 2009.11.26; Published: 2009.12.02 Abstract The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine spe- cies, and there is proteomic difference among Anoectochilus interspecies. Moreover, pro- teomic finger printings of five Anoectochilus species have been established for identifying spe- cies, and genetic relationships of five species within Anoectochilus have been deduced ac- cording to proteomic differences among five species. Key words: Anoectochilus, ITS, proteomic finger printing, SELDI sterile condition. -
May 2014. Orchid Specialist Group Newsletter
ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 May 2014 The Value of Long Term Studies Editorial Endangered Hawaiian endemic, Peristylus holochila, initiates anthesis in vitro and ex vitro Long term agricultural field experiments at Lawrence W. Zettler Rothamstead, England, are notable because when they Shanna E. David began in 1843, the founders could not possibly have predicted what might be discovered over the following Orchid Recovery Program, Department of Biology 160 years. The conservation value of long term studies Illinois College, 1101 West College Avenue of orchids was discussed in 1990 by the late Carl Olof Jacksonville, IL 62650 USA Tamm, Uppsala, Sweden, when he presented his observations of individual plant behaviour at the ([email protected]) International Orchid Symposium. His conclusion after some 40 years of observation was simple: long term Only three orchid species are native to the Hawaiian observations are essential to conservation and that archipelago: Anoectochilus sandvicensis (Hawaiian individual plant tracking of selected orchid taxa was Jeweled Orchid, ke kino o kanaloa), Liparis hawaiensis recommended. (Hawaii Widelip Orchid, awapuhiakanaloa) and Peristylus (Platanthera) holochila (Hawaiian Bog Two papers have recently been published that Orchid, puahala a kane). Of these three, by far the rarest demonstrate the conservation potential of decades-long is P. holochila (Fig. 1) consisting of 33 known plants studies. Joyce and Allan Reddoch summarized what scattered amongst three islands as of 2011 (Kauai, has been learned from some four decades of monitoring Maui, Molokai). 22 species in Gatineau Park, QC, Canada (Reddoch & Reddoch, 2014). -
EIS MEWF Vol 3 App16
Mount Emerald Wind Farm, Herberton Range North Queensland Environmental Impact Statement Volume 3 Appendix 16 Mount Emerald Wind Farm Flora Report (R72444) Prepared by RPS PR100246 / R72894; Volume 3 – Final November 2014 Mount Emerald Wind Farm Flora Report Prepared by: Prepared for: RPS AUSTRALIA EAST PTY LTD RATCH AUSTRALIA CORPORATION LIMITED 135 Abbott Street PO Box 1949 Level 4 CAIRNS QLD 4870 231 George Street BRISBANE QLD 4000 T: +61 4031 1336 F: +61 4031 29142 T: +61 7 3214 36400 E: [email protected] F: +61 2 8913 9423 E: Client Manager: Mellissa Jess W: www.ratchaustralia.com Report Number: PR100246-1 / R72444 Version / Date: Draft September 2013 rpsgroup.com.au Mount Emerald Wind Farm Flora Report IMPORTANT NOTE Apart from fair dealing for the purposes of private study, research, criticism, or review as permitted under the Copyright Act, no part of this report, its attachments or appendices may be reproduced by any process without the written consent of RPS Australia East Pty Ltd. All enquiries should be directed to RPS Australia East Pty Ltd. We have prepared this report for the sole purposes of RATCH Australia Corporation Limited (“Client”) for the specific purpose of only for which it is supplied (“Purpose”). This report is strictly limited to the purpose and the facts and matters stated in it and does not apply directly or indirectly and will not be used for any other application, purpose, use or matter. In preparing this report we have made certain assumptions. We have assumed that all information and documents provided to us by the Client or as a result of a specific request or enquiry were complete, accurate and up-to-date. -
The Discovery of 2,5-Dialkylcyclohexan-1,3-Diones As a New Class of Natural Products
The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products S. Frankea, F. Ibarraa, C. M. Schulza, R. Twelea, J. Poldyb, R. A. Barrowb, R. Peakallc, F. P. Schiestld, and W. Franckea,1 aDepartment of Chemistry, Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany; bDepartment of Chemistry and cDepartment of Botany and Zoology, School of Biology, Australian National University, Canberra ACT 0200, Australia; and dInstitute of Systematic Botany, University of Zu¨rich, Zollikerstrasse 107, CH-8008 Zu¨rich, Switzerland Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved March 31, 2009 (received for review January 22, 2009) Orchids employing sexual deceit attract males of their pollinator candidate compounds, followed by coupled gas chromatography/ species through specific volatile signals that mimic female-released mass spectrometry (GC/MS) to determine their chemical struc- sex pheromones. One of these signals proved to be 2-ethyl-5- tures. Confirmation of biological activity with synthetic com- propylcyclohexan-1,3-dione (chiloglottone1), a new natural prod- pounds during field bioassays was the final essential step (11–13). uct that was shown to be most important in the relations between A milestone in the understanding of thynnine wasp phero- orchids of the genus Chiloglottis, native to Australia, and corre- mones and the attractive principles of orchids that mimic them sponding pollinator species. Systematic investigations on the mass has been the identification of 2-ethyl-5-propylcyclohexan-1,3- spectrometric fragmentation pattern of 2,5-dialkylcyclohexan-1,3- dione, chiloglottone1, formerly called chiloglottone, as the de- diones identified key ions providing information about the struc- cisive compound involved in the chemical mimicry used by tures of the substituents at positions 2 and 5. -
TELOPEA Publication Date: 27 September 1991 Til
Volume 4(3): 497–507 TELOPEA Publication Date: 27 September 1991 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19914946 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) 497 Alloxylon (Proteaceae), a new genus from New Guinea and eastern Australia Peter H. Weston and Michael D. Crisp Abstract Weston, Peter H.I, and Crisp, Michael D.2 (1 National Herbarium of New South Wales, Royal Botanic Gardens, Sydney NSW Australia 2000; 2 Australian National Botanic Gardens, GPO Box 1777, Canberra ACT Australia 2601; present address: Division of Botany and Zoology, Australian National University, GPO Box 4, Canberra ACT 2601) 1991. Alloxylon (Proteaceae), a new genus from New Guinea and eastern Australia. Telopea 4(3): 497-507. Oreocallis sens. lat. consists of two distinct clades, one in South America, the other in Australasia, that together are likely to be paraphylet ic. Newly sampled characters strongly support the monophyly of the Australasian group. We describe the new genus Alloxylon to accommodate the Australasian species of Oreocallis sens. lat. and revise its species. Alloxylon fIammeum is described as new and new combinations are made for A. brachycarpum, A. wickhamii and A. pinnatum. Introduction Cladistic analyses of the subtribe Embothriinae of the family Proteaceae (Weston & Crisp 1987, in prep.) show the genus Oreocallis R. Br. sens. lat. to comprise two branches of an unresolved trichotomy. The third branch is the genus Telopea, a well corroborated clade of five species. The sister group to this trichotomy is Embothrium, the only other genus in the Embothriinae. -
Asgap Indigenous Orchid Study Group Issn 1036-9651
ASGAP INDIGENOUS ORCHID STUDY GROUP ISSN 1036-9651 Group Leaders: Don and Pauline Lawie P.O. Box 230, BABINDA 4861 Phone: 0740 671 577 Newsletter 53 December 2005 MAJORS MOUNTAIN - A WALK TO PARADISE FOR A NATIVE ORCHID GROWER t~r; I1 -&d by Mark Nowochatko In Mid August 2005 the Atherton Tablelands Branch of SGAP conducted a field day at Major's Mountain, just east of Ravenshoe on the Evelyn Tableland in North Queensland. A group of 20 plus diehard SGAP enthusiasts met at the trailhead and undertook the walk of approximately 3 km one way. With the first 2.1 km easy going, the balance is a strenuous climb to an elevation of around 1,100 metres. II I1 Moving from the main track to the Major's Mountain goat trail, the orchids started with a Plectorrhiza tridentata and several Bulbophyllurns. Shortly after the steep climbing starts the orchid zone is reached. The pace slowed considerably as everyone explored this wonderful orchid habitat, and the difficulty of the walk faded away. Dendrobium adae in bloom greeted the walkers; some flowers with a significant amount of red on the back of the tepals caught the interest of several people. Amongst the orchids in bloom visible at eye level was Sarcochilusfalcatus. The plants are small with flowers nearly as large as the plants. A stunning Sarcochilus borealis (olivaceous) on a tree trunk barely 100 mm off the ground tested the determination of several photographers. (Mind you the ground was sloping up at over 50°.*) Several plants of Taeniophyllum were found carrying seed pods, but without the flowers positive identification of the species was not possible. -
Chemical Composition of the Resin Essential Oil from Agathis
American Journal of Essential Oils and Natural Products 2016; 4(4): 04-05 ISSN: 2321 9114 AJEONP 2016; 4(4): 04-05 Chemical composition of the resin essential oil from © 2016 AkiNik Publications Received: 02-08-2016 Agathis atropurpurea from North Queensland, Accepted: 03-09-2016 Australia Matthew S Garrison Department of Chemistry, University of Alabama in Matthew S Garrison, Anthony K Irvine and William N Setzer Huntsville, Huntsville, AL, USA Anthony K Irvine Abstract CSIRO Tropical Forest Research The volatile materials from the resin of Agathis atropurpurea were obtained by hydrodistillation and Centre, Atherton, Queensland, analyzed by gas chromatography–mass spectrometry. A total of 17 compounds were identified in the Australia distilled oils accounting for 98.1-99.6% of the compositions. The oils were dominated by limonene (89.8- 97.4%) and were devoid of diterpenoids. William N Setzer Department of Chemistry, Keywords: Essential oil composition, Agathis atropurpurea, Araucariaceae, limonene University of Alabama in Huntsville, Huntsville, AL, USA 1. Introduction The genus Agathis (Araucariaceae) is made up of a least 13 species found in Malesia, Australia, New Zealand and the South Pacific islands [1,2]. Agathis atropurpurea B. Hyland (Queensland kauri pine) is endemic to northeast Queensland, and is found in mountain rainforest ranging from around 16º25ʹS south to around 17º23ʹS, at an altitudinal range of 750- [2] 1500 m . The resin from A. atropurpurea oozes profusely from wounds on the tree trunk and is used by Australian Aborigines to start fires. In this work, we present the composition of the volatiles obtained by hydrodistillation of the resin from A.