Oxidation and Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Oxidation and Reduction Key words: oxidations using chromium and manganese reagents, cleavage of double bonds with ozone and osmium tetroxide, oxidations with aluminum isopropoxide, peracids, Introduction Broader definition of oxidation and reduction respectively refer to the loss and gain of electrons, or an increase in oxidation number (oxidation) Definition and a decrease in oxidation number (reduction). In organic chemistry, the gain of oxygen or loss of hydrogen is often referred to as oxidation. In practice, a series of functional groups have been qualitatively identified in the order of increasing oxidation state. Then, oxidation is referred to as the conversion of one functional group higher in the sequence to another lower in the list. Conversion within a group are neither oxidation nor reduction. It is summarized in following table. This module has been organized based on the reagent that are used for oxidation reactions oxidation Table summarizing O functional groups RH CO arranged according 2 to oxidation state. OH ROH O O RCl CCl4 RNH2 etc. R R R NH2 Cl C Cl C Cl Cl Cl C C etc. Cl Cl C C OH OH etc. reduction I. Oxidation of For oxidation of alcohols to corresponding carbonyl compounds, generally alcohols using Cr(VI) reagents such as K2Cr2O7, Jones reagent, PCC etc., are employed. Cr(VI) reagents Oxidation of alcohols to carbonyl compound occurs via Cr(VI) acid monoester. Mechanism is as follows. OH O CrO3 R1 R2 R1 R2 O HO H O O Cr O O O Cr O + + H2CrO3 R1 C H 1 1 2 O R C H R R R2 R2 Example for chromium oxide based oxidation Oxidation of fused aromatic system is generally carried 4mmol CrO3 out using CrO3 reagent 60 min, rt Juaristi M. et al, Can.J.Chem., O 1984, 62, 2941 O 80% PCC (pyridinium chlorochromate) is other efficient reagent used widely for oxidation of primary and secondary alcohols. E J Corey and W Suggs in 1975 suggested PCC as oxidizing agent. PCC is Reagent can be used in slightly acidic but can be buffered with NaOAc close to stoichiometric O amounts with substrate HN Cl Cr O O O OH H HO H O 1,6-Hexanediol Hexanedial (68%) Corey E J & Suggs W, Tet.Lett., 1975, 16, 2647 OH O Benzhydrol Benzophenone (100%) OH O 4-tertbutylcyclohexanol 4-tertbutylcyclohexanone (97%) Corey and Suggs used H OH following method for O preparation of PCC. R R 100g (1mol) CrO3 is added to conc. HCl, R rapidly with stirring over R 5 min time. Homogenous Presqalene alcohol Presqalene aldehyde (78%) solution obtained is R : (CH ) CCH(CH )CH CH C(CH )=CHCH CH - cooled to 00C. To this, 3 3 3 2 2 3 2 2 1mol of pyridine is added. Yellow-orange OH O solid obtained is filtered H and dried in vacuum. This solid is PCC and is not hygroscopic. It can be stored at room Citronellol Citronellal (82%) temperature. PCC is used particularly for the oxidation of primary alcohol to aldehyde. It does not have any effect on C=C or any other easily oxidizable functional groups. In this reaction, double O PCC, DCM bond is not affected. OH H Geraniol Geranial PCC is used in aprotic solvents, usually, dichloromethane. As no water is present in the reaction mixture, no aldehyde hydrate is formed which is oxidized to carboxylic acid in presence of Cr(VI) PCC, dry CHCl3, Agarwal S; Tiwari H anhy. AcOH, rt, 1h O P; Sharma J P, OH Tetrahedron, 1990, 46, H 1-Hexanol 1-Hexanal (89%) 4417 Another similar oxidant is PDC (pyridiniumdichromate) H O 1.5eq PDC OH DCM, 250 C O O 90% O O NH O Cr O Cr O HN O O pyridiniumdichromate Since PDC is less acidic than PCC it is often used to oxidize alcohols that may be sensitive to acids. In methylene chloride solution, PDC oxidizes primary and secondary alcohols in roughly the same fashion as PCC, but much more slowly. However, in DMF solution saturated primary alcohols are oxidized to carboxylic acids. In both solvents allylic alcohols are oxidized efficiently to conjugated enals and enones respectively. Stanfield C F, et al, J. examples Org. Chem., 1981, 46, 4797 3.5eq PDC 1.5eq PDC COOH DMF, 250 C DCM, 250 C CHO OH 83% 92% 1.5eq PDC, OH DCM, 250C, 24h O O CHO 90% Corey E J & Schmidt COOH G, Tet.Lett., 1979, OH O O 20(5), 399 3.5eq PDC, DMF, 250C, 7-9h H H 85% Collins reagent can be Collins reagent is the mixture of chromium prepared and isolated or trioxide with pyridine in dichloromethane. generated in situ. It is used to selectively oxidize primary alcohols to aldehyde, and will Isolation of reagent often tolerate many other functional groups in the molecule. leads to improved yields. CrO3-2Py R H R DCM OH O It can be used as an alternative to Jones reagent and PCC in oxidation of secondary alcohols. Moreover, Collins reagent is especially useful for oxidations of acid sensitive compounds. This complex is both difficult and dangerous to prepare, as it is very hygroscopic and can inflame during its preparation. It is required to be used in a sixfold excess in order to complete the reaction. examples O one of the steps in the O synthesis of O O prostaglandin F2α CrO3-2Py DCM, 00C employs Collin’s reagent as oxidant H OH AcO Corey E J, JACS, 1969, AcO O 91, 5675 one of the steps in OH synthesis of longifolene O employs Collin’s reagent H CrO -2Py, DCM, 3 H as oxidant rt, 15min McMurry J E, JACS, OH 1972, 94, 7132 H O 100% one of the steps in synthesis of triquinacene employs Collin’s reagent as oxidant CrO3-2Py, DCM Woodward RB, JACS, H O 1964, 86, 3162 OH 74% Jones described for the Jones reagent is used for the oxidation of primary and first time a convenient secondary alcohols to carboxylic acids and ketones, respectively, that do and safe procedure for a not contain acid sensitive group. chromium (VI) based oxidants, that paved way for some further developments such as Collins Reaction and pyridinium dichromate. It is chromium oxide, sulfuric acid and acetone. A mixture of potassium or sodium dichromate and dilute sulfuric acid can also be used. CrO3, aq.H2SO4 O acetone R OH R OH OH CrO3, aq.H2SO4 O acetone R R' R R' O Mechanism : O H2SO4 H2O HO Cr OH Chromium trioxide or Cr O O sodium dichromate with O Chromic acid dilute H2SO4 in situ forms chromic acid . O O H2SO4 H2O Chromic acid and HO Cr O Cr OH Na2Cr2O7 alcohol then through O O chromate ester gives carbonyl compound in Dichromic acid .. presence of base (water H2O O OH O H in this case). VI VI R' HO Cr OH + HO Cr O The intramolecular R R' reaction occurs by way O H O R . .. of β-elimination through O O . cyclic transition state. + H O ..Cr IV 3 R R' HO O O VI OH Aldehydes can form O HO Cr OH H2O hydrates in presence of O R OH water and further R H H oxidized to carboxylic . .. O . acid in presence of H .. O OH O VI H2O Cr(VI) reagents. HO Cr O + .. IVCr -H3O R OH HO O O R The Jones reagent is The oxidation of primary allylic and benzylic alcohols gives aldehydes. prepared by adding Some alcohols such as benzylic and allylic alcohols give aldehydes that chromium trioxide to do not form hydrates in significant amounts; these can therefore be dilute sulfuric acid in selectively oxidized with unmodified Jones Reagent to yield aldehydes. acetone and is added to the alcohol at 0-25oC. K2Cr2O7, H2SO4 CHO OH 0 H2O, acetone, 0-25 C The excess Cr(VI), if any is remained, is destroyed CrO , H SO , H O, in the reaction workup 3 2 4 2 O acetone, 0-250C by adding isopropyl alcohol. OH H For the synthesis of aldehydes, the Collins Reaction or use of more modern although more expensive chromium (VI) reagents such as PCC and PDC can be an appropriate choice. Tertiary alcohols cannot be oxidized by this reagent. It is a powerful oxidizing reagent and exhibits only poor chemoselectivity. OH CrO3, aq.H2SO4 O 0 oxidation of secondary H2O, acetone, 0-25 C alcohol gives ketone whereas primary alcohol is oxidized to aldehyde OH CHO COOH first and then to CrO3, aq.H2SO4 0 (O) carboxylic acid. H2O, acetone, 0-25 C H H Jones reagent, acetone, Panda J; Ghosh S & 00C - rt, 1h Ghosh S, ARKIVOC, O O 2001(viii), 146 H H H OH O MnO2 is used widely as oxidant in organic synthesis. II. Oxidation using It oxidizes allylic alcohols to corresponding aldehydes or ketones. Mn reagents O MnO2 R OH (a) Mn(IV) reagent R H The configuration of double bond is preserved in the reaction. Also, acetylenic alcohols and benzylic alcohols are oxidized under similar conditions. Applications of MnO2 are numerous. These include many kinds of reactions such as amine oxidation, aromatization, oxidative coupling, and thiol oxidation. Activity of MnO2 S S depends upon method of MnO2, DCE preparation and choice 2 2 1 R R1 R of solvent R N N 1,2-Diols are cleaved by MnO2 to dialdehydes or diketones. OH MnO2, DCM, O Ph rt, 24h Ph 2 Ph H OH MnO , rt, 5d CH OH 2 examples 2 Pet. ether vit.A Taylor R J K; et al, Acc. Chem. Res., 2005, CHO 38, 851.
Recommended publications
  • Aldehydes and Ketones
    12 Aldehydes and Ketones Ethanol from alcoholic beverages is first metabolized to acetaldehyde before being broken down further in the body. The reactivity of the carbonyl group of acetaldehyde allows it to bind to proteins in the body, the products of which lead to tissue damage and organ disease. Inset: A model of acetaldehyde. (Novastock/ Stock Connection/Glow Images) KEY QUESTIONS 12.1 What Are Aldehydes and Ketones? 12.8 What Is Keto–Enol Tautomerism? 12.2 How Are Aldehydes and Ketones Named? 12.9 How Are Aldehydes and Ketones Oxidized? 12.3 What Are the Physical Properties of Aldehydes 12.10 How Are Aldehydes and Ketones Reduced? and Ketones? 12.4 What Is the Most Common Reaction Theme of HOW TO Aldehydes and Ketones? 12.1 How to Predict the Product of a Grignard Reaction 12.5 What Are Grignard Reagents, and How Do They 12.2 How to Determine the Reactants Used to React with Aldehydes and Ketones? Synthesize a Hemiacetal or Acetal 12.6 What Are Hemiacetals and Acetals? 12.7 How Do Aldehydes and Ketones React with CHEMICAL CONNECTIONS Ammonia and Amines? 12A A Green Synthesis of Adipic Acid IN THIS AND several of the following chapters, we study the physical and chemical properties of compounds containing the carbonyl group, C O. Because this group is the functional group of aldehydes, ketones, and carboxylic acids and their derivatives, it is one of the most important functional groups in organic chemistry and in the chemistry of biological systems. The chemical properties of the carbonyl group are straightforward, and an understanding of its characteristic reaction themes leads very quickly to an understanding of a wide variety of organic reactions.
    [Show full text]
  • Aldehydes and Ketones Are Simple Organic Compounds Containing a Carbonyl Group
    Aldehydes and Ketones are simple organic compounds containing a carbonyl group. Carbonyl group contains carbon- oxygen double bond. These organic compounds are simple because the carbon atom presents in the carbonyl group lack reactive groups such as OH or Cl. By Dr. Sayed Hasan Mehdi Assistant Professor Department of Chemistry Shia P.G. College, Lucknow Dr. S.Hasan Mehdi 6/13/2020 This is to bring to kind notice that the matter of this e- content is for the B.Sc. IV semester students. It has been taken from the following sources. The students are advised to follow these books as well. •A TEXTBOOK OF ORGANIC CHEMISTRY by Arun Bahl & B.S. Bahl, S. Chand & Company Ltd. Publication. •Graduate Organic Chemistry by M. K. Jain and S.C. Sharma, Vishal Publishing Co. •Pradeep’s Organic Chemistry Vol II by R. N. Dhawan, Pradeep Publication, Jalandhar. Dr. S.Hasan Mehdi 6/13/2020 An aldehyde is one of the classes of carbonyl group- containing alkyl group on one end and hydrogen on the other end. The R and Ar denote alkyl or aryl member respectively. In the condensed form, the aldehyde is written as –CHO. Dr. S.Hasan Mehdi 6/13/2020 Dr. S.Hasan Mehdi 6/13/2020 1. From Alcohols: a. By oxidation of Alcohols: Aldehydes and ketones can be prepared by the controlled oxidation of primary and secondary alcohols using an acidified solution of potassium dichromate or permanganate. Primary alcohol produces aldehydesRef. Last slide. O K Cr O RCH2OH + [O] 2 2 7 + R C H H 10 Alcohol Aldehyde O CH3CH2OH+ [O] K2Cr2O7 + CH3 C H H Ethyl Alcohol Acetaldehyde The aldehydes formed in the above reaction are very easily oxidised to carboxylc acids if allowed to remain in the reaction mixture.
    [Show full text]
  • Recent Advances in Titanium Radical Redox Catalysis
    JOCSynopsis Cite This: J. Org. Chem. 2019, 84, 14369−14380 pubs.acs.org/joc Recent Advances in Titanium Radical Redox Catalysis Terry McCallum, Xiangyu Wu, and Song Lin* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States ABSTRACT: New catalytic strategies that leverage single-electron redox events have provided chemists with useful tools for solving synthetic problems. In this context, Ti offers opportunities that are complementary to late transition metals for reaction discovery. Following foundational work on epoxide reductive functionalization, recent methodological advances have significantly expanded the repertoire of Ti radical chemistry. This Synopsis summarizes recent developments in the burgeoning area of Ti radical catalysis with a focus on innovative catalytic strategies such as radical redox-relay and dual catalysis. 1. INTRODUCTION a green chemistry perspective, the abundance and low toxicity of Ti make its complexes highly attractive as reagents and Radical-based chemistry has long been a cornerstone of 5 1 catalysts in organic synthesis. synthetic organic chemistry. The high reactivity of organic IV/III radicals has made possible myriad new reactions that cannot be A classic example of Ti -mediated reactivity is the reductive ring opening of epoxides. This process preferentially readily achieved using two-electron chemistry. However, the − high reactivity of organic radicals is a double-edged sword, as cleaves and functionalizes the more substituted C O bond, the selectivity of these fleeting intermediates can be difficult to providing complementary regioselectivity to Lewis acid control in the presence of multiple chemotypes. In addition, promoted epoxide reactions. The synthetic value of Ti redox catalysis has been highlighted by their many uses in total catalyst-controlled regio- and stereoselective reactions involv- 6−10 ing free-radical intermediates remain limited,2 and the synthesis (Scheme 1).
    [Show full text]
  • United States Patent (19) (11) 4,055,601 Ehmann 45) Oct
    United States Patent (19) (11) 4,055,601 Ehmann 45) Oct. 25, 1977 (54) PROCESS FOR THE OXDATION OF PRIMARY ALLYLCALCOHOLS OTHER PUBLICATIONS Djerassi, "Organic Reactions', vol. VI, chapt. 5, pp. 75 Inventor: William J. Ehmann, Orange Park, 207-234. Fla. Adkins, et al., "J. Amer. Chem. Soc.' vol. 71, pp. (73) Assignee: SCM Corporation, New York, N.Y. 3622-3629. Batty et al., "Chem. Society Journal' (1938), pp. 21 Appl. No.: 582,114 175-179. Filed: May 30, 1975 22 Primary Examiner-Bernard Helfin Related U.S. Application Data Attorney, Agent, or Firm-Richard H. Thomas 63) Continuation-in-part of Ser. No. 437,188, Jan. 28, 1974, 57 ABSTRACT abandoned. Improved conversions of 3-substituted and 3,3-disub (51) Int. Cl’.............................................. CO7C 45/16 stituted allyl alcohols to the corresponding aldehydes (52) U.S. C. ............................ 260/593 R, 260/603 C, are obtained in an Oppenauer oxidation process, under 260/347.8; 260/599; 260/600 R; 260/598 Oppenauer oxidation conditions, by carrying out the (58) Field of Search ............ 260/603 HF, 599, 603 C, oxidation employing furfural as the hydrogen acceptor. 260/593 R, 600 R, 598 The invention is particularly applicable to the oxidation of geraniol and nerol to citral, which can be converted (56) References Cited directly to pseudoionone without purification. U.S. PATENT DOCUMENTS 2,801,266 7/1957 Schinz ........................... 260/603 HF 13 Claims, No Drawings 4,055,601 1. tion produces water as a by-product which hydrolyzes PROCESS FOR THE OXDATION OF PRIMARY and consumes the aluminum catalyst. This requires ALLYLCALCOHOLS nearly stoichiometric quantities (as compared to cata lytic quantities) of the aluminum catalyst (notice page This application is a continuation-in-part of prior 224 of Djerassi, supra).
    [Show full text]
  • Wood Modified by Inorganic Salts: Mechanism and Properties
    WOOD MODIFIED BY INORGANIC SALTS: MECHANISM AND PROPERTIES. I. WEATHERING RATE, WATER REPELLENCY, AND IIIMENSIONAL STABILITY OF WOOD MODIFIEID WITH CHROMIUM (111) NITRATE VERSUS CHROMIC ACID' R. S. Willianzs and W. C. Feisl Research Chemists Forest Products Lab~ratory,~Forest Service U.S. Department of Agriculture Madison, WI 53705 (Received October 1983) ABSTRACT Chromic acid treatment of wood improves surface characteristics. A simple dip or brush application of 5% aqueous chromic acid to a wood surface stops extractive staining, improves dimensional stability, retards weathering of unfinished wood, and prolongs the life of finishes. A better understanding of how chromic acid effects these improvements may facilitate the development of even better treatments. The improvements may be due to a combination offactors: oxidation ofwood by hexavalent chromium compounds, formation of coordination coml~lexeswith trivalent chromium, and the presence of insoluble chromium compounds at the surface. Most trivalent chromium compounds do not become fixed in wood (i.e., do not form water-insolublf: wood-chemical complexes). However, chromium (111) nitrate treatment of western redcedar (Thuja plicata), southern pine (Pinus sp.), and ponderosa pine (Pinus ponderosa) produced modified wood with properties similar to chromic acid-treated wood. Evaluation of the chromium (111) nitrate- and chromic acid-modified wood by leaching, Xenon arc- accelerated weathering, and swellometer experiments clearly demonstrated similar fixation, erosion, and water-repellent properties. Based on the results from chromium (111) nitrate-treated wood, fixation through coordination of trivalent chromium with wood hydroxyls an(5 formation of insoluble chromium appear to be the critical factors in improving the performance of the treated wood.
    [Show full text]
  • (VI) and Chromium (V) Oxide Fluorides
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1976 The chemistry of chromium (VI) and chromium (V) oxide fluorides Patrick Jay Green Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Green, Patrick Jay, "The chemistry of chromium (VI) and chromium (V) oxide fluorides" (1976). Dissertations and Theses. Paper 4039. https://doi.org/10.15760/etd.5923 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. All ABSTRACT OF THE TllESIS OF Patrick Jay Green for the Master of Science in Chemistry presented April 16, 1976. Title: Chemistry of Chromium(VI) and Chromium(V) Oxide Fluorides. APPROVEO BY MEMBERS OF THE THESIS CO'"o\l TIEE: y . • Ii . ' I : • • • • • New preparative routes to chromyl fluoride were sought. It was found that chlorine ironofluoride reacts with chromium trioxide and chromyl chlo­ ride to produce chromyl fluoride. Attempts were ~ade to define a mechan­ ism for the reaction of ClF and Cr0 in light of by-products observed 3 and previous investigations. Carbonyl fluoride and chromium trioxide react to fom chro·yl fluoride and carbo:i dioxide. A mechanism was also proposed for this react10n. Chromium trioxide 11itl\ l~F6 or WF5 reacts to produce chromyl fluoride and the respective oxide tetrafluoride. 2 Sulfur hexafluoride did not react with Cr03.
    [Show full text]
  • Elementary Iodine-Doped Activated Carbon As an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water
    water Article Elementary Iodine-Doped Activated Carbon as an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water Fabio Spaziani 1,2,*, Yuli Natori 1, Yoshiaki Kinase 1, Tomohiko Kawakami 1 and Katsuyoshi Tatenuma 1 1 KAKEN Inc., Mito Institute 1044 Hori, Mito, Ibaraki 310-0903, Japan 2 ENEA Casaccia, Via Anguillarese 301, 00123 Roma, Italy * Correspondence: [email protected] Received: 18 July 2019; Accepted: 23 August 2019; Published: 27 August 2019 Abstract: An activated carbon impregnated with elementary iodine (I2), named IodAC, characterized by oxidation capability, was developed and applied to oxidize arsenite, As(III), to arsenate, As(V), in arsenic-rich waters. Batch and column experiments were conducted to test the oxidation ability of the material. Comparisons with the oxidizing agents usually used in arsenic treatment systems were also conducted. In addition, the material has been tested coupled with an iron-based arsenic sorbent, in order to verify its suitability for the dearsenication of drinking waters. IodAC exhibited a high and lasting oxidation potential, since the column tests executed on water spiked with 50 mg/L of arsenic (100% arsenite) showed that 1 cc of IodAC (30 wt% I2) can oxidize about 25 mg of As(III) (0.33 mmol) before showing a dwindling in the oxidation ability. Moreover, an improvement of the arsenic sorption capability of the tested sorbent was also proved. The results confirmed that IodAC is suitable for implementation in water dearsenication plants, in place of the commonly used oxidizing agents, such as sodium hypochlorite or potassium permanganate, and in association with arsenic sorbents.
    [Show full text]
  • Oxidation of Secondary Alcohols to Ketones
    Oxidation of secondary alcohols to ketones The oxidation of secondary alcohols to ketones is an important oxidation reaction in organic chemistry. Where a secondary alcohol is oxidised, it is converted to a ketone. The hydrogen from the hydroxyl group is lost along with the hydrogen bonded to the second carbon. The remaining oxygen then forms double bonds with the carbon. This leaves a ketone, as R1–COR2. Ketones cannot normally be oxidised any further because this would involve breaking a C–C bond, which requires too much energy.[1] The reaction can occur using a variety of oxidants. Contents Potassium dichromate PCC (Pyridinium chlorochromate) Dess–Martin oxidation Swern oxidation Oppenauer oxidation Fétizon oxidation See also References Potassium dichromate A secondary alcohol can be oxidised into a ketone using acidified potassium dichromate and heating under 2− 3+ reflux. The orange-red dichromate ion, Cr2O7 , is reduced to the green Cr ion. This reaction was once used in an alcohol breath test. PCC (Pyridinium chlorochromate) PCC, when used in an organic solvent, can be used to oxidise a secondary alcohol into a ketone. It has the advantage of doing so selectively without the tendency to over-oxidise. Dess–Martin oxidation The Dess–Martin periodinane is a mild oxidant for the conversion of alcohols to aldehydes or ketones.[2] The reaction is performed under standard conditions, at room temperature, most often in dichloromethane. The reaction takes between half an hour and two hours to complete. The product is then separated from the spent periodinane.[3] Swern oxidation Swern oxidation oxidises secondary alcohols into ketones using oxalyl chloride and dimethylsulfoxide.
    [Show full text]
  • Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates
    Molecules 2008, 13, 1303-1311 manuscripts; DOI: 10.3390/molecules13061303 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Communication Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates Luis R. Domingo, Salvador Gil, Margarita Parra* and José Segura Department of Organic Chemistry, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain. Fax +34(9)63543831; E-mails: [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 29 May 2008; in revised form: 5 June 2008 / Accepted: 6 June 2008 / Published: 9 June 2008 Abstract: Addition of carboxylic acid dianions appears to be a potential alternative to the use of aluminium enolates for nucleophilic ring opening of epoxides. These conditions require the use of a sub-stoichiometric amount of amine (10% mol) for dianion generation and the previous activation of the epoxide with LiCl. Yields are good, with high regioselectivity, but the use of styrene oxide led, unexpectedly, to a mixture resulting from the attack on both the primary and secondary carbon atoms. Generally, a low diastereoselectivity is seen on attack at the primary center, however only one diastereoisomer was obtained from attack to the secondary carbon of the styrene oxide. Keywords: Lactones, lithium chloride, nucleophilic addition, regioselectivity, diastereoselectivity. Introduction Epoxides have been recognized among the most versatile compounds in organic synthesis, not only as final products [1] but as key intermediates for further manipulations. Accordingly, new synthetic developments are continuously being published [2]. Due to its high ring strain (around 27 Kcal/mol) its ring-opening, particularly with carbon-based nucleophiles, is a highly valuable synthetic strategy Molecules 2008, 13 1304 [3].
    [Show full text]
  • Redalyc.Degradation of Citronellol, Citronellal and Citronellyl Acetate By
    Electronic Journal of Biotechnology E-ISSN: 0717-3458 [email protected] Pontificia Universidad Católica de Valparaíso Chile Tozoni, Daniela; Zacaria, Jucimar; Vanderlinde, Regina; Longaray Delamare, Ana Paula; Echeverrigaray, Sergio Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Electronic Journal of Biotechnology, vol. 13, núm. 2, marzo, 2010, pp. 1-7 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=173313806002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.13 No.2, Issue of March 15, 2010 © 2010 by Pontificia Universidad Católica de Valparaíso -- Chile Received April 24, 2009 / Accepted November 6, 2009 DOI: 10.2225/vol13-issue2-fulltext-8 RESEARCH ARTICLE Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Daniela Tozoni Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Jucimar Zacaria Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Regina Vanderlinde Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Ana Paula Longaray Delamare Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Sergio Echeverrigaray* Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil E-mail: [email protected] Financial support: COREDES/FAPERGS, and D.
    [Show full text]
  • Comparative Study of Oxidants in Removal of Chemical Oxygen Demand from the Wastewater (IJIRST/ Volume 4 / Issue 1/ 011)
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 4 | Issue 1 | June 2017 ISSN (online): 2349-6010 Comparative Study of Oxidants in Removal of Chemical Oxygen Demand from the Wastewater Prof Dr K N Sheth Kavita V Italia Director PG Student Geetanjali Institute of Technical Studies, Udaipur Department of Environmental Engineering Institute of Science & Technology for Advanced Studies & Research, Vallabh Vidyanagar Abstract Chemical Oxygen Demand (COD) test involves chemical oxidation using chromic acid as a strong oxidizer. COD of a wastewater sample is the amount of oxidant- potassium dichromate that reacts with the sample when it is heated for 2 hours under controlled environmental conditions and result is expressed as mg of oxidant consumed per liter of a given sample of wastewater. COD can be helpful in determining the quantity required for dilution needed for conducting Biochemical Oxygen Demand (BOD) five day test. In the present investigation attempts have been made to use other oxidants like hydrogen peroxide H2O2, sodium hypo-chlorite, calcium hypo-chlorite and potassium permanganate for measurement of COD by standard method and compare the results obtained using potassium dichromate as strong oxidant. Experiments were carried out for each oxidizing agent for COD removal at temperatures like 1000C, 750C and 500C. The duration of exposure time in each experimental set up was taken as temperature wise, for 1000C, it was 1-5 minutes , for 750C it was 20-40 minutes and for 500C it was 45-75 minutes. It was found that temperature plays very important role in in deciding the exposure time to be allocated for reduction of COD.
    [Show full text]
  • United States Patent Office Patented Nov
    3,221,026 United States Patent Office Patented Nov. 30, 1965 2 3,221,026 prepared by reaction of a dicyanoketene acetal of the SALTS OF 1,1-DCYANO-2,2,2-TRIALKOXY formula ETHANES Owen W. Webster, Wilmington, Del, assignor to E. I. du Pont de Nemours and Company, Wilmington, Del., a corporation of Delaware No Drawing. Filed Feb. 13, 1962, Ser. No. 172,875 wherein R2 and R3 have the meanings defined above in the 2 Claims. (C. 260-340.9) general formula for the products of this invention, with This invention relates to salts of polycyano compounds, one molar equivalent of an alkali metal alkoxide of an and more particularly, to salts of polycyanopolyalkoxy alcohol having 1-8 carbon atoms at a temperature below ethanes and a process for their preparation. 10° C., and preferably at a temperature between 0 and The salts are derivatives of tetracyanoethylene which -80° C., in the presence of an inert reaction medium, is a very reactive compound that has received considerable e.g., an excess of the alcohol from which the alkoxide is study during the last few years. A large number of new 5 derived, or an ether such as diethyl ether, dioxane, tetra and valuable compounds have been prepared from it, and hydrofuran, ethylene glycol dimethyl ether and the like. now a new class of polycyano compounds is provided by As in the case of the reaction starting with tetracyano the present invention. ethylene, the reaction mixture in this case should also The novel compounds of this invention are salts of the be anhydrous to obtain the best results.
    [Show full text]