Cladogenesis and Reticulation in Cuscuta Sect. Denticulatae (Convolvulaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Cladogenesis and Reticulation in Cuscuta Sect. Denticulatae (Convolvulaceae) Organisms Diversity & Evolution (2018) 18:383–398 https://doi.org/10.1007/s13127-018-0383-5 ORIGINAL ARTICLE Cladogenesis and reticulation in Cuscuta sect. Denticulatae (Convolvulaceae) Miguel A. García1,2 & SašaStefanović1 & Catherine Weiner3 & Magdalena Olszewski3 & Mihai Costea3 Received: 5 May 2018 /Accepted: 11 October 2018 /Published online: 28 October 2018 # The Author(s) 2018 Abstract As traditionally circumscribed, Cuscuta sect. Denticulatae is a group of three parasitic plant species native to the deserts of Western USA (Cuscuta denticulata, Cuscuta nevadensis) and the central region of Baja California, Mexico (Cuscuta veatchii). Molecular phylogenetic studies confirmed the monophyly of this group and suggested that the disjunct C. veatchii is a hybrid between the other two species. However, the limited sampling left the possibility of alternative biological and methodological explanations. We expanded our sampling to multiple individuals of all the species collected from across their entire geographical ranges. Sequence data from the nuclear and plastid regions were used to reconstruct the phylogeny and find out if the topological conflict was maintained. We obtained karyotype information from multiple individuals, investigated the morphological variation of the group thorough morphometric analyses, and compiled data on ecology, host range, and geographical distribution. Our results confirmed that C. veatchii is an allotetraploid. Furthermore, we found previously unknown autotetraploid population of C. denticulata, and we describe a new hybrid species, Cuscuta psorothamnensis. We suggest that this newly discovered natural hybrid is resulting from an independent (and probably more recent) hybridization event between the same diploid parental species as those of C. veatchii. All the polyploids showed host shift associated with hybridization and/or polyploidy and are found growing on hosts that are rarely or never frequented by their diploid progenitors. The great potential of this group as a model to study host shift in parasitic plants associated with recurrent allopolyploidy is discussed. Keywords Host shift . Host range . Hybridization . Polyploidy . Parasitic plant . Speciation Introduction cosmopolitan but the majority of species are native to North and South America, belonging to Cuscuta subg. Grammica,the Cuscuta (dodders) is a plant genus of nearly 200 species of largest infrageneric group that includes more than 150 species stem parasites (Yuncker 1932;Garcíaetal.2014; Costea et al. (Costea et al. 2015a). Dodders occur in a great variety of hab- 2015a) that has evolved within Convolvulaceae (reviewed by itats, from temperate to tropical, desert to riparian, littoral to Stefanović and Olmstead 2004, 2005). The genus is nearly high mountains, grasslands, forests, saline, and disturbed hab- itats. Similarly to other parasitic plants, dodders act as keystone species in their ecosystems (Press and Phoenix 2005;Graffis Miguel A. García and Saša Stefanović contributed equally to this work. and Kneitel 2015). Approximately 15–20 Cuscuta spp. world- Electronic supplementary material The online version of this article wide are agricultural and horticultural pests (Dawson et al. (https://doi.org/10.1007/s13127-018-0383-5) contains supplementary 1994; Costea and Tardif 2006), and in most countries, control material, which is available to authorized users. and quarantine measures target the genus as a whole, ignoring * Miguel A. García the fact that some species may be endangered or even threat- [email protected] ened with extinction (Costea and Stefanović 2009). Stefanović et al. (2007) noted several cases of conflict be- tween plastid- and nuclear-derived phylogenies indicative of 1 Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada possible reticulation in Cuscuta subg. Grammica.Tofurther investigate the origin of these conflicts, Stefanović and Costea 2 Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK 3 (2008)expandedtheirtrnL-F and nrITS matrices through ad- Department of Biology, Wilfrid Laurier University, dition of multiple sequences from 105 species from this Waterloo, ON N2L3C5, Canada 384 García M.A. et al. subgenus and found five cases of species with a probable hybrid origin. A series of statistical tests by Stefanović and Costea (2008) showed that alternative hypotheses to explain discordant gene topologies, such as incomplete lineage sorting, undetected paralogy, or horizontal gene transfer, were not supported. All these cases in subg. Grammica were con- firmed and three additional ones were detected using rbcL and nrLSU sequences in a broader phylogenetic context with rep- resentatives of the entire genus (García et al. 2014). Several cases of topological incongruence were also found for Cuscuta subg. Cuscuta by García and Martín (2007), but the origin of the conflicts was not further investigated. Costea and Stefanović (2010) discovered that at least four independent hybridization events had occurred in the evolution of Cuscuta sect. Umbellatae (subg. Grammica), two more for this section than previously detected. More recently, a detailed study by Costea et al. (2015b)onCuscuta sect. Cleistogrammica (subg. Grammica) showed that the worldwide invasive weed Cuscuta campestris Yunck (1932) has two divergent groups of nrITS ribotypes. Both of these disparate ribotypes are topologi- cally incongruent with the plastid trnL-F phylogeny, in aggregate suggesting the hybrid origin of C. campestris (Costea et al. 2015b). Another striking case of topological discordance was found within Cuscuta sect. Denticulatae (Stefanović and Costea 2008;Garcíaetal.2014). This group of species in subg. Grammica is well characterized morphologically by the radic- ular end of the embryo spherically enlarged in a ball-like structure that increases in volume during seed maturation (Costea et al. 2015a). Such a feature is not present in any other clade of Cuscuta and this synapomorphy is thought to be an adaptation for seed germination on the host while the fruit is still enclosed by the perianth (vivipary). The enlarged embryo probably stores nutrients and water as an adaptation to germi- nation in desert environments (Costea et al. 2005). Section Denticulatae includes three species distributed in Fig. 1 Distribution of Cuscuta sect. Denticulatae species across their Western USA (Cuscuta denticulata Engelm.; Cuscuta geographic ranges in western North America. Potential extent of nevadensis I.M.Johnst.) and the Central Desert of Baja distribution for C. denticulata is outlined and that of C. nevadensis is shaded. Approximate positions of sampling sites used in this study are California in Mexico (Cuscuta veatchii Brandegee) (Fig. 1). indicated (for details, see Appendix 1). Circles (solid and open) represent Of the three species, C. denticulata has the broadest geograph- sampling sites for populations of C. denticulata, squares (solid and open) ical distribution and host preference, whereas C. nevadensis represent those of C. nevadensis, triangles those of C. veatchii, while X has narrower geographical and host ranges, occurring sympat- symbols stand for the newly described species, C. psorothamnensis. Encircled symbols represent material obtained from herbaria; all others rically with C. denticulata (Costea et al. 2005). Cuscuta are sampled directly in the field, including multiple individuals per pop- veatchii has a disjunct distribution and grows only on ulation. Solid and open symbols correspond to different haplo- and Pachycormus discolor (Benth.) Coville (Anacardiaceae). ribotypes of C. denticulata and C. nevadensis (see text for details) The phylogenetic analyses by Stefanović and Costea (2008) placed C. veatchii in a clade with C. denticulata on the nrITS tree, whereas this species was resolved with C. nevadensis on to find statistical difference between optimal and constrained the plastid trnL-F tree, in both cases with 100% bootstrap trees among plastid and nuclear data. Also, in that study, the support. The authors concluded that this topological incongru- sampling was limited to two to three individuals per species, ence, together with the life history, ecological, and biogeo- and because the clade included only three taxa and a root, a graphical data, was consistent with a hybrid origin of topological distortion such a nearest-neighbor interchange C. veatchii. However, some alternative topology tests failed (NNI) could not be ruled out, leaving ancestral polymorphism Cladogenesis and reticulation in Cuscuta sect. Denticulatae (Convolvulaceae) 385 or incomplete lineage sorting as viable alternative explana- population sequence variation of DNA markers, two to five tions for the discordance between nuclear and plastid trees. individuals were sampled per locality in our field trips. Within In the present study, we further investigate the hybridiza- a locality, multiple specimens were collected growing on sep- tion hypothesis for the origin of C. veatchii by expanding our arate host plants (> 1 m apart from each other). Despite the sampling to multiple individuals for all species involved from host separation, some of the specimens still could be a product their entire geographical distribution as well as by obtaining of multiple individual seedlings infecting a plant (Costea and additional critically needed corroborating information. Thus, Tardif 2006), and we considered these to be Bbulked^ individ- the objectives of this study are (1) to analyze new nrITS and uals.
Recommended publications
  • Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution
    Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Bruce G. Baldwin, Chair Dr. John P. Huelsenbeck Dr. Brent D. Mishler Dr. Kipling W. Will Fall 2017 Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution Copyright 2017 by William Allen Freyman Abstract Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Dr. Bruce G. Baldwin, Chair Key evolutionary transitions have shaped the tree of life by driving the processes of spe- ciation and extinction. This dissertation aims to advance statistical and computational ap- proaches that model the timing and nature of these transitions over evolutionary trees. These methodological developments in phylogenetic comparative biology enable formal, model- based, statistical examinations of the macroevolutionary consequences of trait evolution. Chapter 1 presents computational tools for data mining the large-scale molecular sequence datasets needed for comparative phylogenetic analyses. I describe a novel metric, the miss- ing sequence decisiveness score (MSDS), which assesses the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. In Chapter 2, I introduce a class of phylogenetic models of chromosome number evolution that accommodate both anagenetic and cladogenetic change.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Genetic Change and Rates of Cladogenesis
    GENETIC CHANGE AND RATES OF CLADOGENESIS JOHN C. AVISE* AND FRANCISCO J. AYALA Depariment of Genetics, University of Californiu, Davis, California 95616 Manuscript received May 12, 1975 Revised copy received July 28, 1975 ABSTRACT Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predic- tions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic dis- tance between species is a function of time, mean genetic distances in speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age.
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]
  • Extension Plant Pathology Update July 2013
    Extension Plant Pathology Update July 2013 Volume 1, Number 6 Edited by Jean Williams-Woodward Plant Disease Clinic Report for June 2013 By Ansuya Jogi and Jean Williams-Woodward The following tables consist of the commercial and homeowner samples submitted to the UGA plant disease clinics in Athens and Tifton for June 2013 (Table 1) and for one year ago in July 2012 (Table 2). The wet weather has been great for plant growth, as well as plant diseases. Various root rots, leaf spots and rusts have been diagnosed on almost all crops. The incidence of bacterial diseases will increase through July, as will Sclerotium rolfsii and Rhizoctonia diseases. We also continue to confirm Rose Rosette-associated virus on Knock-Out rose samples. Also, Dr. Little has confirmed Cucurbit Yellow Vine Disease on squash, caused by the bacterium, Serratia marcescens. She has a graduate student working on this disease and wants to know if you are seeing it. See page 7 for her summary of cucurbit diseases, including cucurbit yellow vine disease. Looking ahead with the current weather pattern, we expect to see more leaf and root diseases on all crops. This isn’t a surprise. Warm days, cooler nights, high humidity, wet foliage and saturated soils are the recipe for plant disease development. Again, it is an exciting time to be a plant pathologist. Table 1: Plant disease clinic sample diagnoses made in June 2013 Sample Diagnosis Host Plant Commercial Sample Homeowner Sample Apple Bitter Rot (Glomerella cingulata) Alternaria Leaf Spot Alternaria sp.) Rust (Gymnosporangium sp.) Assorted Fruits Insect Damage, Unidentified Insect Nutrient Imbalance; Abiotic Banana Shrub Insect Damage, Unidentified Insect Environmental Stress; Abiotic Beans Root Problems, Abiotic disorder Bentgrass Anthracnose (Colletotrichum cereale) Colletotrichum sp./spp.
    [Show full text]
  • Reticulate Evolution in the Parasitic Genus Cuscuta (Convolvulaceae): Over and Over Again1
    791 Reticulate evolution in the parasitic genus Cuscuta (Convolvulaceae): over and over again1 Sasˇa Stefanovic´ and Mihai Costea Abstract: The frequency and relative importance of hybridization in plants has been an area of intense debate. Although this evolutionary phenomenon has received considerable attention from plant biologists, there are no well-supported cases of reticulate evolution involving parasitic plants, to date. Recent molecular phylogenetic analyses revealed that the subge- nus Grammica, the largest and most diverse group of the stem-parasitic genus Cuscuta (dodder), consists of 15 major clades. We describe here five cases of strongly supported discordance between phylogenies derived from plastid and nu- clear data, and interpret them as results of five independent hybridization events. Three of these cases could represent rela- tively recent reticulations, as each of them involves more closely related species, always confined within the same major clade as their putative parental species, and are currently sympatric or parapatric with them. The two remaining cases in- volve species whose potential progenitors are derived from different major groups of Grammica, and which are allopatric in their present distribution. A series of statistical tests was conducted to assess and further explore the significance of this phylogenetic incongruence. Alternative explanations for discordant gene topologies are explored. Cuscuta liliputana sp. nov., a new Mexican species of hybrid origin is described. Key words: Convolvulaceae, Cuscuta, Cuscuta liliputana sp. nov., molecular phylogeny, parasitic plants, reticulate evolution. Re´sume´ : La fre´quence et l’importance relative de l’hybridation chez les plantes soule`vent d’intenses de´bats. Bien que ce phe´nome`ne e´volutif ait rec¸u beaucoup d’attention de la part des phytobiologistes, a` ce jour, on ne connaıˆt pas de cas bien e´tabli d’e´volution re´ticule´e impliquant des plantes parasites.
    [Show full text]
  • Introduction
    INTRODUCTION Although much of the San Francisco Bay Region is densely populated and industrialized, many thousands of acres within its confines have been set aside as parks and preserves. Most of these tracts were not rescued until after they had been altered. The construction of roads, the modification of drainage patterns, grazing by livestock, and the introduction of aggressive species are just a few of the factors that have initiated irreversible changes in the region’s plant and animal life. Yet on the slopes of Mount Diablo and Mount Tamal- pais, in the redwood groves at Muir Woods, and in some of the regional parks one can find habitats that probably resemble those that were present two hundred years ago. Even tracts that are far from pristine have much that will bring pleasure to those who enjoy the study of nature. Visitors to our region soon discover that the area is diverse in topography, geology, cli- mate, and vegetation. Hills, valleys, wetlands, and the seacoast are just some of the situa- tions that will have one or more well-defined assemblages of plants. In this manual, the San Francisco Bay Region is defined as those counties that touch San Francisco Bay. Reading a map clockwise from Marin County, they are Marin, Sonoma, Napa, Solano, Contra Costa, Alameda, Santa Clara, San Mateo, and San Francisco. This book will also be useful in bordering counties, such as Mendocino, Lake, Santa Cruz, Monterey, and San Benito, because many of the plants dealt with occur farther north, east, and south. For example, this book includes about three-quarters of the plants found in Monterey County and about half of the Mendocino flora.
    [Show full text]
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
    [Show full text]
  • Evolutionary History and Taxonomy of the <Em>Cuscuta Umbellata</Em
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wilfrid Laurier University Wilfrid Laurier University Scholars Commons @ Laurier Biology Faculty Publications Biology 10-2010 Evolutionary History and Taxonomy of the Cuscuta umbellata complex (Convolvulaceae): Evidence of Extensive Hybridization from Discordant Nuclear and Plastid Phylogenies Mihai Costea Wilfrid Laurier University, [email protected] Saša Stefanović University of Toronto Follow this and additional works at: https://scholars.wlu.ca/biol_faculty Part of the Biology Commons Recommended Citation Costea, Mihai and Stefanović, Saša, "Evolutionary History and Taxonomy of the Cuscuta umbellata complex (Convolvulaceae): Evidence of Extensive Hybridization from Discordant Nuclear and Plastid Phylogenies" (2010). Biology Faculty Publications. 73. https://scholars.wlu.ca/biol_faculty/73 This Article is brought to you for free and open access by the Biology at Scholars Commons @ Laurier. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Costea & Stefanović • Systematics of the Cuscuta umbellata complex TAXON 13 October 2010: 18 pp. in C. sect. Eugrammica subsect. Leptanthae; Yuncker, 1932). selected two species from the C. gracillima clade as outgroup In addition, C. lilliputana, a new species that is nested within (Appendix 1). this group, has been recently described (Stefanović & Costea, Morphology and micromorphology. — Descriptions 2008). In contrast, C. gracillima, C. sidarum (= C. saccharata), are based on herbarium material (Appendix 2). We examined C. deltoidea (= C. serruloba) do not belong to the C. umbellata the basic morphology of rehydrated flowers and capsules under clade as previously thought by Yuncker (1932, 1965), but form a Nikon SMZ1500 stereomicroscope equipped with a PaxCam a separate group (Stefanović & al., 2007; Costea & al., 2008).
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Cuscuta Coryli Engelm
    Cuscuta coryli Engelm. Common Names: Hazel dodder (3). Etymology: With Arabic origins, Kushkut, means dodder plant or parasitic plant; in New Latin, Cuscuta directly translates as dodder. Corylus converts to hazel in Greek. The species epithet, coryli, refers to the tendency to parasitize Corylus (1,2). Botanical synonyms (4): Cuscuta compacta var. crenulata (Engelm.) Choisy Cuscuta crenulata Engelm. Cuscuta inflexa Engelm. Epithymum coryli (Engelm.) Nieuwl. & Lunell Grammica coryli Family: Convolvulaceae, the morning glory family Quick Notable Features: ¬ Reduced stem and leaf structure ¬ Thread-like stem is 0.4-0.6mm in diameter ¬ Tiny flowers, ~1.5-2.5mm, with translucent yellowish-white petals, growing in cymose-paniculate clusters or compact glomerulate bunches ¬ Corolla lobes are inflexed ¬ Most often present in hazel (Corylus) fields Plant Height: The height of Cuscuta coryli is dependent on the host; H.L. Dean measured the length of a single dodder plant at nearly half a mile (14). Subspecies/varieties recognized (4): Cuscuta coryli var. coryli and Cuscuta coryli var. stylosa Engelm. Most Likely Confused with: Any other species of Cuscuta—in Michigan these might be: C. cephalathi, C. epilinum, C. epithymum, C. glomerata, C. indecora, C. pentagona or C. polygonorum. Habitat Preference: In Michigan, C. coryli parasitizes Amphicarpaea, Aster, Bidens, Ceanothus, Corylus, Euthamia, Mentha, Monarda, Solidago, Stachys and Symphoricarpos (6). It has also been noted in sandy areas along pond perimeters and low, dry surfaces (17). Geographic Distribution in Michigan: C. coryli is found in eight counties in Michigan’s Lower Peninsula: Cass, Kalamazoo, Monroe, Wayne, Oakland, St. Clair, Midland and Bay (6). Known Elevational Distribution: The altitudinal limit of C.
    [Show full text]