Duke University Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

Duke University Dissertation Template Lemur Teeth in Three Keys: Dietary Adaptation, Ecospace Occupation, and Macroevolutionary Dynamics by Ethan L. Fulwood Department of Evolutionary Anthropology Duke University Date:_______________________ Approved: ___________________________ Doug Boyer, Supervisor ___________________________ Richard Kay, Chair ___________________________ Daniel McShea ___________________________ Blythe Williams ___________________________ Elizabeth St. Clair Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Evolutionary Anthropology in the Graduate School of Duke University 2019 ABSTRACT iv Lemur Teeth in Three Keys: Dietary Adaptation, Ecospace Occupation, and Macroevolutionary Dynamics by Ethan Fulwood Department of Evolutionary Anthropology Duke University Date:_______________________ Approved: ___________________________ Doug Boyer, Supervisor ___________________________ Richard Kay, Chair ___________________________ Daniel McShea ___________________________ Blythe Williams ___________________________ Elizabeth St. Clair An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Evolutionary Anthropology in the Graduate School of Duke University 2019 Copyright by Ethan Fulwood 2019 Abstract Dietary adaptation appears to have driven many aspects of the high-level diversification of primates. Dental topography metrics provide a means of quantifying morphological correlates of dietary adaptation and can be used to reconstruct dietary adaptation in extinct taxa, model ecospace occupation, and capture macroevolutionary trends across deep time. However, difficulties may arise in the interpretation of dental topography metrics from A) their sensitivity to digital mesh processing choices; B) their tendency to average morphological information across tooth surfaces; and C) potential mismatches between the material properties understood theoretically to drive tooth shape and the measured properties of categorically defined primate diets. The full potential of pairing dental topography metrics with modern phylogenetic comparative methods, which would allow the evolutionary history of diet in large clades to be explored statistically, has yet to be explored. In this dissertation, I attempt to address issues in the application of dental topography metrics, and extend them to new questions, using strepsirrhine primates as a model. The effectiveness of a recently described dental topography metric, ariaDNE, which is robust to details of mesh processing, in describing dietary adaptation in lower second molars is assessed. It is found that it performs at least as well as metrics more sensitive to mesh processing decisions. ariaDNE is then applied to segmented regions of iv lower second molars in order to assess the effect of averaging together potentially adaptively distinct tooth structures. I found no evidence that the aggregation of tooth structures significantly impairs dietary classification. These studies employ explicit methods for measuring overfitting risk, which has not previously been emphasized in applications of dental topography metrics. Tooth shape is believed to reflect differences in the underlying material properties of the foods consumed by mammals, but the categories used to classify taxa to diets have inconsistent relationships with these food material properties. I attempt to address this inconsistency by relating tooth shape to expected geographic gradients in food material properties, an approach known as ecometrics. Dry, seasonal environments are expected to be associated with dental topography metrics associated with processing tougher foods. I find that ariaDNE is highest in highly seasonal but wet environments, supporting a role for the seasonal exploitation of fallback foods and that the availability of new leaves during wet periods may be important in driving community tooth sharpness. Tooth complexity is primarily driven by a stepwise increase in rainforest environments. Dental topography metrics are then applied to several questions concerning the evolutionary history of lemurs. They are used to reconstruct the diets of seven genera of recently extinct, giant, subfossil lemurs, and find many of them to have exploited fruits and hard objects. Ecometric models are also applied to the reconstruction of v paleoclimate at the ~500 year-old subfossil cave site of Ankilitelo, which records the last appearance of many subfossil lemur taxa. Models reconstruct a moister climate for Ankilitelo at the time of the accumulation of its subfossil fauna, supporting a role for climate alteration in the extirpation of the giant lemurs. Finally, Dental topography metrics are combined with phylogenetic comparative methods to model the dietary evolution of lemurs in the context of adaptive radiation theory. Dental topography metrics do not show an early burst in rates of change or a pattern of early partitioning of subclade disparity in lemurs. However, rates of transition toward folivory were highest during the Oligocene, an interval of possible forest expansion on the island and of the dispersal of non-chiromyiform lemurs to Madagascar. Reconstruction of the ancestral molar morphology of ancestral nodes of the lemur tree suggest that the diversification of large bodied lemurs may have been driven by a shift toward the exploitation of defended plant resources. vi Dedication To my parents, Brenda and Robert Fulwood, who inspired in me a sense of curiosity, a love of nature, and a sense of place. vii Contents Abstract ......................................................................................................................................... iv List of Tables ................................................................................................................................ xii List of Figures .............................................................................................................................xiv Acknowledgements ...................................................................................................................xvi 1. Introduction ............................................................................................................................... 1 1.1 Dental ecomorphology and diet ..................................................................................... 3 1.2 Food material properties ................................................................................................. 8 1.3 Ecometrics ........................................................................................................................ 10 1.4 Disparity and modelling evolution .............................................................................. 12 1.5 Adaptive radiation ......................................................................................................... 18 1.6 Evolutionary history of the strepsirrhines .................................................................. 23 1.7 Dissertation overview .................................................................................................... 26 1.7.1 Overview .................................................................................................................... 26 1.7.2 Chapter 2..................................................................................................................... 27 1.7.3 Chapter 3..................................................................................................................... 27 1.7.4 Chapter 4..................................................................................................................... 28 2. Tooth shape and diet in strepsirrhine primates .................................................................. 29 2.1 Introduction ..................................................................................................................... 30 2.1.1 Molar shape and dietary adaptation ...................................................................... 31 2.1.2 Disaggregating adaptation in tooth surface features ........................................... 36 viii 2.1.3 Objectives .................................................................................................................... 36 2.2. Methods .......................................................................................................................... 37 2.2.1 Sample ......................................................................................................................... 37 2.2.2 Dental topography metrics ...................................................................................... 40 2.2.3 Shape segmentation .................................................................................................. 41 2.2.4 Dietary signal and dental topography metrics ..................................................... 42 2.2.5 Dietary signal in the segmented molar .................................................................. 44 2.2.6 Reconstructed dietary ecology in subfossil lemurs .............................................. 45 2.3. Results ............................................................................................................................. 47 2.3.1 Dental topography metrics and dietary category ................................................. 48 2.3.2 Whole tooth reclassification success ......................................................................
Recommended publications
  • Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution
    Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Bruce G. Baldwin, Chair Dr. John P. Huelsenbeck Dr. Brent D. Mishler Dr. Kipling W. Will Fall 2017 Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution Copyright 2017 by William Allen Freyman Abstract Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Dr. Bruce G. Baldwin, Chair Key evolutionary transitions have shaped the tree of life by driving the processes of spe- ciation and extinction. This dissertation aims to advance statistical and computational ap- proaches that model the timing and nature of these transitions over evolutionary trees. These methodological developments in phylogenetic comparative biology enable formal, model- based, statistical examinations of the macroevolutionary consequences of trait evolution. Chapter 1 presents computational tools for data mining the large-scale molecular sequence datasets needed for comparative phylogenetic analyses. I describe a novel metric, the miss- ing sequence decisiveness score (MSDS), which assesses the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. In Chapter 2, I introduce a class of phylogenetic models of chromosome number evolution that accommodate both anagenetic and cladogenetic change.
    [Show full text]
  • Homologies of the Anterior Teeth in Lndriidae and a Functional Basis for Dental Reduction in Primates
    Homologies of the Anterior Teeth in lndriidae and a Functional Basis for Dental Reduction in Primates PHILIP D. GINGERICH Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109 KEY WORDS Dental reduction a Lemuriform primates . Indriidae . Dental homologies - Dental scraper . Deciduous dentition - Avahi ABSTRACT In a recent paper Schwartz ('74) proposes revised homologies of the deciduous and permanent teeth in living lemuriform primates of the family Indriidae. However, new evidence provided by the deciduous dentition of Avahi suggests that the traditional interpretations are correct, specifically: (1) the lat- eral teeth in the dental scraper of Indriidae are homologous with the incisors of Lemuridae and Lorisidae, not the canines; (2) the dental formula for the lower deciduous teeth of indriids is 2.1.3; (3) the dental formula for the lower perma- nent teeth of indriids is 2.0.2.3;and (4)decrease in number of incisors during pri- mate evolution was usually in the sequence 13, then 12, then 11. It appears that dental reduction during primate evolution occurred at the ends of integrated in- cisor and cheek tooth units to minimize disruption of their functional integrity. Anterior dental reduction in the primate Schwartz ('74) recently reviewed the prob- family Indriidae illustrates a more general lem of tooth homologies in the dental scraper problem of direction of tooth loss in primate of Indriidae and concluded that no real evi- evolution. All living lemuroid and lorisoid pri- dence has ever been presented to support the mates (except the highly specialized Dauben- interpretation that indriids possess four lower tonid share a distinctive procumbent, comb- incisors and no canines.
    [Show full text]
  • OCTOBER 2015 David Haring, Editor & Photographer • Design by Hilliker Designs
    DLC HOSTS Colleagues FROM Madagascar DUKE ANDREA KatZ, Curator, LIVING ANIMAL COLLECTIONS LEMUR CENTER In May and June, the Duke Lemur Center discuss ways that we can collaborate further to achieve com- (DLC) had the pleasure and great honor to mon conservation goals. The discussions were expanded host two Malagasy colleagues: Eric Robso- when Eric and Bernard attended the Prosimian Taxon Advi- manitrandrasana of the Ministry of the Envi- sory Group’s annual meeting with several members of the ronment, Ecology, Oceans and Forests and DLC technician staff. As a result, in July an official “Accord Bernard Iambana, Manager of Zoo Ivoloina/ of Collaboration” between the Government of Madagascar, Conservation Manager, Madagascar Fauna and American (AZA) and European (EAZA) groups was final- Flora Group. We would like to express our ized- to promote global ex situ and in situ conservation of most heartfelt thanks to the Kris and Peter the critically endangered blue-eyed black lemur (Eulemur Norvig Family Fund for supporting this inter- flavifrons). Named on the 2012, 2013 and 2014 IUCN List of national exchange. the 25 Most Endangered Primates, this species desperately The purpose of their visit was to learn first- needs cooperative global management to survive. And as hand about the DLC’s best practices for lemur the only North American institution successfully breeding care and management. In Madagascar, Eric is blue-eyed black lemurs, the DLC stands ready to do all we the coordinator of a new government initiative possibly can. to improve husbandry standards and breeding management for hundreds of lemurs that are kept in Madagascar’s zoos and private wildlife parks.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Genetic Change and Rates of Cladogenesis
    GENETIC CHANGE AND RATES OF CLADOGENESIS JOHN C. AVISE* AND FRANCISCO J. AYALA Depariment of Genetics, University of Californiu, Davis, California 95616 Manuscript received May 12, 1975 Revised copy received July 28, 1975 ABSTRACT Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predic- tions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic dis- tance between species is a function of time, mean genetic distances in speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age.
    [Show full text]
  • Greater Bamboo Lemur Madagascar
    Madagascar Greater Bamboo Lemur Prolemur simus (Gray, 1871) Madagascar (2002, 2004, 2006, 2008) Patricia C. Wright, Eileen Larney, Edward E. Louis Jr., Rainer Dolch & Radoniana R. Rafaliarison The greater bamboo lemur (Prolemur simus) is the largest of Madagascar’s bamboo-eating lemurs (Albrecht et al. 1990) and the most critically endangered lemur in Madagascar (Ganzhorn et al. 1996, 1997; Konstant et al. 2006; Mittermeier et al. 2006; Ganzhorn and Johnson 2007; Wright et al. 2008). Although its placement in Prolemur has been questioned (for example, Tattersall 2007), it now represents a monospecific genus, based on a suite of distinctive dental and chromosomal characteristics (Vuillaume-Randriamanantena et al. 1985; Macedonia and Stanger 1994) that support its separation from the genus Hapalemur (cf. Groves 2001). Genetic studies further suggest that Hapalemur may, in fact, be more months, while it relies on its shoots and leaves at other closely related to the genus Lemur (Rumpler et al. times of the year. Prolemur simus supplements its diet 1989; Macedonia and Stanger 1994; Stanger-Hall 1997; with fruits, flowers, soil and fungi (Meier and Rumpler Fausser et al., 2002). Prolemur simus also differs from 1987; Tan 1999, 2000; Wright et al. 2008; R. Dolch, J. L. other bamboo lemurs in behavioral and ecological Fiely, J. Rafalimandimby, E. E. Louis Jr. unpubl. data). variation. Historical records (Schwarz 1931) and sub- Greater bamboo lemurs are cathemeral and fossil remains confirm that it was once widespread gregarious, with observed group sizes ranging up to throughout the island (Godfrey and Vuillaume- 28 individuals (Santini-Palka 1994; Tan 1999, 2000).
    [Show full text]
  • A New Mammalian Fauna from the Earliest Eocene (Ilerdian) of the Corbie`Res (Southern France): Palaeobiogeographical Implications
    Swiss J Geosci (2012) 105:417–434 DOI 10.1007/s00015-012-0113-5 A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbie`res (Southern France): palaeobiogeographical implications Bernard Marandat • Sylvain Adnet • Laurent Marivaux • Alain Martinez • Monique Vianey-Liaud • Rodolphe Tabuce Received: 27 April 2012 / Accepted: 19 September 2012 / Published online: 4 November 2012 Ó Swiss Geological Society 2012 Abstract A new mammal fauna from the earliest Eocene Keywords Ypresian Á Europe Á Mammals Á of Le Clot (Corbie`res, Southern France) is described. Some Multituberculates Á Palaeoclimate Á Palaeobiogeography taxa identified there, such as Corbarimys hottingeri and Paschatherium plaziati, allow a correlation with the pre- viously described Corbie`res fauna of Fordones. Moreover, 1 Introduction the presence at Le Clot of Lessnessina praecipuus, which is defined in Palette (Provence, Southern France) allows The beginning of the Eocene is characterized by two major correlating both localities. All three of these localities are phenomena: the warming event known as the Paleocene referred to the MP7 reference level, even if a direct cor- Eocene thermal maximum (PETM) (Stott et al. 1996), relation with the type locality of MP7 (Dormaal, Belgium) which likely triggered the second one: the mammalian is not ascertained. A Southern Europe biochronological dispersal event (MDE) (Beard and Dawson 1999; Hooker sequence is proposed for the beginning of the Eocene: 2000). This MDE is a critical event in the history of Silveirinha, Fordones/Palette/Le Clot, Rians/Fournes. The mammals as it corresponds to both the origin and dispersal diagnosis of a new species of a neoplagiaulacid multitu- of several modern mammalian orders (Perissodactyla, berculate (?Ectypodus riansensis nov.
    [Show full text]
  • In Situ Conservation
    NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event.
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • Mammalia, Plesiadapiformes) As Reflected on Selected Parts of the Postcranium
    SHAPE MEETS FUNCTION: STRUCTURAL MODELS IN PRIMATOLOGY Edited by Emiliano Bruner Proceedings of the 20th Congress of the International Primatological Society Torino, Italy, 22-28 August 2004 MORPHOLOGY AND MORPHOMETRICS JASs Journal of Anthropological Sciences Vol. 82 (2004), pp. 103-118 Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium Dionisios Youlatos1, Marc Godinot2 1) Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece. email [email protected] 2) Ecole Pratique des Hautes Etudes, UMR 5143, Case Courrier 38, Museum National d’Histoire Naturelle, Institut de Paleontologie, 8 rue Buffon, F-75005 Paris, France Summary – Plesiadapis is one of the best-known Plesiadapiformes, a group of Archontan mammals from the Late Paleocene-Early Eocene of Europe and North America that are at the core of debates con- cerning primate origins. So far, the reconstruction of its locomotor behavior has varied from terrestrial bounding to semi-arboreal scansoriality and squirrel-like arboreal walking, bounding and claw climbing. In order to elucidate substrate preferences and positional behavior of this extinct archontan, the present study investigates quantitatively selected postcranial characters of the ulna, radius, femur, and ungual pha- langes of P. tricuspidens and P. n .sp. from three sites (Cernay-les-Reims, Berru, Le Quesnoy) in the Paris Basin, France. These species of Plesiadapis was compared to squirrels of different locomotor habits in terms of selected functional indices that were further explored through a Principal Components Analysis (PCA), and a Discriminant Functions Analysis (DFA). The indices treated the relative olecranon height, form of ulnar shaft, shape and depth of radial head, shape of femoral distal end, shape of femoral trochlea, and dis- tal wedging of ungual phalanx, and placed Plesiadapis well within arboreal quadrupedal, clambering, and claw climbing squirrels.
    [Show full text]
  • SMC 136 Gazin 1958 1 1-112.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene.
    [Show full text]
  • Proceedings of the United States National Museum
    PALEOCENE PRIMATES OF THE FORT UNION, WITH DIS- CUSSION OF RELATIONSHIPS OF EOCENE PRIMATES. By James Williams Gidley, Assistant Curator, United States National Museum. INTRODUCTION. The first important contribution to the knowledge of Fort Union mammalian life was furnished by Dr. Earl Douglass and was based on a small lot of fragmentary material collected by him in the au- tumn of 1901 from a locality in Sweet Grass County, Montana, about 25 miles northeast of Bigtimber.* The fauna described by Douglass indicated a horizon about equivalent in age to the Torrejon of New Mexico, but the presence of unfamilar forms, suggesting a different faunal phase, was recognized. A few years later (1908 to 1911) this region was much more fully explored for fossil remains by parties of the United States Geological Survey and the United States National Museum. Working under the direction of Dr. T. W. Stanton, Mr. Albert C. Silberling, an ener- getic and successful collector, procured the first specimens in the winter and spring of 1908, continuing operations intermittently through the following years until the early spring of 1911. The present writer visited the field in 1908 and again in 1909, securing a considerable amount of good material. The net result of this com- bined field work is the splendid collection now in the National Museum, consisting of about 1,000 specimens, for the most part upper and lower jaw portions carrying teeth in varying numbers, but including also several characteristic foot and limb bones. Although nearly 10 years have passed since the last of this collec- tion was received, it was not until late in the summer of 1920 that the preparation of the material for study was completed.
    [Show full text]