General Article the Indian Ocean Megatsunami Of

Total Page:16

File Type:pdf, Size:1020Kb

General Article the Indian Ocean Megatsunami Of J. Natn.Sci.Foundation Sri Lanka 2005 33(2): 69-80 GENERAL ARTICLE THE INDIAN OCEAN MEGATSUNAMI OF DECEMBER 2004: THE SCIENTIFIC BASIS OF THE CATASTROPHE ANANDA GUNATILAKA+ 10, Thumbowila, Piliyandala. Abstract: The Earth's surface is made up of 13 rigid a distance of -17,000 km in 22 hours before it lithospheric plates that move towards or away from each struck Hawaii and Japan, when < 200 people other, much like the pieces of a jigsaw puzzle. On the 261h of perished. Basically there have been four December 2004, three of these plates interacted in the eastern Indian Ocean to cause an earthquake of magnitude 9.3 and catastrophic tsunami in 300 years and the first in generated a tsunami or giant ocean wave that devastated the Indian Ocean. The 1881 and 1883 tsunami the coastlines of nine countries including Sri Lanka, killing that were felt in Sri Lanka were non-entities. In over 250,000 people. This is the greatest natural disaster to 1970 and 1992 respectively, 330,000 and 210,000 strike Sri Lanka in our recorded history. In this article, the people reportedly perished in the famous cyclones geological and seismological basis of this awesome catastrophe is explained in terms of causes and effects and assesses the of the Bay of Bengal and over 300,000 in Calcutta potential tsunamigenic risk to Sri Lanka. It is argued here in 1737. Destructive cyclones are more probable on the basis of available data that a tsunami event of similar than a future tsunami affecting Sri Lanka. magnitude has a low probability of occurring in the "foreseeable future" within the Central Indian Ocean region. It is a misconception to believe that all Key Words: convergent margins, earthquakes, high tsunami are caused by earthquakes. In fact, there magnitude, Indian Ocean, me gat sun am^ underthrusting is a tsunami that is plates. seismic activity and earthquakes. These are the massive submarine sediment slides (or undersea INTRODUCTION avalanches) generated within continental slopes due to slope and sediment instability; massive Tsunamis are frequent events in the Pacific Ocean landslides or avalanches that end in the ocean region, where 80% of the World's seismicity is (called mass-movement events); large meteorite concentrated (Figure 1). The Indian Ocean has impacts and violent volcanic eruptions. Even a been traditionally considered a "tsunami slight tremor can trigger off a submarine slide. backwater", where destructive cyclones are more These have also occurred throughout geologic frequent. While a tsunami is to be expected history. The huge sediment masses in motion will somewhere in the Pacific about every ten years, displace a massive volume of water to generate it is more than a "century scale" event in the other destructive tsunami. In 1958, an avalanche that Oceans. Yet, there have been seven tsunami landed in Lituya Bay, Alaska, created the largest occurrences in the Indian Ocean region during the recorded tsunami (524 metres high), bigger than period 1524 to 1943 (Table I), but none of them the tallest building on Earth. The tsunami had a transregional effect like the one in 2004. generated by the stupendous explosion of The December 2004 tsunami is now the greatest Krakatoa volcano in the straits between Java and ever recorded anywhere in terms of loss of life Sumatra (in 1883) reached 40 metres in height and material destruction. In the last 300 years, and drowned 36,000 people on nearby coasts. Its there have been only three tsunami that caused effect was felt in Sri Lanka within hours of the comparable loss of life (from both the quake and eruption. The Ceylon Observer 0f27~~August1883 tsunami). They were the famous Lisbon, Portugal reported the event. Only one death was reported. tsunami (1755): 8.7111 and 60,000 dead; Messina, Fortunately, Sri Lanka does not appear to be in Italy (1908) 7.2M and 160,000 dead: and Awa, danger from these non-seismic tsunamis. Japan (1703); >100,000 dead. The largest earthquake ever recorded (9.5M) and Alternatively, not every high magnitude accompanying tsunami (1964 in Chile), resulted submarine earthquake will generate tsunami.' in a total loss of life of less than 5000. It travelled Just three months after the December 2004 "Consultan,t,National Science Foundation of Sri Lanka, 4715, Maitland Place, Colombo 07 Ananda Gunatilaka Table 1: Tsunami occurences in the Indian the eastern Indian 0cean.l Today, the two ocean from 1524-1943 continents are moving independently of one another and in slightly different directions (Figure Date Location 2). A moving mass (India) forced into an immovable object (Eurasia) resulted in the 1524 Maharashtra, India buckling of the oceanic lithosphere at the 2ndApril 1762 Arakhan, Myanmar equatorial latitudes. This splitting created the 13th 16thJune 1819 Rann of Katch, Gujarat iithospheric Plate. Geologists discovered a broad 31" October 1847 Great Nicobar Island, India zone extending about 1000 km east to west in the 3lStDecember 1881 Car Nicobar Island, India equatorial Indian Ocean, where the ocean floor (7.9M) was compressed and deformed. Deep Ocean 26thAugust 1883 Krakatoa, Indonesia drilling recovered rock samples, which indicated 26thJune 1941 Andaman Islands, India that the buckling and fracturing started around (7.7M) 8 Ma ago - coeval with the maximum elevation 28thNovember 1943 Makran, Baluchistan attained by the Tibetan Plateau in the collision proces~.~ Tsunami, an 8.7M earthquake (March 2005) occurred again in Sumatra, but. no big tsunami The 9.3M megathrust earthquake (Richter Scale) that generated theDecember 2004 was caused. This earthquake destroyed the island tsunami originated offshore to the west of of Nias with much loss of life. It is well to remember that the earthquake belt in Indonesia northern Sumatra close to the tiny island of Simeulue (the large star in Figure 2) and is also coincides with a parallel volcanic belt along the trench (Figures 2 and 7). The purpose of this probably the second highest ever recorded in the article is to give a general and semi-technical sea. The Sumatra area is known for its recurrent earthquake activity as it is on the boundary where analysis of the science behind the 2004 tsunami catastrophe to a wide segment of readers and four tectonic plates of the Earth intera~t.~This emphasize the importance of science in our boundary called a Subduction Zone is represented country's affairs. Two newspaper articles by the bathymetrically by the curved Sunda Trench, a author on the tsunami for the general public long fault plane and a nearby volcanic arc. Here appeared in the The Island (4thJanuary 2005), the north-east moving sea floor (at -6 cm per year) The Daily News (6" January 2005) and The of the Indian Plate is thrust (or subducted) under Sunday Times (16thJanuary 2005). the adjacent and overriding Burma Micro-Plate at an angle of -lo0. Strain builds up in the THE SEISMIC HISTORY OF THE EASTERN subduction zone, until the "frictional lock" in the INDIAN OCEAN rocks is broken and a rupture occurs. The earthquake did not exactly happen at a point along The break-up of the Indo-Australian plate and the the fault. It ruptured over a length of about 400 earthquake in Sumatra km. This initial rupture propagated northwards at around 2 km sec-I over a section of the long The origins of the present seismicity in the eastern fault, producing rock deformation. The interplate Indian Ocean goes back to well over 50 Ma (Eocene thrust bounda.ry region is in fact a decoupled era) when the Indian subcontinent began its7great thrust fault, where the overriding Burma Plate push northward towards Eurasia, resulting in the in addition has a right lateral slip component collision and uplift of the Tibetan Plateau and (transcurrent fault). Himalayan Mountains. Starting about 8 Ma ago, the accumulated mass of these two continents and It is no coincidence that the epifocus of the accompanying stretching of the ocean floor the earthquake at -3.3ON latitude also lines up became so great that the original Indo-Australian with the Indo-Australian plate boundary at its' Plate buckled and fractured under stress, eastern end and is the location of maximum compression where the three plates interacted resulting in two separate plates - the Indian (which also carries Sri Lanka) and Australian, (Figure 2). Trenches are the areas where sea floor with the plate margin located at - 3ON latitude in is consumed by the Earth's mantle during the Asian Tsunami of 2004 Figure 1: Distribution of the World's seismicity (red dots). Note that -80% of the seismicity is in the Pacific Ocean region Source: Press and Siever, 1994. W.H. Freeman & Co. New York. (as the laws of physics demand). This happens at trench. An earthquake occurs when rocks being the mid-ocean ridges lying to the south and west deformed suddenly break along the fault, of the deformed region in the Indian Ocean (Figure releasing long accumulated stresses. The blocks 3). It has been shown that the outward movement of rock on either side of the fault slip suddenly, of newly created sea floor could be accommodated setting off ground vibrations. Slippage is most only if a distinct plate boundary existed between common along plate boundaries. The distribution separate Australian and Indian plates across the of aftershocks from Sumatra to Andaman Islands equatorial Indian O~ean.~In the kastern part of suggests that the rupture had a maximum length this new plate boundary the Australian Plate is of -1200 km parallel to the Sunda Trench and a moving counter-clockwise to the Indian Plate. On width of over 100 km perpendicular to the the western side (i.e. towards Sri Lanka), the two earthquake source.
Recommended publications
  • Coastal Water Levels
    Guidance for Flood Risk Analysis and Mapping Coastal Water Levels May 2016 Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document provides guidance to support the requirements and recommends approaches for effective and efficient implementation. Alternate approaches that comply with all requirements are acceptable. For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and Mapping webpage (www.fema.gov/guidelines-and-standards-flood-risk-analysis-and- mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, technical references, and other information about the guidelines and standards development process are all available here. You can also search directly by document title at www.fema.gov/library. Water Levels May 2016 Guidance Document 67 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood Hazard Mapping Partners, Procedure Memoranda, First Publication May 2016 and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Water Levels May 2016 Guidance Document 67 Page ii Table of Contents 1.0 Topic Overview .................................................................................................................
    [Show full text]
  • Tsunami, Seiches, and Tides Key Ideas Seiches
    Tsunami, Seiches, And Tides Key Ideas l The wavelengths of tsunami, seiches and tides are so great that they always behave as shallow-water waves. l Because wave speed is proportional to wavelength, these waves move rapidly through the water. l A seiche is a pendulum-like rocking of water in a basin. l Tsunami are caused by displacement of water by forces that cause earthquakes, by landslides, by eruptions or by asteroid impacts. l Tides are caused by the gravitational attraction of the sun and the moon, by inertia, and by basin resonance. 1 Seiches What are the characteristics of a seiche? Water rocking back and forth at a specific resonant frequency in a confined area is a seiche. Seiches are also called standing waves. The node is the position in a standing wave where water moves sideways, but does not rise or fall. 2 1 Seiches A seiche in Lake Geneva. The blue line represents the hypothetical whole wave of which the seiche is a part. 3 Tsunami and Seismic Sea Waves Tsunami are long-wavelength, shallow-water, progressive waves caused by the rapid displacement of ocean water. Tsunami generated by the vertical movement of earth along faults are seismic sea waves. What else can generate tsunami? llandslides licebergs falling from glaciers lvolcanic eruptions lother direct displacements of the water surface 4 2 Tsunami and Seismic Sea Waves A tsunami, which occurred in 1946, was generated by a rupture along a submerged fault. The tsunami traveled at speeds of 212 meters per second. 5 Tsunami Speed How can the speed of a tsunami be calculated? Remember, because tsunami have extremely long wavelengths, they always behave as shallow water waves.
    [Show full text]
  • The Kingdom of Tonga Devastated by a Megatsunami in the Mid-15Th Century
    EGU21-5317, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu21-5317 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The kingdom of Tonga devastated by a megatsunami in the mid-15th century Franck Lavigne1,2,3, Julie Morin4, Wassmer Patrick2, Weller Olivier5, Kula Taaniela6, Ana V. Maea6, Karim Kelfoun7, Fatima Mokadem2, Raphael Paris7, Mukhamad N. Malawani1,2,8, Faral Audrey1,2, Mhammed Benbakkar7, Ségolène Saulnier-Copard2, Céline M. Vidal4, Tu’I’ahai Tu’I’afitu6, Gomez Christopher9, and Fuka Kitekei’aho10 1Paris 1 Pantheon-Sorbonne University, ([email protected]) 2Laboratory of Physical Geography, UMR 8591 CNRS, Meudon, France 3Institut Universitaire de France, Paris, France 4Department of Geography, University of Cambridge, Cambridge, UK 5Trajectoires, UMR 8215 CNRS, Paris, France 6Ministry of Land and Natural Resources, Natural Resources Division, Nuku'alofa, Kingdom of Tonga 7Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, France 8Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia 9Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Japan 10Geocare & Petroleum Consult Ltd, Nuku'alofa, Kingdom of Tonga The pre-colonial history of Tonga and West Polynesia still suffers from major gaps because its reconstruction is essentially based on legends left by oral tradition, and by archaeological evidence somehow difficult to interpret. By the fourteenth century, the powerful Tu'i Tonga kingdom united the islands of the Tongan archipelago under a centralised authority and, according to tradition, extended its influence to neighbouring island groups in the Central Pacific. However, some periods of deep crisis were identified, e.g.
    [Show full text]
  • Numerical Calculation of Seiche Motions in Harbours of Arbitrary Shape
    NUMERICAL CALCULATION OF SEICHE MOTIONS IN HARBOURS OF ARBITRARY SHAPE P. Gaillard Sogreah, Grenoble, France ABSTRACT A new method of calculation of wave diffraction around islands, off- shore structures, and of long wave oscillations within offshore or shore-connected harbours is presented. The method is a combination of the finite element technique with an analytical representation of the wave pattern in the far field. Examples of application are given, and results are compared with other theoretical and experimental investig- ations. INTRODUCTION The prediction of possible resonant response of harbours to long wave excitation may be an important factor at the design stage. Hydraulic scale models have the disadvantage of introducing some bias in the results due to wave reflection on the wave paddle and on the tank boundaries. Numerical methods on the other hand can avoid such spurious effects by an appropriate representation of the unbounded water medium outside the harbour. Various numerical methods exist for calculating the seiche motions in harbours of arbitrary shape and water depth configuration. Among these, the hybrid-element methods, as described by Berkhoff [l] , Bettess and Zienkiewicz [2] , Chen and Mei [3j , Sakai and Tsukioka [8] use a com- bination of the finite element technique with other methods for repre- senting the velocity potential within the harbour and in the offshore zone. This paper presents a new method based on the same general approach, with an analytical representation of the wave pattern in the far field. It differs from the former methods in several aspects stressed hereafter. We consider here two kinds of applications: a) the first is the study of wave diffraction by islands or bottom seated obstacles in the open sea and the study of wave oscil- lations within and around an offshore harbour.
    [Show full text]
  • Literature Review of Tsunami Sources Affecting Tsunami Hazard Along the US East Coast
    Literature review of tsunami sources affecting tsunami hazard along the US East Coast Department of Ocean Engineering, University of Rhode Island Narragansett, USA Feb. 21, 2011 1 TABLE OF CONTENTS 1. BACKGROUND ...................................................................................................................... 3 2. LITERATURE REVIEW OF RELEVANT TSUNAMI SOURCES .................................... 5 2.1 Submarine Mass Failures ........................................................................................................ 5 2.2 Co-seismic tsunamis .................................................................................................................. 8 2.2.1 Review of literature on Caribbean subduction zone ............................................................. 8 2.2.2 NOAA Forecast Source Database for Caribbean subduction zone ............................... 16 2.2.3 Azores-Gibraltar convergence zone .......................................................................................... 17 2.3 Cumbre Vieja Volcano flanK collapse ............................................................................... 21 3. INITIAL SOURCE DEFINITIONS AND TSUNAMI SIMULATIONS .......................... 24 3.1 Modeling methodology .......................................................................................................... 24 3.1.1 Initial conditions for model .......................................................................................................... 24 3.1.2 Co-seismic sources
    [Show full text]
  • Bildnachweis
    Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u;
    [Show full text]
  • Continuous Seiche in Bays and Harbors
    Manuscript prepared for Ocean Sci. with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls. Date: 14 February 2016 Continuous seiche in bays and harbors J. Park1, J. MacMahan2, W. V. Sweet3, and K. Kotun1 1National Park Service, 950 N. Krome Ave, Homestead, FL, USA 2Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA 3NOAA, 1305 East West Hwy, Silver Spring, MD, USA Correspondence to: J. Park ([email protected]) Abstract. Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time after the event. However, continuous small–amplitude seiches have been recognized presenting a question as to the origin of continuous forcing. We examine 6 bays around the Pacific where continuous seiches 5 are evident, and based on spectral, modal and kinematic analysis suggest that tidally–forced shelf– resonances are a primary driver of continuous seiches. 1 Introduction It is long recognized that coastal water levels resonate. Resonances span the ocean as tides (Darwin, 1899) and bays as seiches (Airy, 1877; Chrystal, 1906). Bays and harbors offer refuge from the open 10 ocean by effectively decoupling wind waves and swell from an anchorage, although offshore waves are effective in driving resonant modes in the infragravity regime at periods of 30 s to 5 minutes (Okihiro and Guza, 1996; Thotagamuwage and Pattiaratchi, 2014), and at periods between 5 minutes and 2 hours bays and harbors can act as efficient amplifiers (Miles and Munk, 1961). Tides expressed on coasts are significantly altered by coastline and bathymetry, for example, 15 continental shelves modulate tidal amplitudes and dissipate tidal energy (Taylor, 1919) such that tidally–driven standing waves are a persistent feature on continental shelves (Webb, 1976; Clarke and Battisti, 1981).
    [Show full text]
  • TSUNAMI and SEICHE
    TSUNAMI and SEICHE DEFINITIONS: Seiche – The action of a series of standing waves (sloshing action) of an enclosed body or partially enclosed body of water caused by earthquake shaking. Seiche action can affect harbors, bays, lakes, rivers, and canals. Tsunami – A sea wave of local or distant origin that results from large-scale displacements of the seafloor associated with large earthquakes, major submarine slides, or exploding volcanic islands. BACKGROUND INFORMATION: Tsunami The Pacific Coast of Washington is at risk from tsunamis. These destructive waves can be caused by coastal or submarine landslides or volcanism, but they are most commonly caused by large submarine earthquakes. Tsunamis are generated when these geologic events cause large, rapid movements in the sea floor that displace the water column above. That swift change creates a series of high-energy waves that radiate outward like pond ripples. Offshore tsunamis would strike the adjacent shorelines within minutes and also cross the ocean at speeds as great as 600 miles per hour to strike distant shores. In 1946, a tsunami was initiated by an earthquake in the Aleutian Islands of Alaska; in less than 5 hours, it reached Hawaii with waves as high as 55 feet and killed 173 people. Tsunami waves can continue for hours. The first wave can be followed by others a few minutes or a few hours later, and the later waves are commonly larger. The first wave to strike Crescent City, California, caused by the Alaska earthquake in Prince William Sound in 1964, was 9 feet above the tide level; the second, 29 minutes later, was 6 feet above tide, the third was about 11 feet above the tide level, and the fourth, most damaging wave was more than 16 feet above the tide level.
    [Show full text]
  • Unit 4 Earthquake Effects
    Unit 4 Earthquake Effects INTRODUCTION In the last unit, we looked at the causes and characteristics of earthquakes. Now let’s take a look at an earthquake’s effects on the natural and built environments. Knowing more about the effects of earthquakes helps us understand the mitigation steps that must be taken to protect a community from a seismic event. Unit 4 covers the following topics: • What are some effects of earthquakes on the natural and built environments? • What building characteristics are significant to seismic design? • How do buildings resist earthquake forces? • What secondary consequences of earthquakes must we be concerned with? WHAT ARE SOME EFFECTS OF EARTHQUAKES ON THE NATURAL ENVIRONMENT? In the last unit, we reviewed the different types of seismic waves that produce the violent ground shaking, or motion, associated with earthquakes. These wave vibrations produce several different effects on the natural environment that also can cause tremendous damage to the built environment (buildings, transportation lines and structures, communications lines, and utilities). Researching potential problems, known as site investigation, is a good first step in reducing damage to the built environment due to earthquakes. Page 4-2 Earthquake Effects Liquefaction Strong ground motion during an earthquake can cause water-saturated, unconsolidated soil to act more like a dense fluid than a solid; this process is called liquefaction. Liquefaction occurs when a material of solid consistency is transformed, with increased water pressure, in to a liquefied state. Water saturated, granular sediments such as silts, sands, and gravel that are free of clay particles are susceptible to liquefaction. Imagine what would happen to a building if the soil beneath it suddenly behaved like a liquid.
    [Show full text]
  • Storm, Rogue Wave, Or Tsunami Origin for Megaclast Deposits in Western
    Storm, rogue wave, or tsunami origin for megaclast PNAS PLUS deposits in western Ireland and North Island, New Zealand? John F. Deweya,1 and Paul D. Ryanb,1 aUniversity College, University of Oxford, Oxford OX1 4BH, United Kingdom; and bSchool of Natural Science, Earth and Ocean Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland Contributed by John F. Dewey, October 15, 2017 (sent for review July 26, 2017; reviewed by Sarah Boulton and James Goff) The origins of boulderite deposits are investigated with reference wavelength (100–200 m), traveling from 10 kph to 90 kph, with to the present-day foreshore of Annagh Head, NW Ireland, and the multiple back and forth actions in a short space and brief timeframe. Lower Miocene Matheson Formation, New Zealand, to resolve Momentum of laterally displaced water masses may be a contributing disputes on their origin and to contrast and compare the deposits factor in increasing speed, plucking power, and run-up for tsunamis of tsunamis and storms. Field data indicate that the Matheson generated by earthquakes with a horizontal component of displace- Formation, which contains boulders in excess of 140 tonnes, was ment (5), for lateral volcanic megablasts, or by the lateral movement produced by a 12- to 13-m-high tsunami with a period in the order of submarine slide sheets. In storm waves, momentum is always im- of 1 h. The origin of the boulders at Annagh Head, which exceed portant(1cubicmeterofseawaterweighsjustover1tonne)in 50 tonnes, is disputed. We combine oceanographic, historical, throwing walls of water continually at a coastline.
    [Show full text]
  • MAR 110 LECTURE #22 Standing Waves and Tides
    27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 1 MAR 110 LECTURE #22 Standing Waves and Tides Coastal Zone – Beach Profile Figure 22.1 Beach Profile Summer Onshore Sand Transport Breaking Swell Currents Erode Bar Sand…. & Build the Summer Berm Figure 22.2 Beach Evolution – Summer Onshore Transport 27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 2 Winter Offshore Sand Transport Winter Storm Wave Currents Erode Beach Sand…. to form sandbars Figure 22.3 Beach Evolution – Winter Offshore Transport No Net Motion or Energy Propagation Figure 22.4 Wave Reflection and Standing Waves A standing wave does not travel or propagate but merely oscillates up and down with stationary nodes (with no vertical movement) and antinodes (with the maximum possible movement) that oscillates between the crest and the trough. A standing wave occurs when the wave hits a barrier such as a seawall exactly at either the wave’s crest or trough, causing the reflected wave to be a mirror image of the original. (??) 27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 3 Standing Waves and a Bathtub Seiche Figure 22.5 Standing Waves Standing waves can also occur in an enclosed basin such as a bathtub. In such a case, at the center of the basin there is no vertical movement and the location of this node does not change while at either end is the maximum vertical oscillation of the water. This type of waves is also known as a seiche and occurs in harbors and in large enclosed bodies of water such as the Great Lakes. (??, ??) Standing Wave or Seiche Period l Figure 22.6 Seiche Period The wavelength of a standing wave is equal to twice the length of the basin it is in, which along with the depth (d) of the water within the basin, determines the period (T) of the wave.
    [Show full text]
  • Advances in the Study of Mega-Tsunamis in the Geological Record Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa
    Advances in the study of mega-tsunamis in the geological record Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa To cite this version: Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa. Advances in the study of mega-tsunamis in the geological record. Earth-Science Reviews, Elsevier, 2020, 210, pp.103381. 10.1016/j.earscirev.2020.103381. hal-02964184 HAL Id: hal-02964184 https://hal.uca.fr/hal-02964184 Submitted on 12 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Advances in the study of mega-tsunamis in the geological record 2 3 Raphaël Paris1, Kazuhisa Goto2, James Goff3, Hideaki Yanagisawa4 4 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont- 5 Ferrand, France. 6 2 Department of Earth and Planetary Science, The University of Tokyo, Hongo 7-3-1, Tokyo, Japan. 7 3 PANGEA Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia. 8 4 Department of Regional Management, Tohoku Gakuin University, Tenjinsawa 2‑ 1‑ 1, Sendai, Japan. 9 10 Abstract 11 Extreme geophysical events such as asteroid impacts and giant landslides can generate mega- 12 tsunamis with wave heights considerably higher than those observed for other forms of 13 tsunamis.
    [Show full text]