Proposed OPPTS Science Policy: PPAR-Alpha Mediated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Toxicogenomic Study of the Hepatocarcinogen Furan
A Toxicogenomic Study of the Hepatocarcinogen Furan by Anna Francina Webster (Jackson) A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2015, Anna Francina Webster Abstract A major goal in human health risk assessment is the identification and management of chemicals that may cause cancer in human populations. The current gold- standard for assessing chemical carcinogenicity is the two-year rodent cancer bioassay, which is animal, time, and resource intensive. The use of toxicogenomics for chemical risk assessment was first proposed over 15 years ago because of its potential to produce toxicologically relevant data more quickly, using fewer animals, and at a lower cost than the two-year cancer bioassay. While the two-year cancer bioassay produces a detailed inventory of chemical-dependent lesions, toxicogenomics analyzes chemical-dependent changes to global gene expression. Moreover, toxicogenomics provides comprehensive mechanistic data that are not obtained using standard tests. In this thesis quantitative, predictive, and mechanistic approaches were applied to a toxicogenomic case study of the rodent hepatocarcinogen furan. Female B3C6F1 mice were exposed for three weeks to non-carcinogenic or carcinogenic doses of furan. The dose response of a variety of transcriptional endpoints produced benchmark doses (BMDs) similar to the furan- dependent cancer BMDs. Bioinformatic analysis of disease datasets showed strong similarity between global gene expression changes induced by furan and those associated with the appropriate hepatic pathologies. The molecular pathways that were enriched in the liver following furan exposure facilitated the development of a molecular mode of action (MoA) for furan-induced liver cancer. -
Addition of Peroxisome Proliferator-Activated Receptor to Guinea Pig Hepatocytes Confers Increased Responsiveness to Peroxisome
[CANCER RESEARCH 59, 4776–4780, October 1, 1999] Advances in Brief Addition of Peroxisome Proliferator-activated Receptor a to Guinea Pig Hepatocytes Confers Increased Responsiveness to Peroxisome Proliferators Neil Macdonald, Peter R. Holden, and Ruth A. Roberts1 AstraZeneca Central Toxicology Laboratory, Alderley Park, Macclesfield SK10 4TJ, United Kingdom Abstract humans are considered to be nonresponsive to the adverse effects of PPs associated with increased b-oxidation and peroxisome prolifera- The fibrate drugs, such as nafenopin and fenofibrate, show efficacy in tion (3, 7, 11, 12). In guinea pigs, there is no increased DNA synthesis hyperlipidemias but cause peroxisome proliferation and liver tumors in or liver enlargement and only a small increase in peroxisome prolif- rats and mice via nongenotoxic mechanisms. However, humans and b guinea pigs appear refractory to these adverse effects. The peroxisome eration, and peroxisomal -oxidation enzyme activity is weak (12) proliferator (PP)-activated receptor a (PPARa) mediates the effects of even at very high PP concentrations (13). Similarly, cultured human PPs by heterodimerizing with the retinoid X receptor (RXR) to bind to hepatocytes are refractory to the adverse effects of PPs (14) because DNA at PP response elements (PPREs) upstream of PP-regulated genes, the induction of peroxisomal b-oxidation by PPs weak (15) or absent such as acyl-CoA oxidase. Hepatic expression of PPARa in guinea pigs (15), and PPs cannot induce DNA synthesis (reviewed in Ref. 11) or and humans is low, suggesting that species differences in response to PPs suppress apoptosis (16). In addition, there appears to be no increased may be due at least in part to quantity of PPARa. -
Clofibrate Causes an Upregulation of PPAR- Target Genes but Does Not
tapraid4/zh6-areg/zh6-areg/zh600707/zh65828d07a xppws S� 1 4/20/07 9: 48 MS: R-00603-2006 Ini: 07/rgh/dh A " #h!si$l %egul Integr &$ ' #h!si$l 2%&' R000 (R000) 200!$ 3. Originalarbeiten *irst publis#ed "arc# + 5) 200! doi' + 0$ + + 52,a-pregu$ 0060&$ 2006$ Clofibrate causes an upregulation of PPAR-� target genes but does not alter AQ: 1 expression of SREBP target genes in liver and adipose tissue of pigs Sebastian Luci, Beatrice Giemsa, Holger Kluge, and Klaus Eder Institut fu¨r Agrar- und Erna¨hrungswissenschaften, Martin-Luther-Universita¨t Halle-Wittenberg, Halle (Saale), Ger an! Submitted 25 August 2006 accepted in final form ! "arc# 200! AQ: 2 Luci S, Giemsa B, Kluge H, Eder K. Clofibrate causes an usuall0 increased 3#en baseline concentrations are lo3 1?62$ upregulation of PPAR-� target genes but does not alter expression of Effects of PPAR-� activation #ave been mostl0 studied in SREBP target genes in liver and adipose tissue of pigs$ A " #h!si$l rodents) 3#ic# ex#ibit a strong expression of PPAR-� in liver %egul Integr &$ ' #h!si$l 2%&' R000 (R000) 200!$ *irst publis#ed and s#o3 peroxisome proliferation in t#e liver in response to "arc# + 5) 200! doi' + 0$ + + 52,a-pregu$ 0060&$ 2006$ ./#is stud0 inves- PPAR-� activation 1&62$ Expression of PPAR-� and sensitivit0 tigated t#e effect of clofibrate treatment on expression of target genes of peroxisome proliferator-activated receptor 1PPAR2-� and various to peroxisomal induction b0 PPAR-� agonists) #o3ever) var0 genes of t#e lipid metabolism in liver and adipose tissue of pigs$ An greatl0 -
Joint Assessment Report Was Discussed by the Phvwp at Its Meeting in July 2007 and Finalised in September 2007
ASSESSMENT REPORT on the benefit:risk of fibrates EXECUTIVE SUMMARY 1. BACKGROUND In the light of the established role of statins in the primary and secondary prevention of cardiovascular disease (CVD) and safety concerns arising from the use of fibrates, the CHMP Pharmacovigilance Working Party (PhVWP) agreed to undertake a benefit:risk assessment of this class of medicines. The objective was to establish the current place of fibrates in the treatment of cardiovascular and dyslipidaemic diseases, and in diabetes mellitus; also to provide recommendations regarding amendments of the Summary of Product Characteristics (SPC), as necessary. Fibrates exert their effects mainly by activating the peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Unique in this class, bezafibrate is an agonist for all three PPAR isoforms alpha, gamma, and delta. Fibrates have been shown to reduce plasma triglycerides by 30% to 50% and raise the level of high density lipoprotein cholesterol (HDL- C) by 2% to 20%. Their effect on low density lipoprotein cholesterol (LDL-C) is variable, ranging from no effect to a small decrease of the order of 10%. Today there are four licensed fibrates: bezafibrate, fenofibrate, gemfibrozil and ciprofibrate. Their currently approved indications are quite broad and in many cases still use the old Fredrickson classification for dyslipidaemias. 2. METHODOLOGY In February 2006 a List of Questions was agreed by the PhVWP for the Marketing Authorisation Holders (MAHs) of medicinal products containing one of the four currently licensed fibrates (Annex 1). Other clofibrate-containing medicinal products (e.g. etofibrate, etofyllinclofibrate) were excluded from this class review, since these are available only in a few member states via national marketing authorizations. -
BREAST CANCER METASTATIC DORMANCY and EMERGENCE, a ROLE for ADJUVANT STATIN THERAPY by Colin Henry Beckwitt Bachelor of Science
BREAST CANCER METASTATIC DORMANCY AND EMERGENCE, A ROLE FOR ADJUVANT STATIN THERAPY by Colin Henry Beckwitt Bachelor of Science in Biological Engineering, Massachusetts Institute of Technology, 2013 Submitted to the Graduate Faculty of The School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2018 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Colin Henry Beckwitt It was defended on May 22, 2018 and approved by Chairperson: Donna Beer Stolz, PhD, Associate Professor, Department of Cell Biology Zoltán N. Oltvai, MD, Associate Professor, Department of Pathology Partha Roy, PhD, Associate Professor, Departments of Bioengineering and Pathology Kari N. Nejak-Bowen, MBA, PhD, Assistant Professor, Department of Pathology Linda G. Griffith, PhD, School of Engineering Teaching Innovation Professor, Departments of Biological and Mechanical Engineering Dissertation Advisor: Alan Wells, MD, DMSc, Thomas J. Gill III Professor, Department of Pathology ii Copyright © by Colin Henry Beckwitt 2018 iii BREAST CANCER METASTATIC DORMANCY AND EMERGENCE, A ROLE FOR ADJUVANT STATIN THERAPY Colin Henry Beckwitt University of Pittsburgh, 2018 Breast cancer is responsible for the most new cancer cases and is the second highest cause of cancer related deaths among women. Localized breast cancer is effectively treated surgically. In contrast, metastatic cancers often remain undetected as dormant micrometastases for years to decades after primary surgery. Emergence of micrometastases to form clinically evident metastases complicates therapeutic intervention, making survival rates poor. The often long lag time between primary tumor diagnosis and emergence of metastatic disease motivates the development or repurposing of agents to act as safe, long term adjuvants to prevent disease progression. -
PI Changes for Fibrates
Changes to Product Information as approved by the CHMP on 21 October 2010, pending endorsement by the European Commission 1 BEZAFIBRATE ANNEX I -SUMMARY OF PRODUCT CHARACTERISTICS 4.1 Therapeutic indications (to replace current text) [Product name] is indicated as an adjunct to diet and other non-pharmacological treatment (e.g. exercise, weight reduction) for the following: - Treatment of severe hypertriglyceridaemia with or without low HDL cholesterol. - Mixed hyperlipidaemia when a statin is contraindicated or not tolerated. 5.1 Pharmacodynamic properties (Additional text) There is evidence that treatment with fibrates may reduce coronary heart disease events but they have not been shown to decrease all cause mortality in the primary or secondary prevention of cardiovascular disease ANNEX III -LABELLING AND PACKAGE LEAFLET What [Product name] is and what it is used for [Product name] belongs to a group of medicines, commonly known as fibrates. These medicines are used to lower the level of fats (lipids) in the blood. For example the fats known as triglycerides. [Product name] is used, alongside a low fat diet and other non-medical treatments such as exercise and weight loss, to lower levels of fats in the blood. 2 CIPROFIBRATE ANNEX I -SUMMARY OF PRODUCT CHARACTERISTICS 4.1 Therapeutic indications (to replace current text) [Product name] is indicated as an adjunct to diet and other non-pharmacological treatment (e.g. exercise, weight reduction) for the following: - Treatment of severe hypertriglyceridaemia with or without low HDL cholesterol. - Mixed hyperlipidaemia when a statin is contraindicated or not tolerated. 5.1 Pharmacodynamic properties (Additional text) There is evidence that treatment with fibrates may reduce coronary heart disease events but they have not been shown to decrease all cause mortality in the primary or secondary prevention of cardiovascular disease ANNEX III -LABELLING AND PACKAGE LEAFLET What [Product name] is and what it is used for [Product name] belongs to a group of medicines, commonly known as fibrates. -
Lipid Screening in Childhood and Adolescence For
Supplementary Online Content Lozano P, Henrikson NB, Dunn J, et al. Lipid screening in childhood and adolescence for detection of familial hypercholesterolemia: evidence report and systematic review for the US Preventive Services Task Force. JAMA. doi:10.1001/jama.2016.6176. eTable 1. Diagnostic Criteria for FH: MEDPED Criteria (U.S.) eTable 2. Diagnostic Criteria for FH: Simon Broome Criteria (U.K.) eTable 3. Diagnostic Criteria for FH: Dutch Criteria (The Netherlands) eTable 4. Quality Assessment Criteria eFigure. Literature Flow Diagram eTable 5. Adverse Effects Reported in Studies of Pravastatin (Key Question 7) eTable 6. Adverse Effects Reported in Studies of Other Statins (Key Question 7) eTable 7. Adverse Effects Reported in Studies of Bile Acid–Sequestering Agents and Other Drugs (Key Question 7) This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eMethods. Literature Search Strategies Search Strategy Sources searched: Cochrane Central Register of Controlled Clinical Trials, via Wiley Medline, via Ovid PubMed, publisher-supplied Key: / = MeSH subject heading $ = truncation ti = word in title ab = word in abstract adj# = adjacent within x number of words pt = publication type * = truncation ae = adverse effects ci = chemically induced de=drug effects mo=mortality nm = name of substance Cochrane Central Register of Controlled Clinical Trials #1 (hyperlipid*emia*:ti,ab,kw -
Fenofibrate, Bezafibrate, Ciprofibrate and Gemfibrozil Procedure Number
28 February 2011 EMA/CHMP/580013/2012 Assessment report for fenofibrate, bezafibrate, ciprofibrate, and gemfibrozil containing medicinal products pursuant to Article 31 of Directive 2001/83/EC, as amended INN: fenofibrate, bezafibrate, ciprofibrate and gemfibrozil Procedure number: EMEA/H/A-1238 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 3 1.1. Referral of the matter to the CHMP ......................................................................... 3 2. Scientific discussion ................................................................................ 3 2.1. Introduction......................................................................................................... 3 2.2. Clinical aspects .................................................................................................... 4 2.2.1. PhVWP recommendation ..................................................................................... 4 2.2.2. CHMP review ..................................................................................................... 7 2.2.3. Discussion ..................................................................................................... -
Methods of Chromatographic Determination of Medicines Decreasing the Level of Cholesterol
Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 5 pp. 455ñ461, 2010 ISSN 0001-6837 Polish Pharmaceutical Society ANALYSIS METHODS OF CHROMATOGRAPHIC DETERMINATION OF MEDICINES DECREASING THE LEVEL OF CHOLESTEROL ELØBIETA KUBLIN1, BARBARA KACZMARSKA-GRACZYK1, EWA MALANOWICZ1 and ALEKSANDER P. MAZUREK1,2 1Department of Basic and Applied Pharmacy, National Medicines Institute, 30/34 Che≥mska St., 00-725 Warszawa, Poland 2Department of Drug Chemistry, Medical University of Warsaw, 1 Banacha St., 02- 097 Warszawa, Poland Abstract: With reference to common application of HPLC to routine analytical tests on medicinal products decreasing the level of cholesterol, including three compounds from this group ñ fenofibrate, bezafibrate and etofibrate, we developed a new method for determining two other compounds ñ ciprofibrate and gemfibrozil. The developed HPLC method may be used for identification and qualitative determination of selected com- pounds ñ derivatives of aryloxyalkylcarboxylic acids as well as it may be used for simultaneous separation and determination of all compounds from the group of fibrates using one column and the same methodology. The results and statistical data indicate good sensitivity and precision. The RSD value presented is equivalent to the newly developed method of determinination of ciprofibrate and gemfibrozil in the substances and medicinal products ñ capsules and coated tablets. Keywords: hyperlipidemia, HPLC, derivatives of aryloxyalkylcarboxylic acids, bezafibrate, ciprofibrate, fibrate, gemfibrozil, etofibrate, clofibrate Hyperlipidemia (HLP) is a group of disorders The selected medicines applied in the treat- in the lipid balance of various pathogenesis, which ment of hyperlipidemia, particularily leading to a demonstrate an increase in the cholesterol concen- decrease in the level of cholesterol, have been apart tration, mostly the level of lipoprotein fractions of from statins, the derivatives of aryloxyalkyl-car- low density (LDL) and/or the concentration of boxylic acids ñ so called fibrates. -
Update of Comparative Effectiveness of Lipid-Modifying Agents
Evidence-based Practice Center Systematic Review Protocol Project Title: Update of Comparative Effectiveness of Lipid-Modifying Agents I. Background and Objectives for the Systematic Review Epidemiology and Practice Guidelines Cardiovascular disease (CVD) affects 83.6 million Americans.1 CVD includes a variety of conditions such as myocardial infarction, stroke, heart failure, arrhythmia, heart valve disease, and hypertension. In 2009, CVD contributed to 32.3 percent of U.S. deaths and is a leading cause of disability.1 Atherosclerosis plays a major role in the development of certain cardiovascular diseases—coronary heart disease (CHD) including myocardial infarction, angina, and heart failure and cerebrovascular accident. These atherosclerotic diseases affect 15.4 million Americans.1 Elevated blood lipids are a major risk factor for atherosclerotic CVD. Abnormal lipoprotein metabolism predisposes individuals to atherosclerosis, especially increased concentrations of apolipoprotein B (apo B)-100–containing low-density lipoprotein (LDL-c). Oxidized LDL is atherogenic, causing endothelial damage, alteration of vascular tone, and recruitment of monocytes and macrophages. Many studies have underscored the importance of LDL-c in development of atherosclerotic CVD.2,3 Due to the consistent and robust association of higher LDL-c levels with atherosclerotic CVD across experimental and epidemiologic studies, therapeutic strategies to decrease risk have focused on LDL-c reduction as the primary goal. The trial results are most compelling regarding the reduction of CHD by lowering LDL-c. 4,5 Based on this evidence, the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) report established three CHD risk strata together with guidelines regarding the initiation of treatment and therapeutic targets based on LDL-c cutoffs. -
Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system. -
Estonian Statistics on Medicines 2013 1/44
Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)