Therapeutic Embolisation of the External Carotid Arterial Tree

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Embolisation of the External Carotid Arterial Tree J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.10.937 on 1 October 1977. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1977, 40, 937-950 Therapeutic embolisation of the external carotid arterial tree BRIAN KENDALL AND IVAN MOSELEY1 From the Lysholm Radiological Department, National Hospital for Nervous Diseases, Queen Square, London SUMMARY Intra-arterial embolisation is a valuable adjunct to the treatment of many vascular lesions, including neoplasms such as glomus tumours or juvenile angiofibromas, and arterio- venous malformations. Its place in the management of the individual patient should be established before any surgical procedure is carried out, as this may prejudice the eventual result. The indications for the procedure, the technique, and possible complications are discussed in this paper, and it is emphasised that the latter are best avoided by the use of a scrupulous technique and adequate technical facilities. guest. Protected by copyright. Therapeutic intra-arterial embolisation of vascular can, of course, be treated in other parts of the lesions is not a new technique; it was suggested in body. 1930 by Brooks, at a time when carotid angio- The contraindications to embolisation include graphy itself had been practised for only three allergy to angiographic contrast medium (but see years. Since then it has been used extensively as case 6), and atheroma of the carotid bifurcation, an adjunct to surgery or as definitive therapy, and which precludes selective catheterisation. There is the purpose of the present article is to describe little indication for the treatment of lesions which some of its applications and advantages in the present no difficulty at surgery and are unlikely to management of vascular lesions of the neck and produce poor cosmetic results. head. Brooks (1930) recommended muscle as the The aim of intravascular embolisation is to embolic material, while later workers have used occlude the blood vessels of a tumour or other radio-opaque metallic, plastic, or silicone spheres vascular lesion which is either inaccessible to sur- (Luessenhop, 1969) or Gelfoam fragments (Ishi- gery, or in which surgery could involve consider- mori et al., 1967). More recently, rapidly solidify- able haemorrhage, within the lesion itself or at a ing liquids have been prepared for embolisation. critical level. Thus, in the case of a vascular mal- We have consistently used fragments of Gelfoam, formation or tumour in the external carotid which is non-antigenic. These have the advantages territory, ligation or occlusion of feeding vessels of being relatively cheap and simple to handle and http://jnnp.bmj.com/ at some distance from the shunt or tumour bed prepare; their size can be finely adjusted to the has repeatedly been shown to result in the rapid individual case. Injection of even large fragments development of collateral supply; the placement is easy and does not require a large catheter. Al- of emboli within the pathological vessels them- though they appear to provide a satisfactory selves precludes this. thrombosis, we feel that a single fragment mis- In the external carotid territory embolisation placed in a vessel which it is not intended to may be useful in the management of angiomas: of embolise may be less harmful than a rigid metal the skin, tongue, bone, or dura mater; of arterio- or plastic sphere. The use of rapidly solidifying on September 26, 2021 by venous fistulae, eg caroticocavernous; and of liquids, although very effective, may produce a tumours: glomus tumours, angiofibromas, menin- more complete occlusion than is desirable of some giomas, or malignant tumours. Similar lesions of the tiny normal vessels arising from branches of the external carotid artery to supply the cranial nerves. 1 Address for reprint requests: Dr I. F. Moseley, The National Hospital, Queen Square, London WCIN 3BG. Preparation of the patient is important. If the Accepted 16 April 1977 external carotid artery is to be embolised, it is 937 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.10.937 on 1 October 1977. Downloaded from 938 Brian Kendall and Ivan Moseley essential that the patient should understand that vascular bed, emboli will pass directly through there is a risk of permanent neurological deficit, into the venous circulation; (ii) the size of the very minor though this may be; full informed vessels feeding the lesion and the volume of flow consent must, therefore, be given. The procedure within them: this will determine the size of the may be carried out under local or general anaes- emboli to be injected and the speed of the injec- thesia: the former has the advantage that the tion; (iii) the presence of anastomoses with the neurological state of the patient may be monitored internal carotid or vertebrobasilar trees, which continuously, the latter that pain on injection of will contraindicate embolisation; and (iv) the the external carotid artery branches, which may superselectivity of the catheterisation, and lack of cause the patient to move and impair the diag- reflux into the internal carotid or vertebral nostic quality of the radiographs, is avoided. circulations. Embolisation of a complex lesion may also be If the angiographic appearances are satisfactory a lengthy procedure. As a rule we use general for embolisation, small fragments of Gelfoam are anaesthesia. cut with fine scissors, the size depending on that The catheter through which embolisation is to of the vessels to be occluded, and suspended in be carried out may be introduced by direct exter- non-heparinised saline. The syringes which are nal or common carotid puncture, or by retrograde used for injecting the emboli are distinctively Seldinger catheterisation of the axillary or femoral marked, and are used for this purpose only. Just arteries. We use the last approach which has three before embolisation, and repeatedly during the main advantages: it is the one through which procedure, the catheter is inspected fluoroscopic- manipulation of the catheter is easiest, the ally to ensure that it has not moved. Ten to 20 operator's hands are kept far from the radiation emboli are then injected, followed by a small guest. Protected by copyright. field, and all the head and neck vessels may be quantity of contrast material to check fluoro- injected after a single arterial puncture. scopically that the vessel is still patent and that Adequate fluoroscopic and radiographic appara- reflux is not occurring. tus is also very important. We use a caesium This procedure is repeated, using progressively iodide image intensifier which can be used in the larger emboli, until it is clear at fluoroscopy that lateral position for fluoroscopy, and the angio- the flow in the catheterised vessel has slowed graphic series are carried out with 2 X or 3 X significantly. Another angiogram is then obtained. magnification, using a 0.2 mm focal spot tube. If this demonstrates almost complete occlusion of Any compromise on apparatus may prejudice the the pathological vessels, no further emboli are efficacy and safety of the procedure. injected; it is not the aim to achieve complete In adults we use the standard flexible, thin- blockage of the feeding vessel at this stage as this walled 5F gauge catheters, while in young child- may be hazardous. If there is no flow, marked ren, smaller tubing may be used. The first stage spasm, a proximal block, or obvious reflux, embo- of the procedure is filming of the carotid bifurca- lisation of that vessel is also terminated, for the tion to exclude ulcerating or stenosing atheroma, time being at least. followed by the documentation of the vascular Successful embolisation depends in part on pre- supply of the lesion to be embolised, and it is our ferential flow towards vascular lesions; when this practice to inject first those vessels of which em- is abolished, there is no force directing the emboli http://jnnp.bmj.com/ bolisation is unlikely to be possible-that is, the to their desired site. The same procedure is internal carotid and vertebral arteries. If most carried out until all the feeding vessels have been of the blood supply to the lesion arises from these dealt with, although with very extensive lesions it vessels, or if there are widely patent anastomoses may be necessary to carry out embolisation in between them and the external carotid branches, several stages. embolisation is not feasible (Figs. 1, 2). Some workers have suggested the injection of a Next, one of the external carotid artery sclerosant or thrombogenic agent at the end of branches supplying the lesion is catheterised; the embolisation of each vessel (Djindjian, 1977) on September 26, 2021 by lateral fluoroscopy is particularly useful during but we have not found this necessary. this superselective catheterisation. An angio- When embolisation appears complete, a flush graphic series is then performed and this is in- injection is made into the external carotid artery. spected before embolisation to determine: (i) the This will demonstrate any remaining vascular degree and nature of pathological vascularity- lesions, and in many cases, by reflux, confirm that that is, the presence or absence of significant the internal carotid artery remains normally arteriovenous shunting: if there is no pathological patent. J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.10.937 on 1 October 1977. Downloaded from Therapeutic embolisation of the external carotid arterial tree 939 __V :t: :t A :b *YO:" __ _ *:w ,l <'w':, .....s' :.\4 j. V ,... a: .S ,: Fig. 1 Glomus jugulare *#0. tumour-vertebral angiogram. (All illustrations are lateral projections, subtracted, the right margin being anterior.) There is massive supply to the tumour (open arrowheads). External carotid supply was negligible, and the lesion was guest. Protected by copyright. not treated by embolisation. Arjo.I 0 Alwx :4 Ankow, .AV.wl " http://jnnp.bmj.com/ The following eight case reports illustrate the superior alveolus.
Recommended publications
  • Course of the Maxillary Artery Through the Loop Of
    Anomalous course of maxillary artery Rev Arg de Anat Clin; 2013, 5 (3): 235-239 __________________________________________________________________________________________ Case Report COURSE OF THE MAXILLARY ARTERY THROUGH THE LOOP OF THE AURICULOTEMPORAL NERVE Kavya Bhat, Sampath Madhyastha*, Balakrishnan R Department of Anatomy, Kasturba Medical College, Bejai Campus, Mangalore, Manipal University, India RESUMEN INTRODUCTION Las variaciones en el curso de la arteria maxilar se describen a menudo, con sus relaciones con el Maxillary artery is one of the larger terminal músculo pterigoideo lateral. En el presente caso branches of the external carotid artery, arises informamos una variación exclusiva en el curso de la behind the neck of the mandible, within the arteria maxilar que no fue publicada antes. En un substance of the parotid gland. It then crosses cadáver masculino de 75 años arteria maxilar derecho the infratemporal fossa to enter the pterygo- estaba pasando por el bucle del nervio auriculo- palatine fossa through pterygo-maxillary fissure. temporal. La arteria meníngea media provenía de la The course of the artery is divided into three arteria maxilar con un bucle del nervio auriculo- temporal. La arteria maxilar pasaba profunda con parts by the lateral pterygoid muscle. The first respecto al nervio dentario inferior pero superficial al (mandibular) part runs horizontally, parallel to nervio lingual. El conocimiento de estas variaciones es and slightly below the auriculo-temporal nerve. importante para el cirujano y también serviría para This part of the artery runs superficial (lateral) to explicar la posible participación de estas variaciones the lower head of lateral pterygoid muscle. The en la etiología del dolor mandibular.
    [Show full text]
  • The Facial Artery of the Dog
    Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery.
    [Show full text]
  • Clinical Importance of the Middle Meningeal Artery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa.
    [Show full text]
  • Notably the Posterior Cerebral Artery, Do Not Develop Fully Until the Embryo
    THE EMBRYOLOGY OF THE ARTERIES OF THE BRAIN Arris and Gale Lecture delivered at the Royal College of Surgeons of England on 27th February 1962 by D. B. Moffat, M.D., F.R.C.S. Senior Lecturer in Anatomy, University College, Cardiff A LITTLE OVER 300 years ago, Edward Arris donated to the Company of Barbers and Surgeons a sum of money " upon condicion that a humane Body be once in every yeare hearafter publiquely dissected and six lectures thereupon read in this Hall if it may be had with conveniency, and the Charges to be borne by this Company ". Some years later, Dr. Gale left an annuity to the Company for a similar purpose and it is interesting to note that the first Gale lecturer was a Dr. Havers, whose name is still associated with the Haversian canals in bone. The study of anatomy has changed in many ways since those days and it must be a long time since an Arris and Gale lecturer actually took his text from the cadaver. However, in deference to the wishes of our benefactors, I should like at least to com- mence this lecture by showing you part of a dissection (Fig. 1) which a colleague, Dr. E. D. Morris, and I prepared some years ago for use in an oral examination. We found that in this subject the left internal carotid artery in the neck gave off a. large branch which passed upwards and back- wards to enter the skull through the hypoglossal canal. In the posterior cranial fossa this artery looped caudally and then passed forwards in the midline to form the basilar artery which was joined by a pair of very small vertebral arteries.
    [Show full text]
  • Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
    BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE
    [Show full text]
  • Anatomical Study of Nutrient Vessels in the Condylar Neck Accessory Foramina
    Surgical and Radiologic Anatomy https://doi.org/10.1007/s00276-019-02304-w ORIGINAL ARTICLE Endosteal blood supply of the mandible: anatomical study of nutrient vessels in the condylar neck accessory foramina Matthieu Olivetto1 · Jérémie Bettoni1 · Jérôme Duisit2,3 · Louis Chenin4 · Jebrane Bouaoud1 · Stéphanie Dakpé1,5 · Bernard Devauchelle1,5 · Benoît Lengelé2,3 Received: 23 December 2018 / Accepted: 12 August 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Purpose In the mandible, the condylar neck vascularization is commonly described as mainly periosteal; while the endosteal contribution is still debated, with very limited anatomical studies. Previous works have shown the contribution of nutrient vessels through accessory foramina and their contribution in the blood supply of other parts of the mandible. Our aim was to study the condylar neck’s blood supply from nutrient foramina. Methods Six latex-injected heads were dissected and two hundred mandibular condyles were observed on dry mandi- bles searching for accessory bone foramina. Results Latex-injected dissections showed a direct condylar medular arterial supply through foramina. On dry mandi- bles, these foramina were most frequently observed in the pterygoid fovea in 91% of cases. However, two other accessory foramina areas were identifed on the lateral and medial sides of the mandibular condylar process, confrming the vascular contribution of transverse facial and maxillary arteries. Conclusions The maxillary artery indeed provided both endosteal and periosteal blood supply to the condylar neck, with three diferent branches: an intramedullary ascending artery (arising from the inferior alveolar artery), a direct nutrient branch and some pterygoid osteomuscular branches. Keywords Condylar neck · Mandibular condyle · Mandible blood supply · Arterial vascularization · Maxillary artery Introduction condylar neck blood supply is still debated and has been poorly studied.
    [Show full text]
  • Axis Scientific Human Circulatory System 1/2 Life Size A-105864
    Axis Scientific Human Circulatory System 1/2 Life Size A-105864 05. Superior Vena Cava 13. Ascending Aorta 21. Hepatic Vein 28. Celiac Trunk II. Lung 09. Pulmonary Trunk 19. Common III. Spleen Hepatic Artery 10. Pulmonary 15. Pulmonary Artery 17. Splenic Artery (Semilunar) Valve 20. Portal Vein 03. Left Atrium 18. Splenic Vein 01. Right Atrium 16. Pulmonary Vein 26. Superior 24. Superior 02. Right Ventricle Mesenteric Vein Mesenteric Artery 11. Supraventricular Crest 07. Interatrial Septum 22. Renal Artery 27. Inferior 14. Aortic (Semilunar) Valve Mesenteric Vein 08. Tricuspid (Right 23. Renal Vein 12. Mitral (Left Atrioventricular) Valve VI. Large Intestine Atrioventricular) Valve 29. Testicular / 30. Common Iliac Artery Ovarian Artery 32. Internal Iliac Artery 25. Inferior 31. External Iliac Artery Mesenteric Artery 33. Median Sacral Artery 41. Posterior Auricular Artery 57. Deep Palmar Arch 40. Occipital Artery 43. Superficial Temporal Artery 58. Dorsal Venous Arch 36. External Carotid Artery 42. Maxillary Artery 56. Superficial Palmar Arch 35. Internal Carotid Artery 44. Internal Jugular Vein 39. Facial Artery 45. External Jugular Vein 38. Lingual Artery and Vein 63. Deep Femoral Artery 34. Common Carotid Artery 37. Superior Thyroid Artery 62. Femoral Artery 48. Thyrocervical Trunk 49. Inferior Thyroid Artery 47. Subclavian Artery 69. Great Saphenous Vein 46. Subclavian Vein I. Heart 51. Thoracoacromial II. Lung Artery 64. Popliteal Artery 50. Axillary Artery 03. Left Atrium 01. Right Atrium 04. Left Ventricle 02. Right Ventricle 65. Posterior Tibial Artery 52. Brachial Artery 66. Anterior Tibial Artery 53. Deep Brachial VII. Descending Artery Aorta 70. Small Saphenous Vein IV. Liver 59.
    [Show full text]
  • Clinical Anatomy of the Maxillary Artery
    Okajimas CnlinicalFolia Anat. Anatomy Jpn., 87 of(4): the 155–164, Maxillary February, Artery 2011155 Clinical Anatomy of the Maxillary Artery By Ippei OTAKE1, Ikuo KAGEYAMA2 and Izumi MATAGA3 1 Department of Oral and Maxilofacial Surgery, Osaka General Medical Center (Chief: ISHIHARA Osamu) 2 Department of Anatomy I, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. KAGEYAMA Ikuo) 3 Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. MATAGA Izumi) –Received for Publication, August 26, 2010– Key Words: Maxillary artery, running pattern of maxillary artery, intraarterial chemotherapy, inner diameter of vessels Summary: The Maxillary artery is a component of the terminal branch of external carotid artery and distributes the blood flow to upper and lower jawbones and to the deep facial portions. It is thus considered to be a blood vessel which supports both hard and soft tissues in the maxillofacial region. The maxillary artery is important for bleeding control during operation or superselective intra-arterial chemotherapy for head and neck cancers. The diagnosis and treatment for diseases appearing in the maxillary artery-dominating region are routinely performed based on image findings such as CT, MRI and angiography. However, validations of anatomical knowledge regarding the Maxillary artery to be used as a basis of image diagnosis are not yet adequate. In the present study, therefore, the running pattern of maxillary artery as well as the type of each branching pattern was observed by using 28 sides from 15 Japanese cadavers. In addition, we also took measurements of the distance between the bifurcation and the origin of the maxillary artery and the inner diameter of vessels.
    [Show full text]
  • Trifurcation of External Carotid Artery and Variant Branches of First Part of Maxillary Artery N
    International Journal of Anatomy and Research, Int J Anat Res 2014, Vol 2(3):561-65. ISSN 2321- 4287 Case Report TRIFURCATION OF EXTERNAL CAROTID ARTERY AND VARIANT BRANCHES OF FIRST PART OF MAXILLARY ARTERY N. Shakuntala Rao *1, K. Manivannan 2. Gangadhara 3, H. R. Krishna Rao 4. *1 Professor, 2 Assistant Professor, 3 Associate Professor, 4 Professor and Head. Department of Anatomy, P E S Institute of Medical Sciences & Research, Kuppam, Andhra Pradesh, India. ABSTRACT The external carotid artery normally divides into two terminal branches at the level of the neck of the mandible. The terminal branches are usually the superficial temporal and maxillary arteries. The maxillary artery is described to be in three parts in relation to the lateral pterygoid muscle as the mandibular (first), pterygoid (second) and the pterygopalatine (third) parts. The second part passes behind the muscle. The branches that arise from the first part of the maxillary artery are the deep auricular, anterior tympanic, the middle meningeal, accessory meningeal and inferior alveolar arteries. The middle meningeal artery normally arises at the lower border of lateral pterygoid muscle from the first part of maxillary artery. It then ascends upwards, passes between the two roots of the auriculotemporal nerve and enters the foramen spinosum in the base of skull. During routine dissection of a male cadaver in the department of anatomy while teaching medical students variations were observed in the termination of the external carotid artery on the right side. The artery gave three branches at the termination, superficial temporal, maxillary and between the two the middle meningeal artery was seen arising close to the end of the external carotid artery.
    [Show full text]
  • The Deep Structures of the Face
    Thomas Jefferson University Jefferson Digital Commons Regional anatomy McClellan, George 1896 Vol. 1 Jefferson Medical Books and Notebooks November 2009 The Deep Structures of the Face Follow this and additional works at: https://jdc.jefferson.edu/regional_anatomy Part of the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ouy Recommended Citation "The Deep Structures of the Face" (2009). Regional anatomy McClellan, George 1896 Vol. 1. Paper 8. https://jdc.jefferson.edu/regional_anatomy/8 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Regional anatomy McClellan, George 1896 Vol. 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. 136 THE DEEP STRUOTURES OF THE FAOE. in to the back part of the cavity; and the internal carotid ar tery and intern al jugular vein, with the hypoglossal, glosso-pharyngeal, and pneu­ mogastric nerves, were at the bottom of the wound, covered by a thin layer of fascia. THE DEEP STRUOTURES OF THE FAOE. The deep structures of the face, included in the pterygo-maxillary and superior maxillary regions, are of great surgical interest, owing to the importance of their relations and connections.
    [Show full text]
  • Major Arteries of the Body Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Major Arteries of the Body Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to: ✓Define the word ‘artery’ and understand the general principles of the arterial system. ✓Define arterial anastomosis and describe its significance. ✓Define end arteries and give examples. ✓Describe the aorta and its divisions & list the branches from each part. ✓List major arteries and their distribution in the head & neck, thorax, abdomen and upper & lower extremities. ✓List main pulse points. Arteries o Arteries carry blood from the heart to the body. o All arteries, carry oxygenated blood, o EXCEPT the PULMONARY ARTERY (and the umbilical artery in the fetus) which carry deoxygenated blood to the lungs. (basically whatever brings blood ( with or without O2 )is vein , and what takes blood away from heart ( with or without O2 ) is artery. General Principles Of Arteries o The flow of blood depends on the pumping action of the heart. o Arteries have ELASTIC WALL containing NO VALVES. unlike veins which need valves to keep the flow against gravity. o The branches of arteries supplying adjacent areas normally ANASTOMOSE with one another freely (especially in places where we need a rich blood supply) providing backup routes for blood to flow if one artery is blocked, e.g. arteries of limbs. o The arteries whose terminal branches do not anastomose with branches of adjacent arteries are called “END ARTERIES”. End arteries are of two types: • Anatomic (True) End Artery: When NO anastomosis exists, e.g.
    [Show full text]
  • Unusual Origin and Relations of the Accessory Meningeal Artery – a Case Report
    Int. J. Morphol., 35(4):1348-1350, 2017. Unusual Origin and Relations of the Accessory Meningeal Artery – A Case Report Origen Inusual y Relaciones de la Arteria Meníngea Accesoria - Reporte de un Caso Prakashchandra Shetty; Melanie Rose D’Souza & Satheesha Nayak B. SHETTY, P.; D’SOUZA, M. R. & NAYAK, S. B. Unusual origin and relations of the accessory meningeal artery – A case report. Int. J. Morphol., 35(4):1348-1350, 2017. SUMMARY: Accessory meningeal artery is a branch of the first part of the maxillary artery. It supplies the structures in the infratemporal fossa and the dura mater in the middle cranial fossa. Accessory meningeal artery arose from the middle meningeal artery, 25 mm below the base of the skull and entered the middle cranial fossa through the foramen ovale. The two roots of the auriculotemporal nerve looped around it. The knowledge of the variant origin and relations may be useful during the surgeries of the infratemporal fossa. It might also be useful to the radiologists. KEY WORDS: Accessory meningeal artery; Maxillary artery; Middle meningeal artery; Infratemporal fossa. INTRODUCTION Accessory meningeal artery is a branch of first part root. The main trunk of the auriculotemporal nerve passed of the maxillary artery. However, it might also arise from backwards, deep to the middle meningeal artery. Since the the middle meningeal artery in a few cases. Though the artery originated just below the skull, it did not supply the name is accessory meningeal artery, it predominantly structures in the infratemporal fossa. It predominantly supplies the muscles, and nerves of the infratemporal fossa.
    [Show full text]