Functional Anatomy of the Facial Vasculature in Pathologic Conditions and Its Therapeutic Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Course of the Maxillary Artery Through the Loop Of
Anomalous course of maxillary artery Rev Arg de Anat Clin; 2013, 5 (3): 235-239 __________________________________________________________________________________________ Case Report COURSE OF THE MAXILLARY ARTERY THROUGH THE LOOP OF THE AURICULOTEMPORAL NERVE Kavya Bhat, Sampath Madhyastha*, Balakrishnan R Department of Anatomy, Kasturba Medical College, Bejai Campus, Mangalore, Manipal University, India RESUMEN INTRODUCTION Las variaciones en el curso de la arteria maxilar se describen a menudo, con sus relaciones con el Maxillary artery is one of the larger terminal músculo pterigoideo lateral. En el presente caso branches of the external carotid artery, arises informamos una variación exclusiva en el curso de la behind the neck of the mandible, within the arteria maxilar que no fue publicada antes. En un substance of the parotid gland. It then crosses cadáver masculino de 75 años arteria maxilar derecho the infratemporal fossa to enter the pterygo- estaba pasando por el bucle del nervio auriculo- palatine fossa through pterygo-maxillary fissure. temporal. La arteria meníngea media provenía de la The course of the artery is divided into three arteria maxilar con un bucle del nervio auriculo- temporal. La arteria maxilar pasaba profunda con parts by the lateral pterygoid muscle. The first respecto al nervio dentario inferior pero superficial al (mandibular) part runs horizontally, parallel to nervio lingual. El conocimiento de estas variaciones es and slightly below the auriculo-temporal nerve. importante para el cirujano y también serviría para This part of the artery runs superficial (lateral) to explicar la posible participación de estas variaciones the lower head of lateral pterygoid muscle. The en la etiología del dolor mandibular. -
Branches of the Maxillary Artery of the Domestic
Table 4.2: Branches of the Maxillary Artery of the Domestic Pig, Sus scrofa Artery Origin Course Distribution Departs superficial aspect of MA immediately distal to the caudal auricular. Course is typical, with a conserved branching pattern for major distributing tributaries: the Facial and masseteric regions via Superficial masseteric and transverse facial arteries originate low in the the masseteric and transverse facial MA Temporal Artery course of the STA. The remainder of the vessel is straight and arteries; temporalis muscle; largely unbranching-- most of the smaller rami are anterior auricle. concentrated in the proximal portion of the vessel. The STA terminates in the anterior wall of the auricle. Originates from the lateral surface of the proximal STA posterior to the condylar process. Hooks around mandibular Transverse Facial Parotid gland, caudal border of the STA ramus and parotid gland to distribute across the masseter Artery masseter muscle. muscle. Relative to the TFA of Camelids, the suid TFA has a truncated distribution. From ventral surface of MA, numerous pterygoid branches Pterygoid Branches MA Pterygoideus muscles. supply medial and lateral pterygoideus muscles. Caudal Deep MA Arises from superior surface of MA; gives off masseteric a. Deep surface of temporalis muscle. Temporal Artery Short course deep to zygomatic arch. Contacts the deep Caudal Deep Deep surface of the masseteric Masseteric Artery surface of the masseter between the coronoid and condylar Temporal Artery muscle. processes of the mandible. Artery Origin Course Distribution Compensates for distribution of facial artery. It should be noted that One of the larger tributaries of the MA. Originates in the this vessel does not terminate as sphenopalatine fossa as almost a terminal bifurcation of the mandibular and maxillary labial MA; lateral branch continuing as buccal and medial branch arteries. -
The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work. -
Neurovascular Anatomy (1): Anterior Circulation Anatomy
Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma -
The Facial Artery of the Dog
Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery. -
Clinical Importance of the Middle Meningeal Artery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa. -
Head & Neck Muscle Table
Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division -
The Mandibular Landmarks About the Facial Artery and Vein With
Int. J. Morphol., 30(2):504-509, 2012. The Mandibular Landmarks about the Facial Artery and Vein with Multidetector Computed Tomography Angiography (MDCTA): an Anatomical and Radiological Morphometric Study Puntos de Referencia de la Mandíbula Relacionados a la Arteria y Vena Facial con Angiografía por Tomografía Computarizada Multidetector (ATCM): un Estudio Morfométrico Anatómico y Radiológico *Aynur Emine Cicekcibasi; *Mehmet Tugrul Yılmaz; **Demet Kıresi & *Muzaffer Seker CICEKCIBASI, A. E.; YILMAZ, M. T.; KIRESI, D. & SEKER, M. The mandibular landmarks about the facial artery and vein with multidetector computed tomography angiography (MDCTA): an anatomical and radiological morphometric study. Int. J. Morphol., 30(2):504-509, 2012. SUMMARY: The aim of this study was to investigate the course of the facial vessels according to several mandibular landmarks in living individuals using multidetector computed tomography angiography (MDCTA) to determine these related to sex and side. This study was conducted in the Radiology Department, Meram Faculty of Medicine, Necmettin Erbakan University (Konya, Turkey). In total, sixty faces from 30 specimens (15 males and 15 females) with symptoms and signs of vascular disease were evaluated for the facial vessels by MDCTA scan. The facial vessel parameters were measured according to the reference points (mandibular angle, mental protuberance, mental foramen and facial midline). The distance from the point at which the facial artery first appears in the lower margin of the mandible to the mandibular angle for right and left facial artery were observed as 3.53±0.66 cm and 3.31±0.73 cm in males, respectively. These distances were determined as 2.91±0.52 cm and 3.35±0.48 cm in females. -
Notably the Posterior Cerebral Artery, Do Not Develop Fully Until the Embryo
THE EMBRYOLOGY OF THE ARTERIES OF THE BRAIN Arris and Gale Lecture delivered at the Royal College of Surgeons of England on 27th February 1962 by D. B. Moffat, M.D., F.R.C.S. Senior Lecturer in Anatomy, University College, Cardiff A LITTLE OVER 300 years ago, Edward Arris donated to the Company of Barbers and Surgeons a sum of money " upon condicion that a humane Body be once in every yeare hearafter publiquely dissected and six lectures thereupon read in this Hall if it may be had with conveniency, and the Charges to be borne by this Company ". Some years later, Dr. Gale left an annuity to the Company for a similar purpose and it is interesting to note that the first Gale lecturer was a Dr. Havers, whose name is still associated with the Haversian canals in bone. The study of anatomy has changed in many ways since those days and it must be a long time since an Arris and Gale lecturer actually took his text from the cadaver. However, in deference to the wishes of our benefactors, I should like at least to com- mence this lecture by showing you part of a dissection (Fig. 1) which a colleague, Dr. E. D. Morris, and I prepared some years ago for use in an oral examination. We found that in this subject the left internal carotid artery in the neck gave off a. large branch which passed upwards and back- wards to enter the skull through the hypoglossal canal. In the posterior cranial fossa this artery looped caudally and then passed forwards in the midline to form the basilar artery which was joined by a pair of very small vertebral arteries. -
Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
The Muscles of the Jaw Are Some of the Strongest in the Human Body
MUSCLES OF MASTICATION The muscles of the jaw are some of the strongest in the human body. They aid in chewing and speech by allowing us to open and close our mouths. Ready to unlock the mysteries of mastication? Then read on! OF MASSETERS AND MANDIBLES The deep and superficial masseter muscles enable mastication (chewing by pulling the mandible (jawbone) up towards the maxillae. Factoid! Humans’ jaws are able to bite with DEEP a force of about 150-200 psi (890 MASSETER Newtons). In contrast, a saltwater crocodile can bite with a force of 3,700 SUPERFICIAL psi (16, 400 Newtons)! MASSETER MAXILLA (R) 2 MANDIBLE MORE MASSETER FACTS The deep masseter’s origin is the zygomatic arch and the superficial masseter’s origin is the zygomatic bone. Both masseters insert into the ramus of the mandible, though the deep masseter’s insertion point is closer to the temporomandibular joint. The mandible is the only bone in the skull that we can consciously move (with the help of muscles, of course). 3 TEMPORALIS The temporalis muscles sit on either side of the head. Their job is to elevate and retract the mandible against the maxillae. They originate at the temporal fossa and temporal fascia and insert at the coronoid process and ramus of the mandible. 4 LATERAL SUPERIOR PTERYGOIDS HEAD The lateral pterygoids draw the mandibular condyle and articular disc of the temporomandibular joint forward. Each lateral pterygoid has two heads. The superior head originates at the sphenoid and infratemporal crest and the inferior head originates at the lateral pterygoid plate.