The Rete Mirabile of the Maxillary Artery in the Lion (Panthera Leo)

Total Page:16

File Type:pdf, Size:1020Kb

The Rete Mirabile of the Maxillary Artery in the Lion (Panthera Leo) Okajimas Folia Anat. Jpn., 71(1): 1-12, May, 1994 The Rete Mirabile of the Maxillary Artery in the Lion (Panthera leo) By Hsien-Ming HSIEH and Akimichi TAKEMURA Department of Anatomy, Osaka Dental University 5-31, Otemae 1-chome, Chuo-ku, Osaka 540, Japan (Director: Prof. Yoshikuni OHTA) -Received for Publication, January 24, 1994- Key Words: Maxillary artery, Rete mirabile, Blood supply, Plastic injection, Lion Summary: The afferent and efferent arterial branches of the maxillary rete were investigated in 4 lion (Panthera s. Felis leo) heads preserved in the author's department. The heads were injected with acryl plastic via the common carotid arteries to make corrosion casts of the carotid system, and examined from the standpoint of comparative anatomy. The following afferent arterial branches were observed. Medial retial branches from the maxillary artery, anterior retial branches from the anterior deep temporal artery and intraretial branches of the maxillary artery passing in the rete. The rete was constructed from the following arterial resources: Most of the lateral and inferior surfaces of the rete and deep part of the maxillary nerve tunnel from the intraretial branches; the posterior surface and posterior part of the lateral surface from the medial retial branches, and the anterosuperior part of the lateral surface from the anterior retial branches. Eight efferent arterial branches were observed. The external ethmoidal, lacrimal, interretial and anastomotic arteries, the extraocular muscular, meningeal and temporal muscular branches and the communicating branch with the external ethmoidal artery. The anastomotic artery was always well developed and played the role of the main supply route to the brain instead of the obliterated internal carotid artery as observed in the cat. Unlike that of the cat, however, the maxillary artery of the lion always passed lateral to the pterygoideus lateralis muscle, and the lateral part of the rete was not constructed because there were no lateral retial branches such as those observed in the cat. The first description of the carotid system of the Materials and Methods Felis domestica (s. Felis catus) was presented by Tandler in 1899. Since then, the external and internal Four young lion (Panthera s. Felis leo) heads carotid systems in the felis family have been reported injected with acryl plastic into the carotid system, by several investigators. Recently, the existence of preserved in the Department of Anatomy, Osaka the rete mirabile, which is named the rete mirabile Dental University, were used for this study. The a. maxillaris, has been confirmed. This rete is observed acryl plastic was injected via the common carotid as a large-scale arterial plexus intertwined with a arteries by means of the plastic injection method venous plexus, but an adequate explanation of its (Taniguchi, Ohta et al., 1952, 1955). Six of these functional significance has not been given. lairlimann injected heads were treated with 20% sodium (1913) and Takemura (1982) carried out detailed hydroxide to digest soft tissues and prepare corrosion observations on the vascularization of the rete, and casts of the carotid system. The remaining two sides its afferent and efferent arterial branches in the were preserved in 10% formalin solution to prepare domestic cat. Takemura elucidated that the anasto- dissection specimens. These materials were used for motic artery diverging from the rete supplied a large observation and measurement of the rete and maxil- amount of blood to the brain instead of the obliter- lary artery. ated internal carotid artery. There have been few reports on the gross angiology of the giant cat family (Panthera). The facial artery of the lion was described Findings by Lin et al. (1990), the arterial supply of the lion masseter muscle by Matsushita et al. (1992) and the Maxillary artery: ramifications of the external carotid artery in the lion This artery (7.0 mm in diameter), a continuation by Takemura et al. (1992). The present authors of the external carotid artery as a main vessel, curved attempted to investigate the rete mirabile of the anteromedially at the level of the mandibular angular maxillary artery, and its afferent and efferent arterial end 2/5 at the posterior margin of the mandibular branches utilizing plastic corrosion casts. We com- ramus. It finally gave rise to the masseteric artery pared the findings with those of the cat rete. (2.6 mm in diameter) and the posterior deep tern- 1 2 H-M. Hsieh and A. Takemura poral artery (2.0 mm in diameter) from its superior lateralis muscle and superior to the mandibular nerve wall, and after bending antero-supero-medially, gave (Figs. 2, 6), and gave rise to the middle meningeal rise to the inferior alveolar artery (2.5 mm in diam- artery (2.0 mm in diameter) posteromedially (Figs. 1, eter) from its anterior wall (Figs. 1, 5). However, 2, 8). The posterolateral end of the maxillary rete retial branches corresponding to the lateral retial was located just on the level of its point of origin. branch in the cat (Takemura 1982) from the middle The maxillary artery passed along the inferolateral and last arteries were not observed in any of the margin of the rete and bent anterolaterally toward 8 examples. The maxillary artery ran antero-supero- the anteroinferior end of the rete, where it gave rise medially on the lateral surface of the pterygoideus to the anterior deep temporal and zygomatic arteries Fig. I. Lateral view of the maxillary rete of the left side. Schematic illustration of the rete and its vicinity. The mandible and the zygomatic arch were removed. The maxillary rete extends from the oval foramen to the optic canal surrounding the maxillary nerve. The maxillary artery passes along the inferolateral margin of the rete. Key to Abbreviations in Figs. 1 and 2 aa : Anastomotic artery mx : Maxillary artery ad : Anterior deep temporal artery ob : Extraocular muscular branch ar : Anterior retial branch pd : Posterior deep temporal artery bn : Buccal nerve rm : Anastomotic ramus between the middle ee : External ethmoidal artery meningeal and anastomotic arteries eo : External ophthalmic artery za : Zygomatic artery ia : Inferior alveolar artery C : Condyle of mandible ic : Internal carotid artery G : Trigeminal ganglion if : Inferior alveolar nerve L : Pterygoideus lateralis muscle ir1 : Superior intraretial branch MD : Mandibular nerve lb : Lingual branch MX : Maxillary nerve ln : Lingual nerve O : Ophthalmic nerve ma Masseteric artery R : Rete mirabile of the maxillary artery mm : Middle meningeal artery Arrow : Direction of snout The Rete Mirabile of the Maxillary Artery in the Lion 3 Fig. 2. Superior view of the maxillary rete of the left side. Schematic illustration of the rete and its vicinity. Part of the sphenoid bone and the mandibular fossa were removed. The maxillary artery passes lateral to the pterygoideus lateralis muscle. The maxillary nerve penetrates the maxillary rete. (Figs. 2, 7). The maxillary nerve penetrated the rete middle meningeal artery in 7 of them (Fig. 1), and in anterolaterally from the middle of its posterior mar- the remaining case arose directly superomedially gin, in company with the maxillary artery in the from the superior wall of the maxillary artery at the anterior half of the rete, but they were not parallel to level of the origin of the middle meningeal artery each other. (Fig. 8). Ramifying repeatedly, it gave off branches to the superomedial that passed up to the antero- 1. Afferent arterial branches to the rete superior end of the rete, forming a ridge between its The medial, anterior retial and intraretial posterior and lateral surfaces, and finally became branches were observed as resources of component component arterial branches which formed the anas- arterial branches of the rete in the lion. The passage tomotic artery. Branches to the medial formed the of the maxillary artery was clearly visible from the posteroinferior margin and posterior surface of the lateral side because the above three retial branches rete and the posterior wall of the maxillary nerve did not surround this artery but passed medially. tunnel (named in the cat by Takemura 1982), which 1) Medial retial branches (in the cat by Takemura perforated the rete as an arterial-mesh cylinder sur- 1982) rounding the maxillary nerve. These were observed as the superomedial and (b) Inferomedial retial branch (in the cat by inferomedial retial branches. The former was seen in Takemura 1982) (Figs. 5, 8) all 8 examples observed and the latter in only 2 of This branch was seen in only 2 of the 8 examples them. observed. In one of the two cases, it arose antero- (a) Superomedial retial branch (in the cat by medially from the inferomedial wall of the maxillary Takemura 1982) (Figs. 1, 5, 8, 9) artery, proximal to the origin of the superomedial This branch (1.0 mm in diameter), seen in all 8 retial branch and distal to the origin of the posterior examples observed, arose medially from the medial deep temporal artery (Fig. 8). In the other cases it wall of the maxillary artery in common with the arose in common with the lingual branch from the 4 H-M. Hsieh and A. Takemura maxillary artery (Fig. 5). This branch reached the perior, and posteromedial. Only the last was located inferoposterior part of the rete by passing along the in the cranial cavity. The whole rete appeared as a inferomedial to the maxillary artery for a short dis- type of trigonal pyramid, the top of which was the tance, where it constructed the posterior foramen anterosuperior corner and the base of which was and wall of the maxillary nerve tunnel. In the 6 cases formed by the inferior surface of the rete. The in which this branch was defective (Fig. 13), it was posterior surface was flat, in close contact with the supplemented by a branch passing medially from the cranial bone, but the anteromedial surface was con- superomedial retial branch.
Recommended publications
  • Course of the Maxillary Artery Through the Loop Of
    Anomalous course of maxillary artery Rev Arg de Anat Clin; 2013, 5 (3): 235-239 __________________________________________________________________________________________ Case Report COURSE OF THE MAXILLARY ARTERY THROUGH THE LOOP OF THE AURICULOTEMPORAL NERVE Kavya Bhat, Sampath Madhyastha*, Balakrishnan R Department of Anatomy, Kasturba Medical College, Bejai Campus, Mangalore, Manipal University, India RESUMEN INTRODUCTION Las variaciones en el curso de la arteria maxilar se describen a menudo, con sus relaciones con el Maxillary artery is one of the larger terminal músculo pterigoideo lateral. En el presente caso branches of the external carotid artery, arises informamos una variación exclusiva en el curso de la behind the neck of the mandible, within the arteria maxilar que no fue publicada antes. En un substance of the parotid gland. It then crosses cadáver masculino de 75 años arteria maxilar derecho the infratemporal fossa to enter the pterygo- estaba pasando por el bucle del nervio auriculo- palatine fossa through pterygo-maxillary fissure. temporal. La arteria meníngea media provenía de la The course of the artery is divided into three arteria maxilar con un bucle del nervio auriculo- temporal. La arteria maxilar pasaba profunda con parts by the lateral pterygoid muscle. The first respecto al nervio dentario inferior pero superficial al (mandibular) part runs horizontally, parallel to nervio lingual. El conocimiento de estas variaciones es and slightly below the auriculo-temporal nerve. importante para el cirujano y también serviría para This part of the artery runs superficial (lateral) to explicar la posible participación de estas variaciones the lower head of lateral pterygoid muscle. The en la etiología del dolor mandibular.
    [Show full text]
  • Branches of the Maxillary Artery of the Domestic
    Table 4.2: Branches of the Maxillary Artery of the Domestic Pig, Sus scrofa Artery Origin Course Distribution Departs superficial aspect of MA immediately distal to the caudal auricular. Course is typical, with a conserved branching pattern for major distributing tributaries: the Facial and masseteric regions via Superficial masseteric and transverse facial arteries originate low in the the masseteric and transverse facial MA Temporal Artery course of the STA. The remainder of the vessel is straight and arteries; temporalis muscle; largely unbranching-- most of the smaller rami are anterior auricle. concentrated in the proximal portion of the vessel. The STA terminates in the anterior wall of the auricle. Originates from the lateral surface of the proximal STA posterior to the condylar process. Hooks around mandibular Transverse Facial Parotid gland, caudal border of the STA ramus and parotid gland to distribute across the masseter Artery masseter muscle. muscle. Relative to the TFA of Camelids, the suid TFA has a truncated distribution. From ventral surface of MA, numerous pterygoid branches Pterygoid Branches MA Pterygoideus muscles. supply medial and lateral pterygoideus muscles. Caudal Deep MA Arises from superior surface of MA; gives off masseteric a. Deep surface of temporalis muscle. Temporal Artery Short course deep to zygomatic arch. Contacts the deep Caudal Deep Deep surface of the masseteric Masseteric Artery surface of the masseter between the coronoid and condylar Temporal Artery muscle. processes of the mandible. Artery Origin Course Distribution Compensates for distribution of facial artery. It should be noted that One of the larger tributaries of the MA. Originates in the this vessel does not terminate as sphenopalatine fossa as almost a terminal bifurcation of the mandibular and maxillary labial MA; lateral branch continuing as buccal and medial branch arteries.
    [Show full text]
  • Neurovascular Anatomy (1): Anterior Circulation Anatomy
    Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma
    [Show full text]
  • The Facial Artery of the Dog
    Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery.
    [Show full text]
  • Clinical Importance of the Middle Meningeal Artery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa.
    [Show full text]
  • The Ophthalmic Artery Ii
    Brit. J. Ophthal. (1962) 46, 165. THE OPHTHALMIC ARTERY II. INTRA-ORBITAL COURSE* BY SOHAN SINGH HAYREHt AND RAMJI DASS Government Medical College, Patiala, India Material THIS study was carried out in 61 human orbits obtained from 38 dissection- room cadavers. In 23 cadavers both the orbits were examined, and in the remaining fifteen only one side was studied. With the exception of three cadavers of children aged 4, 11, and 12 years, the specimens were from old persons. Method Neoprene latex was injected in situ, either through the internal carotid artery or through the most proximal part of the ophthalmic artery, after opening the skull and removing the brain. The artery was first irrigated with water. After injection the part was covered with cotton wool soaked in 10 per cent. formalin for from 24 to 48 hours to coagulate the latex. The roof of the orbit was then opened and the ophthalmic artery was carefully studied within the orbit. Observations COURSE For descriptive purposes the intra-orbital course of the ophthalmic artery has been divided into three parts (Singh and Dass, 1960). (1) The first part extends from the point of entrance of the ophthalmic artery into the orbit to the point where the artery bends to become the second part. This part usually runs along the infero-lateral aspect of the optic nerve. (2) The second part crosses over or under the optic nerve running in a medial direction from the infero-lateral to the supero-medial aspect of the nerve. (3) The thirdpart extends from the point at which the second part bends at the supero-medial aspect of the optic nerve to its termination.
    [Show full text]
  • Notably the Posterior Cerebral Artery, Do Not Develop Fully Until the Embryo
    THE EMBRYOLOGY OF THE ARTERIES OF THE BRAIN Arris and Gale Lecture delivered at the Royal College of Surgeons of England on 27th February 1962 by D. B. Moffat, M.D., F.R.C.S. Senior Lecturer in Anatomy, University College, Cardiff A LITTLE OVER 300 years ago, Edward Arris donated to the Company of Barbers and Surgeons a sum of money " upon condicion that a humane Body be once in every yeare hearafter publiquely dissected and six lectures thereupon read in this Hall if it may be had with conveniency, and the Charges to be borne by this Company ". Some years later, Dr. Gale left an annuity to the Company for a similar purpose and it is interesting to note that the first Gale lecturer was a Dr. Havers, whose name is still associated with the Haversian canals in bone. The study of anatomy has changed in many ways since those days and it must be a long time since an Arris and Gale lecturer actually took his text from the cadaver. However, in deference to the wishes of our benefactors, I should like at least to com- mence this lecture by showing you part of a dissection (Fig. 1) which a colleague, Dr. E. D. Morris, and I prepared some years ago for use in an oral examination. We found that in this subject the left internal carotid artery in the neck gave off a. large branch which passed upwards and back- wards to enter the skull through the hypoglossal canal. In the posterior cranial fossa this artery looped caudally and then passed forwards in the midline to form the basilar artery which was joined by a pair of very small vertebral arteries.
    [Show full text]
  • Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
    BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE
    [Show full text]
  • Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology
    JOURNAL OF ORAL & MAXILLOFACIAL RESEARCH Juodzbalys et al. Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology Gintaras Juodzbalys1, Hom-Lay Wang2, Gintautas Sabalys1 1Department of Oral and Maxillofacial Surgery, Kaunas University of Medicine, Lithuania 2Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor Michigan, USA Corresponding Author: Gintaras Juodzbalys Vainiku 12 LT- 46383, Kaunas Lithuania Phone: +370 37 29 70 55 Fax: +370 37 32 31 53 E-mail: [email protected] ABSTRACT Objectives: It is critical to determine the location and configuration of the mandibular canal and related vital structures during the implant treatment. The purpose of the present paper was to review the literature concerning the mandibular canal and inferior alveolar neurovascular bundle anatomical variations related to the implant surgery. Material and Methods: Literature was selected through the search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular canal, inferior alveolar nerve, and inferior alveolar neurovascular bundle. The search was restricted to English language articles, published from 1973 to November 2009. Additionally, a manual search in the major anatomy, dental implant, prosthetic and periodontal journals and books were performed. Results: In total, 46 literature sources were obtained and morphological aspects and variations of the anatomy related to implant treatment in posterior mandible were presented as two entities: intraosseous mandibular canal and associated inferior alveolar neurovascular bundle. Conclusions: A review of morphological aspects and variations of the anatomy related to mandibular canal and mandibular vital structures are very important especially in implant therapy since inferior alveolar neurovascular bundle exists in different locations and possesses many variations.
    [Show full text]
  • Anatomical Study of Nutrient Vessels in the Condylar Neck Accessory Foramina
    Surgical and Radiologic Anatomy https://doi.org/10.1007/s00276-019-02304-w ORIGINAL ARTICLE Endosteal blood supply of the mandible: anatomical study of nutrient vessels in the condylar neck accessory foramina Matthieu Olivetto1 · Jérémie Bettoni1 · Jérôme Duisit2,3 · Louis Chenin4 · Jebrane Bouaoud1 · Stéphanie Dakpé1,5 · Bernard Devauchelle1,5 · Benoît Lengelé2,3 Received: 23 December 2018 / Accepted: 12 August 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Purpose In the mandible, the condylar neck vascularization is commonly described as mainly periosteal; while the endosteal contribution is still debated, with very limited anatomical studies. Previous works have shown the contribution of nutrient vessels through accessory foramina and their contribution in the blood supply of other parts of the mandible. Our aim was to study the condylar neck’s blood supply from nutrient foramina. Methods Six latex-injected heads were dissected and two hundred mandibular condyles were observed on dry mandi- bles searching for accessory bone foramina. Results Latex-injected dissections showed a direct condylar medular arterial supply through foramina. On dry mandi- bles, these foramina were most frequently observed in the pterygoid fovea in 91% of cases. However, two other accessory foramina areas were identifed on the lateral and medial sides of the mandibular condylar process, confrming the vascular contribution of transverse facial and maxillary arteries. Conclusions The maxillary artery indeed provided both endosteal and periosteal blood supply to the condylar neck, with three diferent branches: an intramedullary ascending artery (arising from the inferior alveolar artery), a direct nutrient branch and some pterygoid osteomuscular branches. Keywords Condylar neck · Mandibular condyle · Mandible blood supply · Arterial vascularization · Maxillary artery Introduction condylar neck blood supply is still debated and has been poorly studied.
    [Show full text]
  • Anatomy of the Ophthalmic Artery: Embryological Consideration
    REVIEW ARTICLE doi: 10.2176/nmc.ra.2015-0324 Neurol Med Chir (Tokyo) 56, 585–591, 2016 Online June 8, 2016 Anatomy of the Ophthalmic Artery: Embryological Consideration Naoki TOMA1 1Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan Abstract There are considerable variations in the anatomy of the human ophthalmic artery (OphA), such as anom- alous origins of the OphA and anastomoses between the OphA and the adjacent arteries. These anatomi- cal variations seem to attribute to complex embryology of the OphA. In human embryos and fetuses, primitive dorsal and ventral ophthalmic arteries (PDOphA and PVOphA) form the ocular branches, and the supraorbital division of the stapedial artery forms the orbital branches of the OphA, and then numerous anastomoses between the internal carotid artery (ICA) and the external carotid artery (ECA) systems emerge in connection with the OphA. These developmental processes can produce anatomical variations of the OphA, and we should notice these variations for neurosurgical and neurointerventional procedures. Key words: ophthalmic artery, anatomy, embryology, stapedial artery, primitive maxillary artery Introduction is to elucidate the anatomical variation of the OphA from the embryological viewpoint. The ophthalmic artery (OphA) consists of ocular and orbital branches. The ocular branches contribute to Embryology and Anatomy the blood supply of the optic apparatus, namely, the of the OphA optic nerve and the retina, and the orbital branches supply the optic adnexae, such
    [Show full text]
  • Embryology of the Ophthalmic Artery
    Editorial Commentary Interventional Neuroradiology 0(00) 1–2 ! The Author(s) 2019 Embryology of the ophthalmic artery Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1591019919845511 journals.sagepub.com/home/ine Masaki Komiyama Alternative routes of intra-arterial chemotherapy for misunderstood as dorsal ophthalmic artery).6 The retinoblastoma are based on the embryological and, superficial recurrent ophthalmic artery may run thus, anatomical variations of the ophthalmic artery. through the lateral portion of the SOF, similar to the Although the embryology of the ophthalmic artery is sphenoidal artery or through the lacrimal foramen briefly discussed in this excellent clinical paper,1 I (Hyrtl canal) similar to the lacrimal artery (meningo- would like to comment on this. lacrimal artery) connecting the anterior branch of the The structure of the eye is well conserved among middle meningeal artery to the orbital artery. vertebrates.2 This implies that the vascular structure The embryological origin of the ILT remains specu- of the eye should also be well conserved among verte- lative. It could be the remnant of the primitive maxil- brates, especially among mammals. The basic vascular lary artery of Sabin,7 but this primitive artery dwindles supply of the eye is composed of two sources: one for much earlier than the primitive ventral and dorsal oph- the bulbar structure (retina and choroid structures) and thalmic arteries.5 Thus, the anastomotic branches of the one for the non-bulbar structure (glandular and mus- ILT are mostly composed of the stapedial artery in cular structures),3,4 For an understanding of the origin.3 The primitive maxillary artery is better called embryological origins of these vessels, the bony canal, the primitive pre-mandibular artery in consideration of foramen, and fissure convey many messages to us.
    [Show full text]