PM 7/146 (1) Tomato Brown Rugose Fruit Virus

Total Page:16

File Type:pdf, Size:1020Kb

PM 7/146 (1) Tomato Brown Rugose Fruit Virus Bulletin OEPP/EPPO Bulletin (2021) 51 (1), 178–197 ISSN 0250-8052. DOI: 10.1111/epp.12723 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/146 (1) Diagnostics PM 7/146 (1) Tomato brown rugose fruit virus Diagnostic Specific approval and amendment Approved in 2020-10. Specific scope This Standard describes a diagnostic protocol for detection and identification of tomato brown rugose fruit virus.1 This Standard should be used in conjunction with PM 7/ 76 Use of EPPO diagnostic protocols. 1. Introduction 2. Identity Tomato brown rugose fruit virus (ToBRFV genus Name: Tomato brown rugose fruit virus. Tobamovirus) was first observed in 2014 and 2015 on Synonyms: None. tomatoes in Israel and Jordan, and outbreaks have recently Acronym: ToBRFV. occurred in China, Mexico, the USA and several EPPO Taxonomic position: Virus, Riboviria, Virgaviridae, countries (EPPO, 2020). The virus is a major concern for Tobamovirus. growers of tomato and pepper as it reduces the vigour of EPPO Code: TOBRFV. the plant, causes yield losses and virus symptoms make the Phytosanitary categorization: EPPO Alert List, EU emer- fruits unmarketable. However, the virus may also be present gency measures. in asymptomatic foliage and fruit. Note Virus nomenclature in Diagnostic Protocols is based Tomato (Solanum lycopersicum) and pepper (Capsicum on the latest release of the official classification by the annuum) are the only confirmed natural cultivated hosts of International Committee on Taxonomy of Viruses (ICTV, ToBRFV (Salem et al., 2016, 2019; Luria et al., 2017; Release 2018b, https://talk.ictvonline.org/taxonomy/). NAPPO, 2018; Panno et al., 2020). ToBRFV was also Accepted species names are italicized when used in their detected in natural weed hosts (Chenopodium murale and taxonomic context, whereas virus names are not, corre- Solanum nigrum) in Israel (Dombrovsky, pers. comm., 2019). sponding to ICTV instructions. The integration of the genus The host status of Solanum melongena (aubergine) is not name within the name of the species is currently not consis- confirmed. tently adopted by ICTV working groups and therefore spe- Because ToBRFV is a relatively new described virus spe- cies names in diagnostic protocols do not include the genus cies, limited published scientific information is available name. Names of viruses not included in the official ICTV and evaluation of tests is underway. This Standard includes classification are based on first reports. tests which have been evaluated in laboratories from the EPPO region. 3. Detection Flow diagrams describing the diagnostic procedure for tomato brown rugose fruit virus in plant material and in 3.1. Disease symptoms seeds are presented in Figs 1 and 2. ToBRFV causes a wide range of symptoms. Symptoms 1Use of brand names of chemicals or equipment in these EPPO Stan- may range from very severe to mild, or plants can be dards implies no approval of them to the exclusion of others that may infected asymptomatically. Leaf symptoms often first also be suitable. appear in the young shoots at the top of the plant. 178 ª 2021 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 51, 178–197 PM 7/146 (1) Tomato brown rugose fruit virus 179 Plant material except seeds ELISA Symptomatic plant material only PM 7/125 Sample preparation Appendix 1 + - Detection Sample preparation ToBRFV not detected One of the following tests Appendix 1 RT-PCR (Appendix 2 & 3) Real-time RT-PCR (Appendix 4 & 5) - + Confirmation of detection and identification : One of the following tests (use a different test than for detection) RT-PCR (Appendix 2 & 3) OR Real-time RT-PCR (Appendix 4 & 5) - + Retesting or resampling ToBRFV identified ToBRFV not detected Fig. 1 Flow diagram describing the diagnostic procedure for tomato brown rugose fruit virus in plant material except seeds. Seeds Sample preparation Appendix 1 Detection One of the following tests Real-time RT-PCR (Appendix 4 & 5) - + Confirmation of detection and identification: One of the following tests (use a different test than for detection) Real-time RT-PCR (Appendix 4 & 5) - + ToBRFV not detected Retesting or resampling ToBRFV identified Fig. 2 Flow diagram describing the diagnostic procedure for tomato brown rugose fruit virus in seeds. ª 2021 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 51, 178–197 180 Diagnostic 3.1.1. Symptoms on tomato - Blistering of the leaf surface (Fig. 4). The following virus symptoms may be observed on tomato - Wilting of leaves, followed by yellowing (Fig. 5) (Solanum lycopersicum) infected with ToBRFV (Salem and plant death. et al., 2016; Dombrovsky & Smith, 2017; Cambron-Crisan- tos et al., 2018; AHDB Horticulture, 2019): • Leaves or plants - Chlorosis, mosaic patterns (chlorotic/pale patches) (Fig. 3) and mottling often observed on young leaves at the top of the plant and on side-shoots. Fig. 3 Mosaic symptoms caused by ToBRFV on tomato leaves. Courtesy: C. Picard (EPPO). - Crumpling, puckering or deformation of young Fig. 5 Wilting of leaves, followed by yellowing and plant death caused leaves. by ToBRFV observed in Germany. Courtesy: H. Scholz-Dobelin€ (LWK - Narrowing of leaves (needle-like symptoms), occa- NRW). sionally observed (Fig. 4). • Pedicles (stems), calyx (sepals), and petioles - Brown necrotic lesions (Figs 6 and 7C illustrating symptoms caused by ToBRFV on fruits (see below) also show symptoms on stems and calices. • Fruits - Yellow (chlorotic) spots and marbling of fruits (Fig. 7A, B and C). - Dark-coloured (necrotic) spots on green fruits (Fig. 7B and D). Fig. 6 Necrotic lesions caused by ToBRFV on the sepals of a young Fig. 4 Narrowing (needle-like symptoms) and blistering of the surface tomato fruit. Courtesy: Prof. S. Davino. of tomato leave caused by ToBRFV. Courtesy: C. Picard (EPPO). ª 2021 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 51, 178–197 PM 7/146 (1) Tomato brown rugose fruit virus 181 ab c (B) Yellow and necrotic spots (a.b) and brown (A) Typical fruit symptoms with yellow (chlorotic) rugose (c) on tomato fruits spots. Courtesy: Dr. P. Keles Ozturk Courtesy: Dr A. Dombrovsky (C) Yellow spots on tomato fruits and necrotic spots on stems and calix (D) Dark coloured (necrotic) spots on green Courtesy: Dr. P. Keles Ozturk fruits. Courtesy: D. Godínez (E) Marbling of fruits and delay in ripening. Courtesy: Dr A. Dombrovsky Fig. 7 Symptoms caused by ToBRFV in tomato fruits. (A) Typical fruit symptoms with yellow (chlorotic) spots. Courtesy: Dr A. Dombrovsky. (B) Yellow and necrotic spots (a, b) and brown rugose (c) on tomato fruits. Courtesy: Dr. P. Keles Ozturk. (C) Yellow spots on tomato fruits and necrotic spots on stems and calix. Courtesy: Dr. P. Keles Ozturk. (D) Dark-coloured (necrotic) spots on green fruits. Courtesy: D. Godınez. (E) Marbling of fruits and delay in ripening. Courtesy: Dr A. Dombrovsky. - Deformation and uneven ripening of young fruits If any of the above symptoms are observed in a tomato (e.g. individual fruits can be red in some parts and variety harbouring tobamovirus resistance genes (e.g. Tm- showing green stripes, blotches or patches in other 22), there is a strong suspicion that ToBRFV is present as parts) (Fig. 7E). these tomato varieties are susceptible to ToBRFV (Luria - Orange fruits not turning red (variety Juanita in et al., 2017). However, similar symptoms might be caused Germany; Scholz-Dobelin,€ pers. comm., 2020). by other viruses and symptoms might be different in the - Brown rugose (wrinkled) patches (rarely observed). case of mixed infections. - Reduced number of fruits per branch. ª 2021 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 51, 178–197 182 Diagnostic Confusion with other diseases of tomato 3.1.2. Symptoms on pepper Other viruses such as pepino mosaic virus (PepMV), Only pepper plants that do not harbour the L3 and L4 resistance physostegia chlorotic mottle virus (PhCMoV), tomato gene/alleles2 can be infected and therefore show symptoms mosaic virus (ToMV) and tobacco mosaic virus (TMV) may (Turina, pers. comm., 2019); plants harbouring those gene/alle- cause similar (nonspecific) leaf and fruit symptoms that may les react with a local hypersensitive response and are therefore be confused with ToBRFV symptoms (Alkowni et al., not systemically infected (Dombrowski, pers. comm., 2019). 2019). In some EPPO countries, tomato plants are inoculated Symptoms of a hypersensitive response are shown in Fig. 8. with mild strain(s) of PepMV in an early growth stage at the Based on pictures of symptoms on pepper from Mexico fruit production site to prevent infection by more severe available from Sader & Senasica (2019), pepper shows rela- strains (this technique is called cross-protection) (Aguero€ tively similar symptoms to those described for tomato, but et al., 2018; Pechinger et al., 2019). This can lead to mild more severe necrosis is seen on fruit. However, in pepper vari- virus symptoms early in the growing cycle, masking the eties that do not harbour the L resistance gene/alleles L3 and early ToBRFV symptoms and therefore delaying the detec- L4, ToBRFV often occurs in mixed infections with other tion of ToBRFV. The uneven ripening seen on fruit infected viruses (SADER & SENASICA, 2019). Therefore, the by ToBRFV is in general more severe than for PepMV observed symptoms are potentially due to a combination of (EPPO, 2020). Double infection of ToBRFV and another viruses. Symptoms on pepper from an outbreak in Sicily (IT) tobamovirus may result in accelerated virus accumulation in are described in Panno et al. (2020). The infected variety did the plants. This phenomenon has been observed in suscepti- not harbour the L resistance gene (Davino, pers. comm., 2020). ble wild-type tomato plants and in tomato plants harbouring Symptoms of pepper plants that do not harbour the gene/ the Tm-22 resistance gene infected by paprika mild mottle alleles L3 and L4 obtained after mechanical inoculation are virus (PaMMV) and ToBRFV (Luria et al., 2018).
Recommended publications
  • Production of Pathogen-Tested Herbaceous Ornamentals
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 4/34 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Schemes for the production of healthy plants for planting Schémas pour la production de végétaux sains destinés à la plantation Production of pathogen-tested herbaceous ornamentals Specific scope Specific approval and amendment This standard describes the production of pathogen-tested First approved in 2007-09. material of herbaceous ornamental plants produced in glasshouse. This standard initially presents a generalized description of the 2. Maintenance and testing of candidate plants performance of a propagation scheme for the production of for nuclear stock pathogen tested plants and then, in the appendices, presents details of the ornamental plants for which it can be used 2.1 Growing conditions together with lists of pathogens of concern and recommended test methods. The performance of this scheme follows the general The candidate plants for nuclear stock should be kept ‘in sequence proposed by the EPPO Panel on Certification of quarantine’, that is, in an isolated, suitably designed, aphid-proof Pathogen-tested Ornamentals and adopted by EPPO Council house, separately from the nuclear stock and other material, (OEPP/EPPO, 1991). According to this sequence, all plant where it can be observed and tested. All plants should be grown material that is finally sold derives from an individual nuclear in individual pots containing new or sterilized growing medium stock plant that has been carefully selected and rigorously that are physically separated from each other to prevent any tested to ensure the highest practical health status; thereafter, direct contact between plants, with precautions against infection the nuclear stock plants and the propagation stock plants by pests.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 6 PARIS, 2020-06 General 2020/112 New data on quarantine pests and pests of the EPPO Alert List 2020/113 New and revised dynamic EPPO datasheets are available in the EPPO Global Database 2020/114 EPPO report on notifications of non-compliance Pests 2020/115 Anoplophora glabripennis found in South Carolina (US) 2020/116 Update on the situation of Popillia japonica in Italy 2020/117 Update of the situation of Tecia solanivora in Spain 2020/118 Dryocosmus kuriphilus found again in the Czech Republic 2020/119 Eradication of Paysandisia archon from Switzerland 2020/120 Eradication of Comstockaspis perniciosa from Poland 2020/121 First report of Globodera rostochiensis in Uganda Diseases 2020/122 First report of tomato brown rugose fruit virus in Poland 2020/123 Update of the situation of tomato brown rugose fruit virus in the United Kingdom 2020/124 Update of the situation of tomato brown rugose fruit virus in the USA 2020/125 Tomato brown rugose fruit virus does not occur in Egypt 2020/126 Eradication of tomato chlorosis virus from the United Kingdom 2020/127 Tomato spotted wilt virus found in Romania 2020/128 First report of High Plains wheat mosaic virus in Ukraine 2020/129 Update on the situation of Pantoea stewartii subsp. stewartii in Slovenia 2020/130 Update on the situation of Pantoea stewartii subsp. stewartii in Italy 2020/131 First report of Peronospora aquilegiicola, the downy mildew of columbines in Germany Invasive plants 2020/132 Lycium ferocissimum in the EPPO region: addition to the EPPO Alert List 2020/133 First report of Amaranthus tuberculatus in Croatia 2020/134 First report of Microstegium vimineum in Canada 2020/135 Disposal methods for invasive alien plants 2020/136 EPPO Alert List species prioritised 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 Web: www.eppo.int 75011 Paris E-mail: [email protected] GD: gd.eppo.int EPPO Reporting Service 2020 no.
    [Show full text]
  • Interaction of Tobacco Etch Virus and the Root-Knot Nematode, Meloidogyne Incognita in Chile Pepper, Capsicum Frutescens
    Interaction of tobacco etch virus and the root-knot nematode, Meloidogyne incognita in chile pepper, Capsicum frutescens Item Type text; Thesis-Reproduction (electronic) Authors Koenning, Stephen Robert Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 20:46:59 Link to Item http://hdl.handle.net/10150/555147 INTERACTION OF TOBACCO ETCH VIRUS AND THE ROOT-KNOT NEMATODE, MELOIDOGYNE INCOGNITA IN CHILE PEPPER, CAPSICUM FRUTESCENS by Stephen Robert Koenning A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANT PATHOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowl­ edgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter­ ests of scholarship.
    [Show full text]
  • Procedure for Detecting Tobamovirus in Tomato and Pepper Seeds
    DOI: http://dx.doi.org/10.1590/1678-4499.2017317 J. E. M. Almeida et al. PLANT PROTECTION - Article Procedure for detecting tobamovirus in tomato and pepper seeds decreases the cost analysis João Eduardo Melo Almeida, Antonia dos Reis Figueira*, Priscilla de Sousa Geraldino Duarte, Mauricio Antônio Lucas, Nara Edreira Alencar Universidade Federal de Lavras - Departamento de Fitopatologia - Lavras (MG), Brazil. ABSTRACT: The transmission of tobamovirus by tomato and limit of 1:400 and PMMoV up to the limit of 1:300. The assembled pepper seeds is an important mean of virus introduction in crops. lots containing only 1 contaminated seed in 1000 (1:1000) were Therefore, detecting its presence in the seed becomes essential combined into 30 sub lots for DAS-ELISA analysis and 10 sub lots for the preventive control of virus diseases. In this study, a method for IC-RT-PCR analysis. Both techniques, DAS-ELISA and IC-RT-PCR, was proposed for the detection of Tobacco mosaic virus (TMV) and were efficient to detect the three viruses in all analyzed samples, Tomato mosaic virus (ToMV) in tomatoes (Solanum lycopersicum) but the detection of tobamoviruses with RT-PCR and biological and Pepper mild mottle virus (PMMoV) in pepper (Capsicum tests was not reliable. Based on the results of this study, in which annum) seeds. Seed lots with different levels of incidence were a combination of seeds in sub lots was made to reduce the number analyzed by biological, serological, and molecular methods. Using of tests performed, it is possible to make significant savings in DAS-ELISA technique, it was possible to detect TMV up to the limit the cost of the diagnostic methods routinely conducted in official rate of 1:170 (1 contaminated seed: total seeds) and the ToMV up laboratories, with high efficiency and reliability.
    [Show full text]
  • The Complete Genome Sequence, Occurrence and Host Range Of
    Li et al. Virology Journal (2017) 14:15 DOI 10.1186/s12985-016-0676-2 RESEARCH Open Access The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate Yueyue Li1†, Yang Wang1†, John Hu2, Long Xiao1, Guanlin Tan1,3, Pingxiu Lan1, Yong Liu4* and Fan Li1* Abstract Background: Tomato mottle mosaic virus (ToMMV) is a recently identified species in the genus Tobamovirus and was first reported from a greenhouse tomato sample collected in Mexico in 2013. In August 2013, ToMMV was detected on peppers (Capsicum spp.) in China. However, little is known about the molecular and biological characteristics of ToMMV. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and rapid identification of cDNA ends (RACE) were carried out to obtain the complete genomic sequences of ToMMV. Sap transmission was used to test the host range and pathogenicity of ToMMV. Results: The full-length genomes of two ToMMV isolates infecting peppers in Yunnan Province and Tibet Autonomous Region of China were determined and analyzed. The complete genomic sequences of both ToMMV isolates consisted of 6399 nucleotides and contained four open reading frames (ORFs) encoding 126, 183, 30 and 18 kDa proteins from the 5’ to 3’ end, respectively. Overall similarities of the ToMMV genome sequence to those of the other tobamoviruses available in GenBank ranged from 49.6% to 84.3%. Phylogenetic analyses of the sequences of full-genome nucleotide and the amino acids of its four proteins confirmed that ToMMV was most closely related to Tomato mosaic virus (ToMV). According to the genetic structure, host of origin and phylogenetic relationships, the available 32 tobamoviruses could be divided into at least eight subgroups based on the host plant family they infect: Solanaceae-, Brassicaceae-, Cactaceae-, Apocynaceae-, Cucurbitaceae-, Malvaceae-, Leguminosae-, and Passifloraceae-infecting subgroups.
    [Show full text]
  • Quick Scan Tomato Mottle Mosaic Virus
    Quick scan National Plant Protection Organization, the Netherlands Quick scan number: 2020VIR001 Quick scan date: 4 November 2020 No. Question Quick scan answer for Tomato mottle mosaic virus 1. What is the scientific name (if Tomato mottle mosaic virus (ToMMV), genus Tobamovirus, family Virgaviridae possible up to species level + author, also include (sub)family and order) and English/common name of the organism? Add picture of organism/damage if available and publication allowed. 2. What prompted this quick scan? ToMMV is (currently) not regulated in the EU. For the related tobamovirus tomato brown rugose fruit virus Organism detected in produce for (ToBRFV), however, emergency measures have been in place since November 2019 (EU, 2019 and 2020). import, export, in cultivation, ToBRFV has been found causing damage to tomato and pepper crops in the EU since it is able to nature, mentioned in publications, overcome resistances of current cultivars (Luria et al., 2017). The fact that ToMMV shares characteristics e.g. EPPO alert list, etc. with ToBRFV (Li et al., 2017), is reason for drafting this quick scan. In addition, Australia has implemented emergency measures for ToMMV and requires tomato and pepper seed lots to be imported, to be tested and found free from this virus (https://www.agriculture.gov.au/import/goods/plant- products/seeds-for-sowing/emergency-measures-tommv-qa#what-is-tomato-mottle-mosaic-virus- tommv). 3. What is the current area of CABI distribution map, retrieved 7-7-2020, 11-6-2020 distribution? Pagina 1 van 6 No. Question Quick scan answer for Tomato mottle mosaic virus Present in Asia: China (Li et al., 2014), Iran, Israel (Turina et al., 2016) Europe: Spain (Ambros et al., 2017) America: Brasil (Nagai et al., 2018) Mexico (Li et al., 2013) USA (Webster et al., 2014) ToMMV may have a wider distribution than currently known.
    [Show full text]
  • Table 1. Virus Incidence in the Surveyed Areas, Fall 2004
    Aziz Baameur Pepper Viruses—Survey Update 1/4 Pepper Viruses: Survey Update Aziz Baameur, UCCE Farm Advisor-- UCCE Santa Clara, San Benito, & Santa Cruz Counties INTRODUCTION Several viruses attack pepper worldwide. In California, many of these viruses have created difficulties for growers. However, we witnessed cycles of high virus presence, viral infection, and yield losses alternating with cycles of low-level impact. Year 2004 was one of those years where the central coast production area witnessed a high level of virus presence. The following report is based on a field survey we undertook in the fall of 2004 to assess the presence and identify the main viruses infecting fields in Santa Carla and San Benito counties. We focused our effort on the Gilroy and surrounding areas. Gilroy has historically exhibited a variable but sustained presence of viruses over the past 15 years. SURVEY— The survey included 14 pepper production fields. Half were growing bells and the other half chili peppers. We took 29 samples as follows: 16 were bell pepper samples, 12 were chili type samples, and one was sowthistle weed. The sampling was biased toward selecting plants that exhibiting some symptoms. All samples were catalogued and submitted to a local serology lab for virus identification. SURVEY RESULTS Infection by viruses level varied from field to field and even within given fields. Infection rate, based on rough visual rating, was between 5 to over 75% (?) per field. Several fields had large weeds populations. A couple of fields looked like they have been severally attacked and very little harvest was realized.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Genetic Compositions of Broad Bean Wilt Virus 2 Infecting Red Pepper in Korea
    Plant Pathol. J. 29(3) : 274-284 (2013) http://dx.doi.org/10.5423/PPJ.OA.12.2012.0190 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 © The Korean Society of Plant Pathology Open Access Genetic Compositions of Broad bean wilt virus 2 Infecting Red Pepper in Korea Hae-Ryun Kwak1,3, Mi-Kyeong Kim1, Moon Nam1, Jeong-Soo Kim1, Kook-Hyung Kim2, Byeongjin Cha3* and Hong-Soo Choi1* 1Crop Protection Division, National Academy of Agricultural Science, Suwon 441-707, Korea 2Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea 3Department of Plant Medicine, Chungbuk National University, Cheongju 361-763, Korea (Received on December 23, 2012; Revised on March 6, 2013; Accepted on March 13, 2013) The incidence of Broad bean wilt virus 2 (BBWV2) on virus 2 (BBWV2) (Kobayashi et al., 2003; Uyemoto et al., red pepper was investigated using the samples obtained 1974). Although they show the similar genome structures from 24 areas of 8 provinces in Korea. Two hundred and functions, the nucleotide (nt) sequence identity between and five samples (79%) out of 260 collected samples them was limited (39% − 67%). The genome is composed were found to be infected with BBWV2. While the of two single stranded positive-sense RNA molecules, single infection rate of BBWV2 was 21.5%, the co- RNA-1 and RNA-2, that are encapsidated separately into infection rate of BBWV2 with Cucumber mosaic virus, icosahedral virions (Lisa et al., 1996). Although BBWV1 Pepper mottle virus, Pepper mild mottle virus and/or Potato virus Y was 78.5%.
    [Show full text]
  • Plant Molecular Responses to Potato Virus Y: a Continuum of Outcomes from Sensitivity and Tolerance to Resistance
    viruses Review Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance , Špela Baebler * y , Anna Coll y and Kristina Gruden National Institute of Biology, Veˇcnapot 111, 1000 Ljubljana, Slovenia; [email protected] (A.C.); [email protected] (K.G.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 31 January 2020; Accepted: 13 February 2020; Published: 15 February 2020 Abstract: Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms. Keywords: Potato virus Y; Potyviridae; potato; Solanum tuberosum; Solanaceae; plant immune signaling; plant hormones; tolerance; susceptibility; resistance 1. Introduction Potato virus Y (PVY) is the most economically important virus affecting potato production worldwide [1]. It severely affects potato production in terms of crop yield and quality, which, in the case of secondary infections, can reach yield reductions up to 85% [2,3]. The virus is also infecting other agronomically important crops from the Solanaceae family such as tobacco, pepper, and tomato. The fact that PVY is transmitted by 65 different aphid species in a nonpersistent manner makes the control and prevention an ongoing challenge [4].
    [Show full text]
  • Can a Plant Catch a Cold? by Elaine Pugh, Fairfax Master Gardener Oddly Enough, Yes, It Can
    Can a Plant Catch a Cold? By Elaine Pugh, Fairfax Master Gardener Oddly enough, yes, it can. A cold is a virus. Just like people can catch a virus, a bacterial infection, a toenail fungus, or a pest like lice, a plant can catch its own separate line of viruses, bacterial infections, fungus invasions and have pest attacks. (And just like people do better if they eat right, sleep well and exercise, plants do better if they receive the proper amount of water, sunshine and nutrients in their Hudelson, University of diet.) What is a virus? & Zweig A virus is a damaging, sub-microscopic parasite that infects an individual cell in a plant and then replicates itself to photo: spread to other cells. The plant cells will not produce food Tobacco Rattle Virus and function properly. A virus can spread slowly through the leaves or fairly quickly if it attacks through the vascular system. How do you know if your plant has a cold (virus)? What are possible symptoms? We all know the symptoms for the common cold. A plant with a virus may have some or all of the following symptoms: On the overall plant: deformed or stunted plant growth, additional unusual growths, smaller leaves and blossoms, necrotic lesions (dead spots) and/or reduced vegetable yield. On leaves: mottling and mosaic patchwork of green and yellow areas over the surface of the leaf, ring spots, wavy line patterns, vein clearing with the rest of the leaf tissue still green and/or leaf crinkling. How do viruses spread? Like the common cold, a plant virus is contagious.
    [Show full text]
  • New Sources of Resistance to Pepper Veinal Mottle Virus in Pepper
    NEW SOURCES OF RESISTANCE TO PEPPEK VEINAL MOTTLE VlKUS J IN PEPPER BREEDING LINES CE.URE SELASSIE K., POCHARD E. (*I, MAIZCHOUX G./&OUVCNEL 3.C. ('U) I.N.R.A., Centre de Recherche Agronomique d'Avignon,c' Station de Pathologie Végétalc ; (*I Station d'Amélioration des Plantes Maraîchères Domaine Saint Maurice, F 84140 MONTFAVET . (**IO.K.S.T.O.M., Laboratoire de Virologie, B.P. V 51, Abidjan, République de Côte d'Ivoire, Afrique de l'Ouest. At least the following six Potyviruses have been reported to affect Capsicum species in different parts of the world : Pepper Mottle Virus (PeMV), and Tobacco Etch Virus (TEV), mainly Rredominant in the North and Central America ; kpper Severe Mosaic Virus (PSMV) and Peru Tomato Virus (PTV), in South America ; Pepper Veinal Mottle Virus (PVMV), in Africa and South East Asia . In Europe and the niediter- ranean countries, it's mainly Potato V#us Y (PVY). The same virus also cause impor- tant damages in the above continents. The damages they can cause can vary very much ; it depends upon the strains, and the cultivars ; it depends also, i1 it is a single or a [nixed inlrction. Breeding lines, and/or cultivars resistant to certain strains of PeMV, PVY and TEV have been already reported in the american continents ; whereas, for the other viruses and in particular for PVMV, no resistance has been reported, except certain tolerance from Malaysia (SOH et al., 1977). New promising andrbgenetic lines resistant to this virus have been obtained at the Plant Breeding Station (INRA), Montfavet, France. MATERIALS AND METHODS Hosts The performance of different genitors and cultivars which were reported else- where to possess resistance to certain strains of PVY, PcM and TEV, have been already tested with different strains of PVY collected in our region (PDCHARD, 1977 ; POCHARD et al., 1983 ; GEBRE SELASSIE et al., 1985).
    [Show full text]