Quick Scan Tomato Mottle Mosaic Virus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Production of Pathogen-Tested Herbaceous Ornamentals
EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 4/34 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Schemes for the production of healthy plants for planting Schémas pour la production de végétaux sains destinés à la plantation Production of pathogen-tested herbaceous ornamentals Specific scope Specific approval and amendment This standard describes the production of pathogen-tested First approved in 2007-09. material of herbaceous ornamental plants produced in glasshouse. This standard initially presents a generalized description of the 2. Maintenance and testing of candidate plants performance of a propagation scheme for the production of for nuclear stock pathogen tested plants and then, in the appendices, presents details of the ornamental plants for which it can be used 2.1 Growing conditions together with lists of pathogens of concern and recommended test methods. The performance of this scheme follows the general The candidate plants for nuclear stock should be kept ‘in sequence proposed by the EPPO Panel on Certification of quarantine’, that is, in an isolated, suitably designed, aphid-proof Pathogen-tested Ornamentals and adopted by EPPO Council house, separately from the nuclear stock and other material, (OEPP/EPPO, 1991). According to this sequence, all plant where it can be observed and tested. All plants should be grown material that is finally sold derives from an individual nuclear in individual pots containing new or sterilized growing medium stock plant that has been carefully selected and rigorously that are physically separated from each other to prevent any tested to ensure the highest practical health status; thereafter, direct contact between plants, with precautions against infection the nuclear stock plants and the propagation stock plants by pests. -
Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: a Review
Review Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review Luis A. Puente a,⁎, Claudia A. Pinto-Muñoz a, Eduardo S. Castro a, Misael Cortés b a Universidad de Chile, Departamento de Ciencia de los Alimentos y Tecnología Química. Av. Vicuña Mackenna 20, Casilla, Santiago, Chile b Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimento, A.A. 568 Medellin Colombia abstract The main objective of this work is to spread the physicochemical and nutritional characteristics of the Physalis peruviana L. fruit and the relation of their physiologically active components with beneficial effects on human health, through scientifically proven information. It also describes their optical and mechanical properties and presents micrographs of the complex microstructure of P. peruviana L. fruit and studies on the antioxidant Keywords: capacity of polyphenols present in this fruit. Physalis peruviana Bioactive compounds Functional food Physalins Withanolides Contents 1. Introduction .............................................................. 1733 2. Uses and medicinal properties of the fruit ................................................ 1734 3. Microstructural analysis ........................................................ 1734 4. Mechanical properties of the fruit .................................................... 1735 5. Optical properties of the fruit ...................................................... 1735 6. Antioxidant properties of fruit -
EPPO Reporting Service
ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 6 PARIS, 2020-06 General 2020/112 New data on quarantine pests and pests of the EPPO Alert List 2020/113 New and revised dynamic EPPO datasheets are available in the EPPO Global Database 2020/114 EPPO report on notifications of non-compliance Pests 2020/115 Anoplophora glabripennis found in South Carolina (US) 2020/116 Update on the situation of Popillia japonica in Italy 2020/117 Update of the situation of Tecia solanivora in Spain 2020/118 Dryocosmus kuriphilus found again in the Czech Republic 2020/119 Eradication of Paysandisia archon from Switzerland 2020/120 Eradication of Comstockaspis perniciosa from Poland 2020/121 First report of Globodera rostochiensis in Uganda Diseases 2020/122 First report of tomato brown rugose fruit virus in Poland 2020/123 Update of the situation of tomato brown rugose fruit virus in the United Kingdom 2020/124 Update of the situation of tomato brown rugose fruit virus in the USA 2020/125 Tomato brown rugose fruit virus does not occur in Egypt 2020/126 Eradication of tomato chlorosis virus from the United Kingdom 2020/127 Tomato spotted wilt virus found in Romania 2020/128 First report of High Plains wheat mosaic virus in Ukraine 2020/129 Update on the situation of Pantoea stewartii subsp. stewartii in Slovenia 2020/130 Update on the situation of Pantoea stewartii subsp. stewartii in Italy 2020/131 First report of Peronospora aquilegiicola, the downy mildew of columbines in Germany Invasive plants 2020/132 Lycium ferocissimum in the EPPO region: addition to the EPPO Alert List 2020/133 First report of Amaranthus tuberculatus in Croatia 2020/134 First report of Microstegium vimineum in Canada 2020/135 Disposal methods for invasive alien plants 2020/136 EPPO Alert List species prioritised 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 Web: www.eppo.int 75011 Paris E-mail: [email protected] GD: gd.eppo.int EPPO Reporting Service 2020 no. -
The Cape Gooseberry and the Mexican Husk Tomato
MORTON AND RUSSELL: CAPE GOOSEBERRY 261 LITERATURE CITED Seedling Plantings in Hawaii. Hawaii Agric. Expt. Sta. Bui. 79: 1-26. 1938. 1. Pope, W. T. The Macadamia Nut in Hawaii. 10. Howes, F. N. Nuts, Their Production and Hawaii Agric. Exp. Sta. Bui. 59: 1-23. 1929. Everyday Use. 264 pp. London, Faber & Faber. 2. Hamilton, R. A. and Storey, W. B. Macadamia 1953. Nut Varieties for Hawaii Orchards. Hawaii Farm Sci., 11. Cooil, Bruce J. Hawaii Agric. Exp. Sta. Bien 2: (4). 1954. nial Report—1950-52: p. 56. ft. Chell, Edwin and Morrison, F. R. The Cultiva 12. Beaumont, J. H. and Moltzau, R. H. Nursery tion and Exploitation of the Australian Nut. Sydney, Propagation and Topworking of the Macadamia. Ha Tech. Museum Bui. 20: 1935. waii Agric?. Exp. Sta. Cir. 13: 1-28. 1937. 4. Francis, W. D. Australian Rain Forest Trees. 13. Fukunaga. Edward T. Grafting and Topwork 469 pp. Sydney and London, Angus and Robertson: ing the Macadamia. Univ. of Hawaii Agric. Ext. Cir. 1951 58: 1-8. 1951. 5. Bailey, L. H. Manual of Cultivated Plants. N. Y.f 14. Storey, W. B., Hamilton, R. A. and Fukunaga, McMillan. 1949. E. T. The Relationship of Nodal Structures to Train 6. Chandler, Wm. H. Evergreen Orchards. 352 pp.: ing Macadamia Trees. Am. Soc. Hort. Sci. Proc. 61: Philadelphia, Lea & Febiger. 1950. pp. 317-323. 1953. 7. Schroeder, C. A. The Macadamia Nut. Calif. 15. Anonymous. Insect Pests and Diseases of Agric, p. 3: April 1954. Plants. Queensland Agriculture and Pastoral Hand 8. Miller, Carey D. -
Of Physalis Longifolia in the U.S
The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity. -
Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis Ixocarp) Is a Small Edible Fruit in the Solanaceae Family
Center for Crop Diversification Crop Profile Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis ixocarp) is a small edible fruit in the Solanaceae family. A tan to straw-colored calyx covers the fruit-like a husk, giving rise to the common name of “husk tomato.” Native to Mexico and Guatemala, these tomato-like fruits are a key ingredient in a number of Latin American recipes, including salsa and chili sauces. Tomatillo may have potential as a specialty crop in some areas of Kentucky. Marketing Tomatillos are sold by Kentucky farms through direct marketing channels, including farmers markets, CSAs and roadside stands. Market potential may be greater at farmers markets in areas with larger Hispanic increasing U.S. Hispanic populations. Local groceries, as well as restaurants population helped establish specializing in Mexican or vegetarian dishes, may tomatillo as a nationwide be interested in purchasing locally grown tomatillos. commodity within wholesale produce marketing Production of tomatillo for direct sale to smaller channels. Producers considering growing tomatillo specialty food manufacturers, or for use in foods will likely have more success with fresh market prepared by the producer, may also be an option for Kentucky growers. retail sales in larger urban areas such as Louisville, Lexington, or Cincinnati. Novel or distinctive Large-scale production requires accessing wholesale tomatillos, such as varieties with purple coloration, marketing channels. Most fresh market shipments could be offered alongside classic green tomatillos; are sourced from Mexico and California; Florida and however, producers should identify the preferences Michigan also ship through the commercial fresh of potential customers, as some may prefer certain market in the summer. -
Procedure for Detecting Tobamovirus in Tomato and Pepper Seeds
DOI: http://dx.doi.org/10.1590/1678-4499.2017317 J. E. M. Almeida et al. PLANT PROTECTION - Article Procedure for detecting tobamovirus in tomato and pepper seeds decreases the cost analysis João Eduardo Melo Almeida, Antonia dos Reis Figueira*, Priscilla de Sousa Geraldino Duarte, Mauricio Antônio Lucas, Nara Edreira Alencar Universidade Federal de Lavras - Departamento de Fitopatologia - Lavras (MG), Brazil. ABSTRACT: The transmission of tobamovirus by tomato and limit of 1:400 and PMMoV up to the limit of 1:300. The assembled pepper seeds is an important mean of virus introduction in crops. lots containing only 1 contaminated seed in 1000 (1:1000) were Therefore, detecting its presence in the seed becomes essential combined into 30 sub lots for DAS-ELISA analysis and 10 sub lots for the preventive control of virus diseases. In this study, a method for IC-RT-PCR analysis. Both techniques, DAS-ELISA and IC-RT-PCR, was proposed for the detection of Tobacco mosaic virus (TMV) and were efficient to detect the three viruses in all analyzed samples, Tomato mosaic virus (ToMV) in tomatoes (Solanum lycopersicum) but the detection of tobamoviruses with RT-PCR and biological and Pepper mild mottle virus (PMMoV) in pepper (Capsicum tests was not reliable. Based on the results of this study, in which annum) seeds. Seed lots with different levels of incidence were a combination of seeds in sub lots was made to reduce the number analyzed by biological, serological, and molecular methods. Using of tests performed, it is possible to make significant savings in DAS-ELISA technique, it was possible to detect TMV up to the limit the cost of the diagnostic methods routinely conducted in official rate of 1:170 (1 contaminated seed: total seeds) and the ToMV up laboratories, with high efficiency and reliability. -
The Complete Genome Sequence, Occurrence and Host Range Of
Li et al. Virology Journal (2017) 14:15 DOI 10.1186/s12985-016-0676-2 RESEARCH Open Access The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate Yueyue Li1†, Yang Wang1†, John Hu2, Long Xiao1, Guanlin Tan1,3, Pingxiu Lan1, Yong Liu4* and Fan Li1* Abstract Background: Tomato mottle mosaic virus (ToMMV) is a recently identified species in the genus Tobamovirus and was first reported from a greenhouse tomato sample collected in Mexico in 2013. In August 2013, ToMMV was detected on peppers (Capsicum spp.) in China. However, little is known about the molecular and biological characteristics of ToMMV. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and rapid identification of cDNA ends (RACE) were carried out to obtain the complete genomic sequences of ToMMV. Sap transmission was used to test the host range and pathogenicity of ToMMV. Results: The full-length genomes of two ToMMV isolates infecting peppers in Yunnan Province and Tibet Autonomous Region of China were determined and analyzed. The complete genomic sequences of both ToMMV isolates consisted of 6399 nucleotides and contained four open reading frames (ORFs) encoding 126, 183, 30 and 18 kDa proteins from the 5’ to 3’ end, respectively. Overall similarities of the ToMMV genome sequence to those of the other tobamoviruses available in GenBank ranged from 49.6% to 84.3%. Phylogenetic analyses of the sequences of full-genome nucleotide and the amino acids of its four proteins confirmed that ToMMV was most closely related to Tomato mosaic virus (ToMV). According to the genetic structure, host of origin and phylogenetic relationships, the available 32 tobamoviruses could be divided into at least eight subgroups based on the host plant family they infect: Solanaceae-, Brassicaceae-, Cactaceae-, Apocynaceae-, Cucurbitaceae-, Malvaceae-, Leguminosae-, and Passifloraceae-infecting subgroups. -
PM 7/146 (1) Tomato Brown Rugose Fruit Virus
Bulletin OEPP/EPPO Bulletin (2021) 51 (1), 178–197 ISSN 0250-8052. DOI: 10.1111/epp.12723 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/146 (1) Diagnostics PM 7/146 (1) Tomato brown rugose fruit virus Diagnostic Specific approval and amendment Approved in 2020-10. Specific scope This Standard describes a diagnostic protocol for detection and identification of tomato brown rugose fruit virus.1 This Standard should be used in conjunction with PM 7/ 76 Use of EPPO diagnostic protocols. 1. Introduction 2. Identity Tomato brown rugose fruit virus (ToBRFV genus Name: Tomato brown rugose fruit virus. Tobamovirus) was first observed in 2014 and 2015 on Synonyms: None. tomatoes in Israel and Jordan, and outbreaks have recently Acronym: ToBRFV. occurred in China, Mexico, the USA and several EPPO Taxonomic position: Virus, Riboviria, Virgaviridae, countries (EPPO, 2020). The virus is a major concern for Tobamovirus. growers of tomato and pepper as it reduces the vigour of EPPO Code: TOBRFV. the plant, causes yield losses and virus symptoms make the Phytosanitary categorization: EPPO Alert List, EU emer- fruits unmarketable. However, the virus may also be present gency measures. in asymptomatic foliage and fruit. Note Virus nomenclature in Diagnostic Protocols is based Tomato (Solanum lycopersicum) and pepper (Capsicum on the latest release of the official classification by the annuum) are the only confirmed natural cultivated hosts of International Committee on Taxonomy of Viruses (ICTV, ToBRFV (Salem et al., 2016, 2019; Luria et al., 2017; Release 2018b, https://talk.ictvonline.org/taxonomy/). -
Husk Tomato, Ground Cherry
Yard and Garden – 09-11-2010- Ted Griess/ Extension Horticulture Assistant I‟d like to share with you a recent learning experience. It all began with an email from Mike. Subject: Husk tomato, ground cherry “Ted, I planted ground cherries ( Physalis pruinosa) this year and have noticed there is a similar weed around that has different looking leaves but very similar blooms and paper husks as the variety I ordered through the mail. …. the type I planted are very tasty… Can you tell me if the local weed I see around is also edible? Thanks, Mike” Fortunately, Mike contacted me via email and not over the telephone. Although I am familiar with an assortment of tomato varieties, the husk tomato was not one. Had Mike phoned me rather than email, I would have had to show my ignorance, but fortunately with an email, time was on my side. Before responding, I conducted a little research. Being vaguely familiar with the weed Mike referenced, the first thing I did was reach for my Weeds of the Great Plains book. I use this reference book frequently when I wish to know more about a particular weed. The book is published by the Nebraska Department of Agriculture. All information presented is factual and research based. While reading, I soon discovered that the husk tomato/ground cherry, which Mike planted, belonged to the same genus as the weed. The weed, clammy ground cherry grows wild in Nebraska, and its scientific name is Physalis heterophylla. Knowing this similarity, I soon understood why Mike wanted to know more about the weed. -
Atlas of Pollen and Plants Used by Bees
AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer. -
Aquilegia Newsletter of the Colorado Native Plant Society
Aquilegia Newsletter of the Colorado Native Plant Society IN THIS ISSUE Forty Years of Progress in Pollination Biology Return of the Native: Colorado Natives in Horticulture Climate Change and Columbines The Ute Learning and Ethnobotany Garden Volume 41 No.1 Winter 2017 The Urban Prairies Project Book Reviews Aquilegia Volume 41 No. 1 Winter 2017 1 Aquilegia: Newsletter of the Colorado Native Plant Society Dedicated to furthering the knowledge, appreciation, and conservation of native plants and habitats of Colorado through education, stewardship, and advocacy AQUILEGIA: Newsletter of the Colorado Native Plant Society Inside this issue Aquilegia Vol . 41 No . 1 Winter 2017 Columns ISSN 2161-7317 (Online) - ISSN 2162-0865 (Print) Copyright CoNPS © 2017 News & Announcements . 4 Aquilegia is the newsletter of the Colorado Native Plant Letter to the Editor . 9 Society . Members receive four regular issues per year (Spring, Summer, Fall, Winter) plus a special issue for the Workshops . 10 Society Annual Conference held in the Fall . At times, Chapter Programs & Field Trips . 11 issues may be combined . All contributions are subject to editing for brevity, grammar, and consistency, with final Conservation Corner: Conserving Colorado’s Native Plants . 23 approval of substantive changes by the author . Articles Garden Natives . 30 from Aquilegia may be used by other native plant societ- Book Reviews . 31 ies or non-profit groups, if fully cited to the author and attributed to Aquilegia . The deadline for the Spring 2017 Articles issue is March 15 and for the Summer issue is June 15 . 40 Years of Progress in Pollination Biology . 14 Announcements, news, articles, book reviews, poems, botanical illustrations, photographs, and other contribu- Return of the Native: Colorado Native Plants in Horticulture .