Husk Tomato, Ground Cherry

Total Page:16

File Type:pdf, Size:1020Kb

Husk Tomato, Ground Cherry Yard and Garden – 09-11-2010- Ted Griess/ Extension Horticulture Assistant I‟d like to share with you a recent learning experience. It all began with an email from Mike. Subject: Husk tomato, ground cherry “Ted, I planted ground cherries ( Physalis pruinosa) this year and have noticed there is a similar weed around that has different looking leaves but very similar blooms and paper husks as the variety I ordered through the mail. …. the type I planted are very tasty… Can you tell me if the local weed I see around is also edible? Thanks, Mike” Fortunately, Mike contacted me via email and not over the telephone. Although I am familiar with an assortment of tomato varieties, the husk tomato was not one. Had Mike phoned me rather than email, I would have had to show my ignorance, but fortunately with an email, time was on my side. Before responding, I conducted a little research. Being vaguely familiar with the weed Mike referenced, the first thing I did was reach for my Weeds of the Great Plains book. I use this reference book frequently when I wish to know more about a particular weed. The book is published by the Nebraska Department of Agriculture. All information presented is factual and research based. While reading, I soon discovered that the husk tomato/ground cherry, which Mike planted, belonged to the same genus as the weed. The weed, clammy ground cherry grows wild in Nebraska, and its scientific name is Physalis heterophylla. Knowing this similarity, I soon understood why Mike wanted to know more about the weed. I didn‟t stop there. I continued my investigation. I learned that well over eighty species of Physalis grow wild around the world, and a number grow in North America. The genus name Physalis is from the Greek „Physa‟ meaning bladder and refers to the inflated papery husk surrounding the ground cherry. Tomatillo, or Mexican tomato, is a cultivated ground cherry. Interestingly, they all belong to the family Solanaceae, more commonly known as the Nightshade family. That concerned me. Nightshade plants have the potential to be poisonous. Physalis heterophylla produces a fruit that is edible when ripe, but unripened, in its green stage, it may be poisonous to humans. However, Physalis plant with developing husks the book indicated that Native Americans used the fruit to create a sauce, and early pioneers used it in pies. Before responding back to Mike, I chose to learn more about the husk tomato/ground cherry Physalis pruinosa. This species is native to eastern North America. Being frost sensitive, it can be grown here in Nebraska but generally as an annual. Physalis pruinosa produces a tasty, yellow in color, cherry-sized fruit which grows inside a papery husk. The fruit can be enjoyed fresh, dried, or in pies and preserves. Furthermore, if the fruit is kept in the husk and stored in a cool, dry place, it remains fresh well into the winter. If the fruit is eaten before it ripens, it may be poisonous. Knowing all this, I was ready to respond. “Dear Mike, Thanks for the email. There are actually two weeds growing in our area referred to as ground cherries. One is clammy ground cherry Physalis heterophylla, and the other Virginia ground cherry Physalis virginia. Both are said to be poisonous when green but supposedly not when ripe. They, like the ones you have planted belong to the Nightshade family, a group consisting of many poisonous plants. I‟m very reluctant to suggest eating either of the ones growing in Nebraska……. Ted” At the time, I thought that concluded my interaction with Mike regarding husk tomatoes. A few days later he personally showed up in my office bearing gifts. He presented to me with a small bag of ripe husk tomatoes and a jar of home- Ripe Husk Tomatoes preserved Physalis pruinosa strawberry jelly. I have yet to try the jelly, but I can report the husk tomatoes tasted great— and I‟m still alive! Together we visited at great lengths about husk tomatoes and other gardening concerns. I‟m not sure how much I enlightened Mike, but I can certainly say with confidence he provided me with a great learning experience. Thanks, Mike. .
Recommended publications
  • Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: a Review
    Review Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review Luis A. Puente a,⁎, Claudia A. Pinto-Muñoz a, Eduardo S. Castro a, Misael Cortés b a Universidad de Chile, Departamento de Ciencia de los Alimentos y Tecnología Química. Av. Vicuña Mackenna 20, Casilla, Santiago, Chile b Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimento, A.A. 568 Medellin Colombia abstract The main objective of this work is to spread the physicochemical and nutritional characteristics of the Physalis peruviana L. fruit and the relation of their physiologically active components with beneficial effects on human health, through scientifically proven information. It also describes their optical and mechanical properties and presents micrographs of the complex microstructure of P. peruviana L. fruit and studies on the antioxidant Keywords: capacity of polyphenols present in this fruit. Physalis peruviana Bioactive compounds Functional food Physalins Withanolides Contents 1. Introduction .............................................................. 1733 2. Uses and medicinal properties of the fruit ................................................ 1734 3. Microstructural analysis ........................................................ 1734 4. Mechanical properties of the fruit .................................................... 1735 5. Optical properties of the fruit ...................................................... 1735 6. Antioxidant properties of fruit
    [Show full text]
  • The Cape Gooseberry and the Mexican Husk Tomato
    MORTON AND RUSSELL: CAPE GOOSEBERRY 261 LITERATURE CITED Seedling Plantings in Hawaii. Hawaii Agric. Expt. Sta. Bui. 79: 1-26. 1938. 1. Pope, W. T. The Macadamia Nut in Hawaii. 10. Howes, F. N. Nuts, Their Production and Hawaii Agric. Exp. Sta. Bui. 59: 1-23. 1929. Everyday Use. 264 pp. London, Faber & Faber. 2. Hamilton, R. A. and Storey, W. B. Macadamia 1953. Nut Varieties for Hawaii Orchards. Hawaii Farm Sci., 11. Cooil, Bruce J. Hawaii Agric. Exp. Sta. Bien 2: (4). 1954. nial Report—1950-52: p. 56. ft. Chell, Edwin and Morrison, F. R. The Cultiva 12. Beaumont, J. H. and Moltzau, R. H. Nursery tion and Exploitation of the Australian Nut. Sydney, Propagation and Topworking of the Macadamia. Ha Tech. Museum Bui. 20: 1935. waii Agric?. Exp. Sta. Cir. 13: 1-28. 1937. 4. Francis, W. D. Australian Rain Forest Trees. 13. Fukunaga. Edward T. Grafting and Topwork 469 pp. Sydney and London, Angus and Robertson: ing the Macadamia. Univ. of Hawaii Agric. Ext. Cir. 1951 58: 1-8. 1951. 5. Bailey, L. H. Manual of Cultivated Plants. N. Y.f 14. Storey, W. B., Hamilton, R. A. and Fukunaga, McMillan. 1949. E. T. The Relationship of Nodal Structures to Train 6. Chandler, Wm. H. Evergreen Orchards. 352 pp.: ing Macadamia Trees. Am. Soc. Hort. Sci. Proc. 61: Philadelphia, Lea & Febiger. 1950. pp. 317-323. 1953. 7. Schroeder, C. A. The Macadamia Nut. Calif. 15. Anonymous. Insect Pests and Diseases of Agric, p. 3: April 1954. Plants. Queensland Agriculture and Pastoral Hand 8. Miller, Carey D.
    [Show full text]
  • Of Physalis Longifolia in the U.S
    The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity.
    [Show full text]
  • Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis Ixocarp) Is a Small Edible Fruit in the Solanaceae Family
    Center for Crop Diversification Crop Profile Tomatillo Cheryl Kaiser1 and Matt Ernst2 Introduction Tomatillo (Physalis ixocarp) is a small edible fruit in the Solanaceae family. A tan to straw-colored calyx covers the fruit-like a husk, giving rise to the common name of “husk tomato.” Native to Mexico and Guatemala, these tomato-like fruits are a key ingredient in a number of Latin American recipes, including salsa and chili sauces. Tomatillo may have potential as a specialty crop in some areas of Kentucky. Marketing Tomatillos are sold by Kentucky farms through direct marketing channels, including farmers markets, CSAs and roadside stands. Market potential may be greater at farmers markets in areas with larger Hispanic increasing U.S. Hispanic populations. Local groceries, as well as restaurants population helped establish specializing in Mexican or vegetarian dishes, may tomatillo as a nationwide be interested in purchasing locally grown tomatillos. commodity within wholesale produce marketing Production of tomatillo for direct sale to smaller channels. Producers considering growing tomatillo specialty food manufacturers, or for use in foods will likely have more success with fresh market prepared by the producer, may also be an option for Kentucky growers. retail sales in larger urban areas such as Louisville, Lexington, or Cincinnati. Novel or distinctive Large-scale production requires accessing wholesale tomatillos, such as varieties with purple coloration, marketing channels. Most fresh market shipments could be offered alongside classic green tomatillos; are sourced from Mexico and California; Florida and however, producers should identify the preferences Michigan also ship through the commercial fresh of potential customers, as some may prefer certain market in the summer.
    [Show full text]
  • The Complete Genome Sequence, Occurrence and Host Range Of
    Li et al. Virology Journal (2017) 14:15 DOI 10.1186/s12985-016-0676-2 RESEARCH Open Access The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate Yueyue Li1†, Yang Wang1†, John Hu2, Long Xiao1, Guanlin Tan1,3, Pingxiu Lan1, Yong Liu4* and Fan Li1* Abstract Background: Tomato mottle mosaic virus (ToMMV) is a recently identified species in the genus Tobamovirus and was first reported from a greenhouse tomato sample collected in Mexico in 2013. In August 2013, ToMMV was detected on peppers (Capsicum spp.) in China. However, little is known about the molecular and biological characteristics of ToMMV. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and rapid identification of cDNA ends (RACE) were carried out to obtain the complete genomic sequences of ToMMV. Sap transmission was used to test the host range and pathogenicity of ToMMV. Results: The full-length genomes of two ToMMV isolates infecting peppers in Yunnan Province and Tibet Autonomous Region of China were determined and analyzed. The complete genomic sequences of both ToMMV isolates consisted of 6399 nucleotides and contained four open reading frames (ORFs) encoding 126, 183, 30 and 18 kDa proteins from the 5’ to 3’ end, respectively. Overall similarities of the ToMMV genome sequence to those of the other tobamoviruses available in GenBank ranged from 49.6% to 84.3%. Phylogenetic analyses of the sequences of full-genome nucleotide and the amino acids of its four proteins confirmed that ToMMV was most closely related to Tomato mosaic virus (ToMV). According to the genetic structure, host of origin and phylogenetic relationships, the available 32 tobamoviruses could be divided into at least eight subgroups based on the host plant family they infect: Solanaceae-, Brassicaceae-, Cactaceae-, Apocynaceae-, Cucurbitaceae-, Malvaceae-, Leguminosae-, and Passifloraceae-infecting subgroups.
    [Show full text]
  • Quick Scan Tomato Mottle Mosaic Virus
    Quick scan National Plant Protection Organization, the Netherlands Quick scan number: 2020VIR001 Quick scan date: 4 November 2020 No. Question Quick scan answer for Tomato mottle mosaic virus 1. What is the scientific name (if Tomato mottle mosaic virus (ToMMV), genus Tobamovirus, family Virgaviridae possible up to species level + author, also include (sub)family and order) and English/common name of the organism? Add picture of organism/damage if available and publication allowed. 2. What prompted this quick scan? ToMMV is (currently) not regulated in the EU. For the related tobamovirus tomato brown rugose fruit virus Organism detected in produce for (ToBRFV), however, emergency measures have been in place since November 2019 (EU, 2019 and 2020). import, export, in cultivation, ToBRFV has been found causing damage to tomato and pepper crops in the EU since it is able to nature, mentioned in publications, overcome resistances of current cultivars (Luria et al., 2017). The fact that ToMMV shares characteristics e.g. EPPO alert list, etc. with ToBRFV (Li et al., 2017), is reason for drafting this quick scan. In addition, Australia has implemented emergency measures for ToMMV and requires tomato and pepper seed lots to be imported, to be tested and found free from this virus (https://www.agriculture.gov.au/import/goods/plant- products/seeds-for-sowing/emergency-measures-tommv-qa#what-is-tomato-mottle-mosaic-virus- tommv). 3. What is the current area of CABI distribution map, retrieved 7-7-2020, 11-6-2020 distribution? Pagina 1 van 6 No. Question Quick scan answer for Tomato mottle mosaic virus Present in Asia: China (Li et al., 2014), Iran, Israel (Turina et al., 2016) Europe: Spain (Ambros et al., 2017) America: Brasil (Nagai et al., 2018) Mexico (Li et al., 2013) USA (Webster et al., 2014) ToMMV may have a wider distribution than currently known.
    [Show full text]
  • Missouriensis Volume 28 / 29
    Missouriensis Volume 28/29 (2008) In this issue: Improved Status of Auriculate False Foxglove (Agalinis auriculata) in Missouri in 2007 Tim E. Smith, Tom Nagel, and Bruce Schuette ......................... 1 Current Status of Yellow False Mallow (Malvastrum hispidum) in Missouri Tim E. Smith.................................................................................... 5 Heliotropium europaeum (Heliotropiaceae) New to Missouri Jay A. Raveill and George Yatskievych ..................................... 10 Melica mutica (Poaceae) New for the Flora of Missouri Alan E. Brant ................................................................................. 18 Schoenoplectus californicus (Cyperaceae) New to Missouri Timothy E. Vogt and Paul M. McKenzie ................................. 22 Flora of Galloway Creek Nature Park, Howell County, Missouri Bill Summers .................................................................................. 27 Journal of the Missouri Native Plant Society Missouriensis, Volume 28/29 2008 1 IMPROVED STATUS OF AURICULATE FALSE FOXGLOVE (AGALINIS AURICULATA) IN MISSOURI IN 2007 Tim E. Smith Missouri Department of Conservation P.O. Box 180, Jefferson City, MO 65102-0180 Tom Nagel Missouri Department of Conservation 701 James McCarthy Drive St. Joseph, MO 64507-2194 Bruce Schuette Missouri Department of Natural Resources Cuivre River State Park 678 State Rt. 147 Troy, MO 63379 Populations of annual plant species are known to have periodic “boom” and “bust” years as well as years when plant numbers more closely approach long-term averages. In tracking populations of plant species of conservation concern (Missouri Natural Heritage Program, 2007), there are sometimes also boom years in the number of reports of new populations. Because of reports of five new populations and a surge in numbers of plants at some previously-known sites, 2007 provided encouraging news for the conservation of the auriculate false foxglove [Agalinis auriculata (Michx.) Blake] in Missouri.
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Aquilegia Newsletter of the Colorado Native Plant Society
    Aquilegia Newsletter of the Colorado Native Plant Society IN THIS ISSUE Forty Years of Progress in Pollination Biology Return of the Native: Colorado Natives in Horticulture Climate Change and Columbines The Ute Learning and Ethnobotany Garden Volume 41 No.1 Winter 2017 The Urban Prairies Project Book Reviews Aquilegia Volume 41 No. 1 Winter 2017 1 Aquilegia: Newsletter of the Colorado Native Plant Society Dedicated to furthering the knowledge, appreciation, and conservation of native plants and habitats of Colorado through education, stewardship, and advocacy AQUILEGIA: Newsletter of the Colorado Native Plant Society Inside this issue Aquilegia Vol . 41 No . 1 Winter 2017 Columns ISSN 2161-7317 (Online) - ISSN 2162-0865 (Print) Copyright CoNPS © 2017 News & Announcements . 4 Aquilegia is the newsletter of the Colorado Native Plant Letter to the Editor . 9 Society . Members receive four regular issues per year (Spring, Summer, Fall, Winter) plus a special issue for the Workshops . 10 Society Annual Conference held in the Fall . At times, Chapter Programs & Field Trips . 11 issues may be combined . All contributions are subject to editing for brevity, grammar, and consistency, with final Conservation Corner: Conserving Colorado’s Native Plants . 23 approval of substantive changes by the author . Articles Garden Natives . 30 from Aquilegia may be used by other native plant societ- Book Reviews . 31 ies or non-profit groups, if fully cited to the author and attributed to Aquilegia . The deadline for the Spring 2017 Articles issue is March 15 and for the Summer issue is June 15 . 40 Years of Progress in Pollination Biology . 14 Announcements, news, articles, book reviews, poems, botanical illustrations, photographs, and other contribu- Return of the Native: Colorado Native Plants in Horticulture .
    [Show full text]
  • Solanaceae – Nightshade (Tomato) Family
    SOLANACEAE – NIGHTSHADE (TOMATO) FAMILY Plant: herbs, woody vines, shrubs and trees Stem: Root: Leaves: simple (rarely pinnate) and alternate except sometimes on the upper stem opposite; no stipules Flowers: perfect; often showy; mostly (4)5 sepals, often persistent and partially fused; mostly (4)5 petals, sometimes tubular; stamens usually 5 (rarely 2 or 4) and alternate to corolla lobes; ovary superior, 1 style, stigma usually lobed Fruit: capsule (2-chambered) or berry, usually many seeds, often oily Other: large family; some poisonous; others include – peppers, tomato, potato, eggplant, tobacco and many ornamentals such as Petunia; Dicotyledons Group Genera: 95+ genera; locally Datura, Solanum (nightshade) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Solanaceae (Nightshade or Tomato Family) Examples of some common genera Gray Five Eyes [Ground Saracha] Chamaesaracha coniodes (Moric. Garden Petunia ex Dunal) Britton Petunia ×atkinsiana D. Don ex Loud. Bittersweet [Deadly] Nightshade [axillaris × integrifolia] (Introduced) Solanum dulcamara L. var. dulcamara Jimsonweed [Thorn Apple] Datura stramonium L. (Introduced). Clammy Groundcherry Physalis heterophylla Nees var. Garden Egg Plant heterophylla Solanum melongena L. (Introduced) Christmas Berry [Carolina Desert-Thorn] Chinese Lantern [Plains Purple Ground Cherry] Sticky Nightshade Lycium carolinianum Walter Quincula lobata (Torr.) Raf. Solanum sisymbriifolium Lam. var. carolinianum SOLANACEAE – NIGHTSHADE (TOMATO) FAMILY Gray Five Eyes [Ground Saracha]; Chamaesaracha coniodes (Moric. ex Dunal) Britton Jimsonweed [Thorn Apple]; Datura stramonium L. (Introduced). Christmas Berry [Carolina Desert-Thorn]; Lycium carolinianum Walter var. carolinianum Garden Petunia; Petunia ×atkinsiana D. Don ex Loud. [axillaris × integrifolia] (Introduced) Cutleaf Groundcherry; Physalis angulata L. Coastal [Narrow Leaf] Groundcherry; Physalis angustifolia Nutt.
    [Show full text]