A Primer of Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

A Primer of Commutative Algebra A Primer of Commutative Algebra James S. Milne April 29, 2012, v2.23 Abstract These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses. Contents 1 Rings and algebras......................2 2 Ideals...........................3 3 Noetherian rings.......................8 4 Unique factorization...................... 13 5 Integrality......................... 16 6 Rings of fractions....................... 21 7 Direct limits......................... 25 8 Tensor Products....................... 26 9 Flatness.......................... 30 10 Finitely generated projective modules............... 35 11 The Hilbert Nullstellensatz................... 42 12 The max spectrum of a ring................... 45 13 Dimension theory for finitely generated k-algebras........... 52 14 Primary decompositions.................... 56 15 Artinian rings........................ 59 16 Dimension theory for noetherian rings............... 61 17 Regular local rings...................... 65 18 Connections with geometry................... 67 References........................... 73 Index............................. 75 c 2009, 2010, 2011, 2012 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. Available at www.jmilne.org/math/. 1 1 RINGS AND ALGEBRAS 2 Notations and conventions Our convention is that rings have identity elements,1 and homomorphisms of rings respect the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring 2 A form a group, which we denote by A. Throughout “ring” means “commutative ring”. Following Bourbaki, we let N 0;1;2;::: . For a field k, kal denotes an algebraic closure D f g of k. X YX is a subset of Y (not necessarily proper). X def YX is defined to be Y , or equals Y by definition. D X YX is isomorphic to Y . X YX and Y are canonically isomorphic ' (or there is a given or unique isomorphism). Acknowledgements I thank the following for providing corrections and comments for earlier versions of these notes: Florian Herzig, Chun Yin Hui, Keenan Kidwell, Leon Lampret, Andrew McLennan, Shu Otsuka, Bhupendra Nath Tiwari. 1 Rings and algebras Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition, multiplication, and the formation of negatives. An A-algebra is a ring B together with a homomorphism iB A B.A homomorphism of A-algebras B C is a homomorphism W ! ! of rings ' B C such that '.iB .a// iC .a/ for all a A. W ! D 2 Elements x1;:::;xn of an A-algebra B are said to generate it if every element of B can be expressed as a polynomial in the xi with coefficients in iB .A/, i.e., if the homomorphism of A-algebras AŒX1;:::;Xn B acting as iB on A and sending Xi to xi is surjective. We ! then write B .iB A/Œx1;:::;xn. D A ring homomorphism A B is of finite type, and B is a finitely generated A-algebra, ! if B is generated by a finite set of elements as an A-algebra. A ring homomorphism A B is finite, and B is a finite3 A-algebra, if B is finitely ! generated as an A-module. If A B and B C are finite ring homomorphisms, then so ! ! also is their composite A C . ! Let k be a field, and let A be a k-algebra. When 1A 0, the map k A is injective, ¤ ! and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A 0, D the ring A is the zero ring 0 . f g Let AŒX be the ring of polynomials in the symbol X with coefficients in A. If A is an integral domain, then deg.fg/ deg.f / deg.g/, and so AŒX is also an integral domain; D C moreover, AŒX A . D 1An element e of a ring A is an identity element if ea a ae for all elements a of the ring. It is usually D D denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a unit element. Worse, a unit need not be the unit. 2This notation differs from that of Bourbaki, who writes A for the multiplicative monoid A 0 and A X f g for the group of units. We shall rarely need the former, and is overused. 3This is Bourbaki’s terminology (AC V 1, 1). Finite homomorphisms of rings correspond to finite maps of varieties and schemes. Some other authors say “module-finite”. 2 IDEALS 3 Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra, then it is a field because, for each nonzero a A, the k-linear map x ax A A is 2 7! W ! injective, and hence is surjective, which shows that a has an inverse. If A is an integral domain and each element of A is algebraic over k, then for each a A, kŒa is an integral 2 domain finite over k, and hence contains an inverse of a; again A is a field. Products and idempotents An element e of a ring A is idempotent if e2 e. For example, 0 and 1 are both idempotents D — they are called the trivial idempotents. Idempotents e1;:::;en are orthogonal if ei ej 0 D for i j . Any sum of orthogonal idempotents is again idempotent. A set e1;:::;en of ¤ f g orthogonal idempotents is complete if e1 en 1. Any set of orthogonal idempotents C C D e1;:::;en can be made into a complete set of orthogonal idempotents by adding the f g idempotent e 1 .e1 en/. D C C If A A1 An (direct product of rings), then the elements D i ei .0;:::;1;:::;0/; 1 i n; D Ä Ä form a complete set of orthogonal idempotents in A. Conversely, if e1;:::;en is a com- 4 f g plete set of orthogonal idempotents in A, then Aei becomes a ring with the addition and multiplication induced by that of A, and A Ae1 Aen. ' 2 Ideals Let A be a ring. An ideal a in A is a subset such that a is a subgroup of A regarded as a group under addition; ˘ a a, r A ra a: ˘ 2 2 ) 2 The ideal generated by a subset S of A is the intersection of all ideals a containing S — it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the form P ri si with ri A, si S. The ideal generated by the empty set is the zero ideal 0 . When 2 2 f g S a;b;::: , we write .a;b;:::/ for the ideal it generates. D f g An ideal is principal if it is generated by a single element. Such an ideal .a/ is proper if and only a is not a unit. Thus a ring A is a field if and only if 1A 0 and A contains no ¤ nonzero proper ideals. Let a and b be ideals in A. The set a b a a; b b is an ideal, denoted a b. The f C j 2 2 g C ideal generated by ab a a; b b is denoted by ab. Clearly ab consists of all finite P f j 2 2 g sums ai bi with ai a and bi b, and if a .a1;:::;am/ and b .b1;:::;bn/, then 2 2 D D ab .a1b1;:::;ai bj ;:::;ambn/. Note that ab aA a and ab Ab b, and so D D D ab a b: (1) \ The kernel of a homomorphism A B is an ideal in A. Conversely, for every ideal a in ! a ring A, the set of cosets of a in A forms a ring A=a, and a a a is a homomorphism 7! C ' A A=a whose kernel is a. There is a one-to-one correspondence W ! b '.b/ ideals of A containing a 7! ideals of A=a : (2) 1 f g '! .b/ b f g [ 4 But Aei is not a subring of A if n 1 because its identity element is ei 1 : However, the map a ¤ ¤ A 7! aei A Aei realizes Aei as a quotient of A. W ! 2 IDEALS 4 For every ideal b of A, ' 1'.b/ a b. D C The ideals of A B are all of the form a b with a and b ideals in A and B. To see this, note that if c is an ideal in A B and .a;b/ c, then .a;0/ .1;0/.a;b/ c and 2 D 2 .0;b/ .0;1/.a;b/ c. Therefore, c a b with D 2 D a a .a;0/ c ; b b .0;b/ c : D f j 2 g D f j 2 g An ideal p in A is prime if p A and ab p a p or b p. Thus p is prime if and ¤ 2 ) 2 2 only if the quotient ring A=p is nonzero and has the property that ab 0; b 0 a 0; D ¤ ) D i.e., A=p is an integral domain. Note that if p is prime and a1 an p, then at least one 2 of the ai p (because either a1 p or a2 an p; if the latter, then either a2 p or 2 2 2 2 a3 an p; etc.).
Recommended publications
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 1. Rings of Fractions
    1. Rings of Fractions 1.0. Rings and algebras (1.0.1) All the rings considered in this work possess a unit element; all the modules over such a ring are assumed unital; homomorphisms of rings are assumed to take unit element to unit element; and unless explicitly mentioned otherwise, all subrings of a ring A are assumed to contain the unit element of A. We generally consider commutative rings, and when we say ring without specifying, we understand this to mean a commutative ring. If A is a not necessarily commutative ring, we consider every A module to be a left A- module, unless we expressly say otherwise. (1.0.2) Let A and B be not necessarily commutative rings, φ : A ! B a homomorphism. Every left (respectively right) B-module M inherits the structure of a left (resp. right) A-module by the formula a:m = φ(a):m (resp m:a = m.φ(a)). When it is necessary to distinguish the A-module structure from the B-module structure on M, we use M[φ] to denote the left (resp. right) A-module so defined. If L is an A module, a homomorphism u : L ! M[φ] is therefore a homomorphism of commutative groups such that u(a:x) = φ(a):u(x) for a 2 A, x 2 L; one also calls this a φ-homomorphism L ! M, and the pair (u,φ) (or, by abuse of language, u) is a di-homomorphism from (A, L) to (B, M). The pair (A,L) made up of a ring A and an A module L therefore form the objects of a category where the morphisms are di-homomorphisms.
    [Show full text]
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Math 210B. Finite-Dimensional Commutative Algebras Over a Field Let a Be a Nonzero finite-Dimensional Commutative Algebra Over a field K
    Math 210B. Finite-dimensional commutative algebras over a field Let A be a nonzero finite-dimensional commutative algebra over a field k. Here is a general structure theorem for such A: Theorem 0.1. The set Max(A) of maximal ideals of A is finite, all primes of A are maximal and minimal, and the natural map Y A ! Am m is an isomorphism, with each Am having nilpotent maximal ideal. Qn In particular, if A is reduced then A ' i=1 ki for fields ki, with the maximal ideals given by the kernels of the projections A ! ki. The assertion in the reduced case follows from the rest since if A is reduced then so is each Am (and hence its nilpotent unique maximal ideal vanishes, implying Am must be a field). Note also that the nilpotence of the maximal ideal mAm implies that for some large n we have n n n Am = Am=m Am = (A=m )m = A=m (final equality since m is maximal in A), so the isomorphism in the Theorem can also be expressed Q n as saying A ' m A=m for large n. Most of the proof of this result is worked out in HW1 Exercise 7, and here we just address one point: the nilpotence of the maximal ideal of the local ring Am at each maximal ideal m of A. That is, we claim that the maximal ideal M := mAm is nilpotent. To establish such nilpotence, note that M is finitely generated as an Am-module since Am is noetherian (as A is obviously noetherian!).
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • 36 Rings of Fractions
    36 Rings of fractions Recall. If R is a PID then R is a UFD. In particular • Z is a UFD • if F is a field then F[x] is a UFD. Goal. If R is a UFD then so is R[x]. Idea of proof. 1) Find an embedding R,! F where F is a field. 2) If p(x) 2 R[x] then p(x) 2 F[x] and since F[x] is a UFD thus p(x) has a unique factorization into irreducibles in F[x]. 3) Use the factorization in F[x] and the fact that R is a UFD to obtain a factorization of p(x) in R[x]. 36.1 Definition. If R is a ring then a subset S ⊆ R is a multiplicative subset if 1) 1 2 S 2) if a; b 2 S then ab 2 S 36.2 Example. Multiplicative subsets of Z: 1) S = Z 137 2) S0 = Z − f0g 3) Sp = fn 2 Z j p - ng where p is a prime number. Note: Sp = Z − hpi. 36.3 Proposition. If R is a ring, and I is a prime ideal of R then S = R − I is a multiplicative subset of R. Proof. Exercise. 36.4. Construction of a ring of fractions. Goal. For a ring R and a multiplicative subset S ⊆ R construct a ring S−1R such that every element of S becomes a unit in S−1R. Consider a relation on the set R × S: 0 0 0 0 (a; s) ∼ (a ; s ) if s0(as − a s) = 0 for some s0 2 S Check: ∼ is an equivalence relation.
    [Show full text]
  • A Natural Transformation of the Spec Functor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 10, 69-91 (1968) A Natural Transformation of the Spec Functor IAN G. CONNELL McGill University, Montreal, Canada Communicated by P. Cohn Received November 28, 1967 The basic functor underlying the Grothendieck algebraic geometry is Spec which assigns a ringed space to each ring1 A; we denote the topological space by spec A and the sheaf of rings by Spec A. We shall define a functor which is both a generalization and a natural transformation of Spec, in a sense made precise below. Our setting is the category Proj, of commutative K-algebras, where k is a fixed ring, and specializations over K which are defined below. A k-algebra is, strictly speaking, a ring homomorphism pA : K -+ A (pa is called the representation or structural homomorphism) and a K-algebra homomorphism is a commutative triangle k of ring homomorphisms. As is customary we simplify this to “A is a K-algebra” and “4 : A -+ B is a K-algebra homomorphism”, when there can be no ambiguity about the p’s. When we refer to K as a K-algebra we mean of course the identity representation. 1. PRIMES AND PLACES Recall the definition of a place $ on the field A with values in the field B (cf. [6], p. 3). It is a ring homomorphism 4 : A, -+ B defined on a subring A, of A with the property that for all X, y E A, xy E A, , x 6 A, =Py E Ker 4.
    [Show full text]
  • Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
    Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R.
    [Show full text]